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Abstract  

Two-component Bose-Einstein condensate show many interesting phenomena due to the 

interplay between the inter and intra component interactions. We study the dynamical 

properties of a highly unbalanced mixture in both trapped and homogeneous cases using two 

couple Gross-Pitaevskii equation. Effects of inter and intra-component interactions on the 

collective mode frequencies are discussed in three and one dimensions. 
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General Introduction: 

 Brief history of Bose-Einstein condensate: 

In classical mechanics it is possible to label identical particles uniquely by their position 

and the momentum coordinates at any given time, while in the quantum mechanics particles 

no longer have well defined trajectories, and the fact that identical particles are 

indistinguishable has profound effects if we arbitrarily form a wave for many-body system by 

assigning mathematical labels to each particle, an exchange of these labels can lead to 

different physical predications a situation which is obviously unacceptable. 

To obtain un a acceptable physic we must impose certain symmetries on the many-body wave 

function we find that there are two possibilities of the wave it’s must be “symmetric” or 

“antisymmetric”, this is expressed as 

                                 , 

where particles which have wave functions antisymmetric (-) called fermions and obey the 

Fermi-Dirac statistics and those which are symmetric (+) called boson and obey the Bose-

Einstein statics. It is now possible to deduce that particles within half-integer are fermions 

while those with integer spin are boson. This requirements on the symmetry of the wave 

function lead us to a new principle called “the Pauli exclusion principle” where it’s said that: 

the fermions can’t sharing the same quantum state”, in the other hand the bosons have a 

tendency to cluster together in the same state; this phenomenon know as Bose-Einstein 

condensate (BEC). 

The phenomena of BEC was first described by Albert Einstein in 1925 [1] basing on 

the work of Satyendra Nath Bose theory of the quantum statistics of photons. Einstein 

realized that an ideal Bose gas, cooled below a critical temperature   , would have a 

macroscopic population of atoms in a single quantum state (the ground state). Stated this way, 

Einstein’s prediction is not surprising; it makes sense that a large ground state occupation 

would occur if an ideal Bose gas were cooled at temperatures lower than a certain critical 

value. What is surprising, however, is the fact that the temperature at which this occurs can be 

many times higher than the energy of the first excited state, and the number of atoms in the 

ground state, as a function of temperature, was predicted to have a discontinuous derivative at 

the critical temperature   .  
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Efforts to realize BEC in a weakly interacting gas were initiated by a paper by 

Stwalley and Nosanow in 1976 [2]. In this paper the authors pointed out that Hydrogen 

remains in its gaseous state down to temperatures necessary for BEC, while all other 

substances with the exception of Helium transform into the solid state. The groups of Silvera 

and Walraven in the Netherlands and Greytak and Kleppner in the USA started experiments 

to reach BEC in Hydrogen in the early 80s [3,4]. The American group eventually observed 

BEC in 1998 [5] three years after, the first condensates in Alkali vapors had been realized. It 

turned out that ultracold alkali atoms can be stored in a metastable state with a sufficient life 

time to reach BEC. 

Soon after the invention of laser cooling, it was realized that this technique offered a second 

possible route to BEC apart from the Hydrogen approach. The pioneers of laser cooling were 

awarded the Nobel Prize in 1997 [6,7,8], two years after BEC (in Sodium, Rubidium and 

Lithium) was achieved nearly simultaneously by three groups in 1995 [9,10,11]. In 2001 Carl 

E. Wiemann, Eric Cornell and Wolfgang Ketterle received the Nobel Prize for their 

contributions to studies on BEC [12,13]. 

 

Why two-component?  

BEC of mixtures has recently the subject of an intensive experimental and theoretical 

research because its show many interesting phenomena do not existing in one-component due 

the interplay between intra- and inter-species BECs, such us interferences, soliton 

molecules…. 

  

Experimental realization: 

A mixture of BEC can be produced experimentally by simultaneously trapping atoms in 

different hyperfine states, or different species. The first experimental realization of a system 

of two interacting BECs has been obtained at JILA with a double condensate of 
87

Rb in two 

different hyperfine states                      and         [14]. This mixture was characterized 

by a partial overlap between the two condensates. Since then several other experiments have 

been performed with double condensates of rubidium [15,16,17] and with spinor condensates 

of sodium in optical traps [18]. These systems have been extensively studied also from the 

theoretical point of view.  
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On the other hand, the two-component BEC has recently attracted a great deal of interest 

in theoretical side. Ground state density profiles were first investigated by Ho and Shenoy in 

1996 [19] in the context of the Thomas–Fermi (TF) approximation. The boundary between 

inter-penetrating BECs has been studied in great detail [20]. Metastable states, which do not 

correspond to the lowest energy for the system, have been obtained numerically [21]. 

Furthermore, the stability of a two–component system has largely explored in both  

homogeneous and trapped cases. Indeed, the stability has been investigated when the system 

is disturbed by an external force. It has been found also that, similarly to a one species 

condensate, when attractive interactions are present, the binary BEC exhibits a collapse [22, 

23]. BEC mixtures have been also studied in non–harmonic trapping potentials such as double 

well magnetic trap [24], optical lattices (where the potential has spatially periodic wells) [25], 

and recently ring potentials where the fragility of the system was found to depend on the 

speed of persistent currents [26]. Other varieties of ultracold atomic mixtures have been 

intensively investigated namely spinor condensates (see [27] for review), Bose–Fermi 

mixtures [28, 29, 30] and BEC-impurity mixtures [31, 32] 

              The aim of this dissertation is to investigate the effects of inter and intra-species 

interaction on the properties of a two-component BEC at zero temperature, by using two 

coupled time dependent Gross-Pitaevskii equations (GPE).   

 

Outline of the dissertation  

  In chapter 1, we start from a second-quantized description of a two-component Bose 

gas system and derive the coupled GPE for each component. Miscible and immiscible 

mixtures are deeply discussed in the frame of the Thomas-Fermi (TF) approximation. The 

elementary excitation will be obtained within the so-called Bogoliubov-de-Gennes equations 

by considering the small oscillations of the order parameter around the equilibrium solution. 

Furthermore, we will calculate the superfluid fraction and the depletion of the mixture. 

Chapter 2 deals with the dynamics of highly unbalance mixture. We will use the 

coupled GPE within the hydrodynamic approach. A generalized Stringari’s equation is 

derived. Linearizing this latter around the equilibrium state, we obtain analytical expressions 
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for the collective modes of both majority and minority components of the mixture for 

isotropic and anisotropic traps.  

Chapter 3 is devoted to study the dynamics of a binary Bose gas in one dimensional 

geometry.  The collective modes are obtained following the same process as in chapter 2. 

Moreover, we investigate the time evolution of the majority component employing a 

variational method. The profile in real space reveals sinusoidal width oscillations. Our 

findings are compared with recent experimental data.  

 



 

 

 

  

Chapter 1 

Homogeneous BEC mixture 
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Chapter 1 

Homogeneous BEC mixture 

 

 

he Bose Einstein Condensate (BEC) containing around one million  atoms occupying 

the ground state so it is impossible to describe the motion of every single particle. It is 

much better to move from microscopic to macroscopic description. This is done by so 

called non linear Schrödinger equation (NLSE) known also as Gross-Pitaevskii equation 

(GPE). This equation has been successfully used to describe the statics and the dynamics of 

BEC at very low temperature such as the excitation energy and collective mode frequencies. 

 

1.1.Gross-Pitaevskii equation: 

 

We consider a two component BEC formed by a mixture of two kinds of atoms (or the 

same atoms in two different internal states). The Hamiltonian of the system reads 

           ,                                                 (1.1) 

where 

          
     

   

   
        

  

 
   
                                      (1.2) 

                                                                                                                                              

              
       

                 ,                               (1.3) 

Here,        ,        is the external confining field, and     
 
       are the creation and 

annihilation operators satisfying to the usual commutation relations              

                  
 
      

 
                     

 
             .            (1.4)  

The coupling constants     are given in terms of the s-wave scattering length     by 

   
      

  
          and            

       

   
         

 

  
 

 

  
 .                       (1.5) 

The intercomponent coupling constant    yields new structures and dynamics not found in a 

single component BEC.  

The GP equation can be derived using the Heisenberg picture [33] 

T 
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       . 

Then splitting the field operator into the condensate contribution, which corresponds to the 

macroscopic occupation of a single quantum state, from the remaining part of the Bose field 

operator. Therefore, 

                                 ,                                                  (1.6) 

where   corresponding to the condensate wave function (order parameter), and   is the non 

condensate operator.   

Keeping in mind that at zero temperature all particles are in the lowest state i.e. we can 

neglect the non-condense field operator. After a straightforward calculation, we obtain the 

GPE for the two BECs mixture 

              
        

  
  

   

   
              

         
          ,                (1.7) 

              
        

  
  

   

   
              

         
         ,                 (1.8)   

with the normalization condition 

           
    .                                             (1.9)                                

The static solutions can be found by eliminating the time-dependence via the transformation: 

                         
        .                                    (1.10) 

where     the chemical potential 

Introducing (1.10) in (1.7) and (1.8) we obtain  

                     
   

   
                         ,                     (1.11) 

                     
   

   
                        ,                      (1.12) 

where the density of particles is given by        
 . 

 

 

1.2.Tomas-Fermi (TF) approximation: 

For sufficiently large clouds (   ) and for repulsive interaction (    ), an accurate 

expression for the ground-state energy may be obtained by neglecting the kinetic energy term 

in the GPE [34]. The densities of both components 1 and 2 take an inverted parabola as       

                  
              

  
,                                                 (1.13)                                                       

                
              

  
,                                          (1.14) 

Combining equations (1.14) in (1.13), one gets 
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  ,                                         (1.15)   

                
                    

        
  ,                                         (1.16) 

The mixture of two BEC can be miscible or immiscible depending on the parameter   

        
 . For     we have a miscible mixture and while for    , the mixture becomes 

immiscible [35] 

                
 

  
 

 

   
     

   

  
      

   

  
     ,                          (1.17) 

                
 

  
 

 

   
     

   

  
      

   

  
     ,                         (1.18) 

By introducing the normalized chemical potential          
   

  

  

  
  and the normalized 

external potential          
   

  

  

  
  we obtain 

              
 

  
          .                                               (1.19) 

 

1.3.Excitation of inhomogeneous mixture BEC: 

The study of the excitation BEC can be done by linearizing GPE using the random phase 

approximation (RPA) 

                                                      
       ,                                   (1.20) 

where         ,          the equilibrium density of particles. 

Inserting (1.20) in the equations (1.7) and (1.8), we obtain 

                      
 

  
        

  
   

   
                            

         

                
                       

                                                                                                                                             (1.21) 

                      
 

  
        

  
   

   
                            

         

                
                      

                                                                                                                                             (1.22) 
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To the zeroth order, we obtain the usual GPEs  

                    
   

   
                                  ,                                   (1.23) 

                    
   

   
                                  ,                                  (1.24) 

The first order gives 

   
 

  
         

   

   
                           

                     
  ,                                                                                                                       

                                                                                                                                             (1.25)            

  
 

  
         

   

   
                           

                     
        

                                                                                                                                             (1.26)                                                                                                                                                           

To calculate the energy of elementary excitation we need to use the Bogoliubov 

transformation: 

       
           

        ,                                                                         (1.27)                                             

       
           

        ,                                                                         (1.28) 

where    the excitation energy of the system.   ,   ,   ,    are Bogoliubov parameters. 

Inserting theses terms in equation (1.25) (1.26) and separate the terms with          and with 

        so we obtain the following set of equations 

 

                      
   

   
                                            

                    
   

   
                                            

                      
   

   
                                            ,    (1.29) 

                    
   

   
                                            

 

In the uniform case where         and        , we obtain the so-called Bogoliubov-de-

Gennes equation 

                         
    

   
                                     

                      
    

   
                                     ,                  (1.30) 
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or equivalently in the matrix from 

          

  
   
  
   

   

      
      
      

      

  

  
  
  
  

  ,                                (1.31) 

 

where     
    

   
    ,          and              

To calculate the excitation energy, one should first calculate the determinant of this matrix 

                        

         
         
         

         

   .                      (1.32) 

 

The excitation energy reads                                           

                         
  
    

 

 
     

    
  

 

 
 

    

    
   
         ,                                   (1.33) 

where  

             
  

    

   
 
    

   
                        and               

  
    

   
 
    

   
        , 

are the usual single condensate Bogoliubov dispersion relations. 

In the long wavelength limit     we have        with             being the sound 

velocities of single BEC. The total dispersion is phonon-like  

       , 

with  

                      
  
    

 

 
     

    
  

 

 
 

   
 

    
  
   

   .                                   (1.34) 

In the immiscible case      
       , the spectrum (1.33) becomes unstable. 

The above excitation energies can be written in dimensionless form as  

  
 

      
      

   

 
   , 

And 

                                                     
  

  
      

     
    

 

 
      

     
    

  
 

 
 

    
 

   
    ,             (1.35) 
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where      
     

     
 ,   

  

  
 and    

 

        
  is the healing length. 

The behavior of      is displayed in figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The excitation energy for different contact constant in function of    , ;     (dashed lines) 

       (Solid lines) 
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 The Bogoliubov parameters must satisfy the normalization condition 

                                                               
    

                                                              (1.36) 

For sake of simplicity, we proceed by considering the two component system with equal 

masses.        , which is known as the “balanced” system [36]. In such a situation the 

Bogoliubov amplitudes can be written is a simpler form 

                                             

 
 
 

 
       

 

 
  

  

  
  

  

  
 

      
 

 
  

  

  
  

  

  
 

 .                                        (1.37) 

The Bogoliubov parameters are a formally identical to that of a single BEC. 

                          

1.4.Superfluidity at finite temperature: 

At finite temperature the liquid contains excitation which will treat as a gas of quasiparticle.  

The total momentum per unit volume is thus equal to that carried by the excitations, 

                             
   

      
   ,                                               (1.38) 

Figure 1.2. Real part (solid lines) and imaginary part (dashed lines) for the 

excitation energy of two BEC components  
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where the distribution function equal     
 

            
.  

The density of the normal phase is then given by 

                            
  

 
   

  

 

   

   

   

      
.                                        (1.39) 

 

At low temperature, the main contribution to the integral comes from the region of small 

momentum where       . After some algebra, we obtain the following expression for 

normal component of the superfluid: 

                           
  

     

      
 ,                                                      (1.40) 

where    is given in equation (1.34). 

Equation (1.41) shows that the expression of the normal density is formally identical to that of 

a single BEC. For    
      , the superfluid fraction becomes imaginary yielding the 

transition to a new quantum phase. 

 

1.5.The depletion:  

The condensate depletion is defined through 

                    
 

      
    

      
               

     
               ,         (1.41)  

The physical interpretation of the expression (1.41) is that the first term is the number of 

atoms in the condensate. The second term represents the depletion of the condensate by 

interactions when no real excitations are present.  

where    
 and     are creation and annihilation operator of quasiparticles, often known as 

“bogolons”.  

Using the definitions: 

    
        

    
    

             
,                                                    (1.42)                        

we obtain 

                                                         
 

      
    

        .                             (1.43)  

At     almost of atoms are in the ground state i.e.     . Therefore, the condensate 

depletion turns out to be given as 

                                                            
 

 ,                                                    (1.44) 

where   is the total density,    is the condensate density and    is the non-condensate density. 

Replacing the sum over   by an integral, we get 
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 ,                                          (1.45) 

here    the excitation energy gives in equation (1.33) and    the energy of free particle. 

Turning to a new variable     , integral (1.46) gives immediately  

   
     

 

   
,                                                            (1.46) 

Again we see that the depletion of the mixture is formally identical to that of the single BEC 

and it is imaginary for      
      . 



 

 

 

 

  

Chapter 02 

Dynamics of highly unbalanced 

mixture 
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Chapter 02 

Dynamics of highly unbalanced mixture  

 

The time-dependent of BEC clouds, such as collective modes are important sources of 

information about the physical nature of the condensate [34]. On the experimental side they 

provide direct in situ information on the system, which are free of the quantitative 

interpretation of expansion experiments. On the theoretical side the low energy collective 

modes are the elementary excitations and as such they play an essential role in the physical 

understanding of these systems [37]. 

In this chapter we treat the dynamics of two components BEC at zero temperature focusing on 

the easiest case of trapped highly unbalanced mixture. To this end, we use the time-dependent 

of the Gross–Pitaevskii equation (1.10) within the hydrodynamic approach to derive an 

equation allowing us to describe the collective modes of both the majority and the minority 

components.    

2.1.Dynamics of highly unbalanced mixture: 

2.1.1. Hydrodynamic equation: 

       We consider a highly unbalance trapped BEC mixture at zero temperature. Assuming that 

minority component does not affect the majority one        . Thus, the system can be 

described via the two coupled GP equation  

       
        

  
  

   

   
              

          ,                             (2.1)                                                 

                 
        

  
  

   

   
              

         
          .               (2.2) 

The wave function of the system          is a complex function and can be expanded in terms 

of amplitude          and phase          variables through the Madelung transformation 

[38],  
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            .                                    (2.3) 

where                    
  represents the density of the system. 

 Plugging (2.3) into the GPEs (2.1) and (2.2), one finds 

          
        

  
    

    

  
       

   

  
   

                          
   

   
 
     

   
   

    

  

   

  
  

    

   
        

   

  
 
 

                ,                                                                                                                                                                                                                                                                                         

(2.4) 

  
        

  
    

    

  
       

   

  
     

              
   

   
 
     

   
   

    

  

   

  
  

    

   
        

   

  
 
 

                      ,                                                                                                                                                      

(2.5) 

Separating the real and the imaginary parts, we get 

                   
    

  
  

  

  

    

  

   

  
 

  

   

    

   
    ,                                   (2.6) 

                   
    

  
  

  

  

    

  

   

  
 

  

   

    

   
   ,                                    (2.7) 

and 

            
   

  
   

   

   
 
     

   
     

   

  
 
 

                ,                       (2.8) 

           
   

  
   

   

   
 
     

   
     

   

  
 
 

                      .       (2.9)  

Using the fact that the superfluid velocity is defined as     
 

  
   ,  the imaginary terms 

lead to the following continuity equations 

                    
 

  
             ,                                          (2.10) 

                              
 

  
             .                                          (2.11) 

Similarly, the real parts give us the Euler-like equations  

                   
   

  
    

   

   

    

   
 

 

 
    

             ,                                   (2.12) 

                   
   

  
    

   

   

    

   
 

 

 
    

                   .                  (2.13) 

The first one expresses the mass conservation while the second is the Euler like equation, 

with    playing the role of the velocity potential. The term                     is called 
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the quantum pressure. In the semi-classical limit     , it can be neglected so Euler’s 

equations become similar to the Newton law [39]. 

 

2.1.2. Stringari’s equation: 

The properties of elementary excitations may be investigated by considering small deviations 

around the equilibrium state. Writing the density as 

                                                        
      ,                                        (2.14) 

where       is the equilibrium density and     is the fluctuation of the density around its 

equilibrium value. Linearizing equations (2.10) and (2.12) by treating the velocity   and    

as small quantities, one finds to the zeroth order 

                         
   

   

    

   
           .                                         (2.15) 

In the TF approximation we can neglect the kinetic term so we obtain 

                                    .                                                    (2.16) 

The first order terms give 

                         
    

  
            ,                                                  (2.17) 

                           
   

  
       .                                                      (2.18) 

Taking the time derivative of equation (2.17) then inserting (2.18) in the resulting equation, 

we get  

                        
     

   
   

   

  
       ,                                      (2.19) 

where           . 

Therefore, equation (2.19) takes the form 

                        
     

   
     

           .                                         (2.20) 

Following the same procedures, we find for the minority component 

                   
     

   
     

          
   

  
    

         ,                              (2.21) 

 

with   
     

         

  
  being the local sound velocity. 

 

Equations (2.20) and (2.21) describe, respectively the collective modes of the majority and the 

minority components of the condensate in any arbitrary potential. They were first derived by 
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Stringari in 1996[40]. Recently, these equations have been extended to deal with finite 

temperature BEC-impurity mixture [41, 42 ,43]. 

2.2.Collective mode:  

2.2.1. Anisotropic trap: 

In this section, we consider an anisotropic trap which is most suitable for experimental setups. 

We write the potential in the form: 

                   
 

 
     

    
 

 
     

    
 

 
     

           ,                 (2.22) 

where              and           is the anisotropy parameter. For     , the atomic 

cloud resembles a pancake trap and for    ,  it is cigar shaped. 

 In the TF approximation the chemical potential can be written in the classical turning point 

as:   

                                           
 

 
     

   
 .                                                         (2.23)            

The densities and their first derivatives read 

                  
     

 

   
   

       
           

     
 

  
     

   ,                 (2.24) 

                 
      

 

   
    

        
           

      
 

  
      

   ,                (2.25) 

here   is the TF radius. 

Inserting equations (2.24), (2.25) into (2.20) and (2.21), we obtain 

 
   
 

   
       

 

  
   

  
 

  
     

 

 
   

       
     

 

 

 

  
  

 

  
  

 

  

  

   
 

  

   
    , 

                                                                                                                                             (2.26) 
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   (2.27) 

The analytic solutions to these equations are obtained by expressing the density fluctuations in 

the form [34]: 

                                                                    
        .                                 (2.28) 

where     . 

Introducing (2.28) in equation (2.26) and (2.27),   
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Thus, the frequencies for the majority component are given by  
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Whereas, the frequencies of the minority component read  

                                                      
   

  

  

  

   
 

   
     .                                  (2.30) 

There exist a second class of solution which has the form 

                                                                  
           .                                               (2.31) 

Again inserting (2.31) in equations (2.26) and (2.27), we obtain   
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which yields for the frequencies of the majority and minority components, respectively  

                                                   
    ,                                           (2.32) 

and 

                                        
             

     
   

  

  

  

   
 

   
     .          (2.33)        

2.2.2. Isotropic trap:  

We consider an isotropic harmonic trap (λ = 1) 

                                              
 

 
    

     .                                            (2.34) 

Because of the spherical symmetry, the general solution for the density deviation is a sum of 

terms of the form  

                                                     
      .                                            (2.35) 

Here   
  is a spherical harmonic function and     is a radial function. In a quantum-

mechanical description,   is the quantum number for the magnitude of the total angular 

momentum and   that for its projection on the polar axis [34]. To investigate the mode 

corresponding with isotropic trap, we should take only the radial function in (2.35) and 

unserting in equation (2.21),(2.20) we obtain:  
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Defining new radial function  

     
    

  
             .  

Thus, 
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we obtain 
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To solve these equations we introduce a new variable          
  , where 
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and putting     
     

      and    
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Hence, the differential equations can be written as function of      as 
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The solutions of these equations are the standard hypergeometic function             

                                                           .                       (2.42) 

Identifying with equation (2.42) and (2.40) (2.41) we obtain: 
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Let us put       or inversely       (where   is a quantum number) 

        
       

 
 

                

                 

So the frequencies of the majority and the minority components are written respectively as: 
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and  

                      
          =                 

   

  

  

  

   
 

   
     .  (2.44) 

For     and    , these values correspond the monopole oscillation which is often known 

as ”breathing mode” 

                    .                                                    (2.45) 
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     .                                  (2.46) 

Equation (2.46) shows the effects of the interspecies interaction strength     on the breathing 

modes of minority component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. shows the results of the breathing modes of minority component by varying     

and taking the intraspecies interaction strengths      . One can clearly see that the 

frequency of the minority component decreases with increasing    and vanishes near the 

phase separation region where        . After that the mixed system becomes unstable. 

 

 

Figure 2.1. Breathing modes of the minority component in 3D. Parameter are          
   uma,                    and        . 
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Chapter 03 

Dynamics of a trapped highly unbalanced 

one-dimensional Bose mixture  

 

One-dimensional (1D) systems constitute an ideal platform for the study of out-of-equilibrium 

phenomena because of their intrinsic strong correlations and the possibility to realize 

integrable models. The theoretical investigation of their quantum dynamics is of particular 

relevance in clarifying questions of collective modes at both zero and finite temperatures. The 

sum-rule approach [44], the time-dependent modified nonlinear Schrodinger equation 

(MNLSE) [45] and the numerical Monte carlo simulations [46,47], Hatree-Fock-Bogliubov-

Popov [48] and Time dependent Hatree-Fock-Bogliubov [49]  are among the theoretical 

studies which have successfully predicted the collective modes of both weakly and strongly 

interacting 1D Bose gas. Experimental investigations of the breathing oscillations in 1D 

ultracold gas have been reported by several groups [50,51]. 

             The purpose of this chapter is to calculate the collective mode frequencies of a 

harmonically trapped highly unbalanced Bose mixture in 1D geometry in weakly interacting 

regime. In addition, by means of a variational method, we show also that the time evolution of 

the majority component reveals sinusoidal variation in agreement with experimental data. 
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3.1.Collective modes 

We consider a highly unbalanced mixture in a one dimensional harmonically trapped case (λ 

= 1). The trapping potential is 

                                                     
 

 
    

   .                                                    (3.1) 

In order to calculate the collective mode oscillations, we follow the same scenario as in the 

previous chapter.  

Assuming that the general solution of the GP equation (2.10) has the form 

                                                           .                                                       (3.2) 

Inserting (3.2) in equations (2.20) (2.21), we get  

                   
   
 

   
       

 

  
     

 

 
    

     
  

   
    ,                                (3.3)  

                   
   
 

   
       

 

  
     

 

 
     

     
  

   
    ,                               (3.4) 

To solve these equations, we first introduce a new variable         
   and using the fact 

that 
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The resulting equations can be reduced to the following hypergeometrical equations  
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and 
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where    
     

      and    
      

     . 

Comparing with the standard hypergeometic function             
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we obtain 

                                    
      

 

 

    
  

 

                    
      

 

 

    
   

 

                                         (3.8) 

 For the function to be well behaved, either   or   must be a negative integer, so      and 

    
 

 
. This gives for the spectrum 

                             and                .                                  (3.9) 

Employing the property  
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         ,                                          (3.10) 

with    being the Jacobi polynomials. 

Setting     , we obtain [44] 

   
 

 
     , 

and 

    
 

 
     , 

Therefore, the frequency of the majority and the minority components can be written in the 

following form, respectively: 

                                                         
      

 
 ,                                                    (3.11) 

and 
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     ,                            (3.12) 

where   depends on the mode one considers.  

For the dipole (center of mass) mode (   ), the majority and the minority components 

have, respectively        and         . Whereas for the breathing modes (    ), 

          and           . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Breathing modes of the minority component in 1D. Where The parameter 

are             uma,                    and        . 
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3.2.Time variation of the width for the majority component 

The variational approach is proved to be efficient for the analysis of non-integrable systems. It 

is based on restating the governing equation in terms of variational problem, where the 

Lagrangian generating the original equation is minimized for a particular trial function. In our 

case Gaussian function can be employed to describe accurately BEC in harmonic trap see 

[52].                            

                 
  

   
            ,                                (3.13) 

where      is the normalization constant,      is the phase and      is the width of the 

condensate.  

             Lagrangian density corresponding to the GPE (2.10) of the majority component is 

defined as: 

                               

  
  

  

  
     

   
        

 

 
     ,                       (3.14) 

where the asterisk denotes complex conjugation (here we put for sake of simplicity      ,  

    ). 

Inserting (3.13) into the density Lagrangian, one finds  
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                                                                                                                                            (3.15) 

The dots denote derivatives with respect to  . 

It is possible to calculate the ordinary Lagrangian by integrating over all space  

                                                                
 

  
. 

 



Chapter 03:               Dynamics of a trapped highly unbalanced one dimensional Bose mixture 

 

28 

 

           
  

  
      

 

     
               

   

  
  

  

  
         

     

     
         

  

  
      

 

     
         

 

 
 

 
                

   

  
  

  

  
 

 

 
         

    

  
  

  

  
 , 

                                                                                                                                         (3.16) 

To calculate (3.16) we use  
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After straightforward calculation, we find  
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The normalization condition     
  

  
     yields             

   
. 

Then, we obtain for Lagrangian 
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                                                                                                                                             (3.18) 

3.2.1. Equations of motion 

Variational equations of motion can be derived from the Euler-Lagrange equations 

 

  
 
  

   
  

  

  
  ,                                                            (3.19) 

where   stands for the two variational parameters. 
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This gives a direct relation between the phase and the width  

                                                                
       

        
 .                                                       (3.21) 

After having eliminating      via (3.21), equation (3.18) takes the form 
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Equation (3.22) provides a useful expression for the width                                                 
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where 

                                        
   

       
            

 

           
,                                     (3.24) 

is the force interaction among atoms in the condensate. 

Equation (3.24) is a non trivial differential equation describing the time evolution of the 

condensate width. Its numerical solution is shown in figure. 3.2. 

Figure 3.2. Depicts that the condensate width in 1D follows a sinusoidal variation over time 

due to the harmonic confining potential. We clearly see that for      , our variational 

treatment well agrees with the experimental data of  Bouchoule et al [51].Whereas for larger 

periods, the variational results differ from the experimental data. This discrepancy is, in fact, 

due to the finite temperature effects which cannot properly be described by the usual GP 

equation.   
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Figure 3.2. Evolution of the condensate width in 1 D harmonic trap. Solid line: variational 

calculation. Circles: experimental data of  Bouchoule et al [51].  



General conclusion: 
 

 

 

General Conclusion 

 

 In this dissertation, we have studied the dynamical properties of two components 

Bose-Einstein condensate. 

       In the homogeneous case, by using the Bogoliubov theory, we have derived a useful 

expression for the excitation energy. The stability of such a spectrum has been discussed in 

terms of    
      , in the miscible and immiscible mixtures. The behavior of the depletion 

and the superfluid fraction of the mixture has been also discussed in terms of the inter and 

intra-component interaction. 

        In a trapped mixture, we have calculated the collective modes of a highly unbalanced 

mixture in anisotropic and isotropic traps utilizing the hydrodynamic approach. We have 

shown in particular that the inter-species interaction plays a crucial role on the breathing 

mode frequencies of the minority component. 

        On the other hand, we have generalized our results to the one-dimensional case. Useful 

expressions for the breathing modes have been obtained. Moreover, time variation of the 

width of the majority component has been analyzed using a variational method. We found that 

the condensate width exhibits a sinusoidal variation over time. Our predictions are found to be 

in good agreement with recent experiments.    

An important extension of this work concerns Bose mixtures at finite temperature. 

Another interesting future work is to investigate the binary BECs in the presence of dipole-

dipole interaction. 
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