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ABSTRACT 

 

The increasing demand for Photovoltaic energy has led to technological 

advancements in the field of battery technology. State of charge (SOC) estimation is a 

fundamental function of the battery management system, which is a key to modelling, 

managing the Lithium-ion battery system. Numerous methods have been developed to 

estimate the SOC based on the terminal voltage and current measurements of battery.  

The purpose of this thesis is to establish a robust mapping between open circuit 

voltage (OCV) and SOC, beside that developing a performed algorithm for SOC estimation 

with less parameters based on simple electrical circuit model (ECM). An algorithm is 

capable to track SOC with high precision, take in consideration of low memory and flexible 

with initial uncertainties.  

To solve the previous problem, an adaptive extended Kalman filter (EKF) have been 

adopted and compared with a sliding mode observer (SMO). The results show better speed 

tracking performance at dynamic and steady state. However, the SMO algorithm provides a 

better performance, acceptable estimations errors, robustness in different tests compared to 

the Kalman filter.     
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RESUME 

 

La demande croissante en énergie photovoltaïque nous a conduit envers des 

technologies développées dans le domaine de batterie. L’estimation de l’état de charge 

(SOC) est une fonction essentielle du système de la gestion de la batterie, qui est considéré 

comme un élément clé de la modélisation, de la gestion du système de batterie lithium-ion. 

De nombreuses méthodes ont été développées pour estimer le SOC basées sur des mesures 

de tension et de courant aux bornes de la batterie. 

Le but de cette thèse est d'établir une cartographie robuste entre la tension en circuit 

ouvert (OCV) et le SOC, en plus de développer un algorithme pour l'estimation du SOC avec 

moins de paramètres basé sur un simple modèle de circuit électrique (ECM). Un algorithme 

capable de suivre le SOC avec une grande précision, en tenant compte de la faible mémoire 

et flexible avec les incertitudes initiales. 

Pour résoudre le problème précédent, un filtre de Kalman adaptatif étendu (EKF) a 

été adopté et comparé à un observateur en mode glissant (SMO). Les résultats montrent de 

meilleures performances de la vitesse de suivi à l'état dynamique et stable. Cependant, 

l'algorithme SMO offre de meilleures performances, des erreurs d'estimation acceptables, 

une robustesse dans différents tests par rapport au filtre de Kalman. 
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 ملخص الدراسة

 

. البطاريات تكنولوجيا مجال في التكنولوجي التقدم إلى الكهروضوئية الطاقة على المتزايد الطلب أدى

 مفتاحي وه ، البطارية تسيير نظامفي جهاز  أساسية وظيفةهي  (SOC) البطارية شحن حالة تقدير

 (SOC) حالة الشحن لتقديرأو الأنماط  الطرق من العديد تطوير تم. أيون ليثيوم بطاريةتسيير و ، مذجةن

 قياسات الجهد الطرفي ) فرق الكمون( و شدة التيار للبطارية.  إلى استنادًا

حالة الشحن ( مع OCVالغرض من هذه الأطروحة هو إنشاء خريطة قوية تربط جهد الدارة المفتوحة )

 بناءً  بإعدادات أقل (SOCالى جانب ذلك، تطوير خوارزمية لتقدير حالة الشحن )(. SOCللبطارية )

. خوارزمية قادرة على تتبع حالة الشحن بدقة عالية، مع مراعات سعة بسيطة كهربائية دارة نموذج على

 ذاكرة منخفضة و مرونة التعامل مع الحالات الابتدائية غير المؤكدة. 

نظام مراقبة ذو ب مقارنته( و EKF) تكيفالم الموسع كالمان مرشح اعتماد تم ، السابقة المشكلة لحل

 ومع. ثابتةالو ناميكيةتين الديالالح في أفضلتتبع  سرعة النتائج تظهر . حيث(SMOنمط الإنزلاقي )ال

 المختلفة الاختبارات في ومتانة مقبولة تقديرات وأخطاء أفضل أداء ( SMO) خوارزمية توفر ، ذلك

 بالمقارنة  مع مرشح كالمان.
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General introduction 

 

Recently, battery cells are increasingly used in many applications affecting our daily 

life, such as laptops computers, cell phones, digital cameras, other portable electronic 

devices also with stand-alone systems, and in the industry like Lead-acid and Lithium-Ion 

batteries. Batteries have gained attention in the past ten years because of their high energy 

density, slow loss of charge when it is free of use and lack of higher requirement for 

independent systems of the network. 

Therefore, nowadays they use in new second generation of Hybrid Electric vehicles 

(HEV), Plug-in Hybrid Electrical Vehicles (PHEV) and hybrid stand-alone systems. As 

battery applications and usage increase, accurate management, monitoring and control 

techniques are needed to enhance the performance, efficiency, safety, reliability and long 

cycle of life for battery packs. Especially in the case of stand-alone systems, a battery 

management systems (BMS) play a fundamental role due to the battery operating conditions 

are subjected to fast transients and frequent charging and discharging cycles result of sudden 

power demand [1, 2].  

Battery Management Systems (BMS) must be able to provide an accurate real-time 

estimate for the Battery State of Charge (SOC) and State of Health (SOH). The SOC value 

is so critical information for the BMS especially if the battery is the only source of power 

and the system is not connected to the network.  

Since the SOC is not directly measurable or captured, it causes the main challenge of 

finding and proposing different estimation methods. In the literature, various strategies are 

settled for accurate SOC estimation based on different algorithms and techniques [1].  

Thesis motivation 

The motivation for this research thesis is guided by the world’s need to reduce 

emission of carbon by using sustainable and renewable energy sources. Important 

considerations for photovoltaic energy and its integration into stand-alone systems or electric 

vehicles pay attention to energy storage and battery management systems.  
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Basically, homes can be fed by network electricity while countryside house or electric 

vehicle necessitates reliable power sources. Therefore, these power sources are formed by 

collecting batteries (battery packs). However, measuring the amount of useful energy 

remaining inside battery packs is becoming a challenge due to considering the battery as a 

black box [1].   

Accordingly, this energy remaining is known as the SOC. It is not easy to measure 

since there is no sensor able to do that or the battery facing fast transients in terms of charging 

and discharging due to mission profile for a stand-alone system or the driving cycle in 

electrical vehicle.  

Therefore, an accurate mathematical model for battery along with a robust technique 

for SOC estimation is necessary [3]. Another substantial consideration of the battery is the 

state of health (SOH), due to the importance of battery operation and management factors in 

extending and remaining useful battery life, which they often released by using model-based 

strategies [1, 3]. 

Scope and objectives 

In this thesis, different battery modelling circuits and SOC estimations strategies are 

considered and compared with respect to their performances. The research objectives can be 

stated as follows: 

 Battery cell models are selected, refined, implemented and validated using 

measured and simulated test data. The models considered can be categorized as: 

behavioural, equivalent circuit. However, experimental data used for model 

validation were obtained from prototype design in laboratory research.  

 Estimation strategies were used for obtaining the SOC. These included the extended 

Kalman Filter (EKF) and sliding mode observer (SMO).  

A comparative study of the battery models with estimation strategies lead to better 

performance of SOC. 

Thesis organization 

After the general introduction, which it gives an overview about the state of charge, 

existing methods of estimation and proposed strategies, which they will be treated in this 
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thesis concerning the estimation of the SOC. Therefore, the main body of the thesis is divided 

into four chapters:  

 Chapter 1 presents a literature review of the different types of photovoltaic systems. In 

addition, it highlights battery technologies, structure and application, followed by 

its famous terminologies.  

 Chapter 2 is dedicated to an overview on the various methods which has been used to 

estimate the state of charge of a battery, discussed and compared.   

Chapter 3 presents the dissimilarity of variety of electrical circuit models of battery followed 

by their equations.  

Chapter 4 presents analyse of the battery as a physical system that depends on the selected 

electrical circuit model, which involves the state of charge and the polarization 

effects. The polarization effects have been calculated by using mathematical 

model. The adaptive extended Kalman filter has been used to estimate the state of 

charge. Afterward, the sliding mode control has been applied and compared with 

the Kalman filter to show the highest precision algorithm.  

Lastly, the thesis will be finished by a general conclusion, which is presenting the 

different results obtained and the constraints encountered. In addition, for the continuation 

of this research some potential applications of the proposed techniques and future 

perspectives are discussed.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1  

 Photovoltaic and batteries 
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1.1.  Introduction 

Photovoltaic energy is a promising solution to dispense with other forms of energy, 

which is known as a source of pollution and non-renewable. However, it has the 

disadvantage of having a low conversion yield of materials, the lack in pieces of information 

about the mastery part of storage device, which is usually presented by battery packs, and 

the cost which considers the highest comparing to other forms. 

In addition, the increasing of this energy and high demand for it open another huge 

market concerning batteries sales due to their importance as portable energy storage devices 

and their eco-friendly characteristic. 

 In order to appreciate the implication of this energy and its advantages, we will try to 

enumerate the different domains that use this energy and the devices (subsystem or module) 

that allow its exploitation. Moreover, we will try to give a relevant overview of batteries 

terminologies with great focus into battery type’s technology and provide an extended 

explanation on its terminologies and charge/discharge cycle [4].  

The term "photovoltaic" comes from "photo" meaning light and word "Volt" named 

by Italian physicist Alessandro Volta (1745-1827), which means the production of 

electricity. Therefore, the process "photovoltaic" means the production of electricity directly 

from sunlight or light. The term "photovoltaic" is often referred to as "PV" [4]. 

 

 

Figure (1-1): Application of Photovoltaic system [5].  
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Nowadays, PV systems are installed by government or specific persons that are 

interested in the environment. Often, PV systems are embedded in many applications 

 (Figure 1-1). For some applications where small amounts of electricity are needed, such as 

emergency boxes.  

Therefore, PV systems are used even when the network is not very far for applications 

that necessitate larger amounts of electricity and they are located far from existing power 

lines. So, PV systems can be in many cases the most practical, and cheaper option. 

However, the applications of energy generated using photovoltaic generators are 

extremely varied. In general, they can be classified in three major:  

 Stand-alone PV systems 

 Hybrid systems 

 Grid-connected PV systems. 

Other fields can use photovoltaic technologies as: 

 Embedded systems (Phone, Net book, Tablet ... etc.) 

 Space systems (satellites, Space Telescopes). 

1.2.  Photovoltaic systems architecture 

Photovoltaic systems are generally categorized into three main systems. Their 

capacities range from a few kilowatts to hundreds of megawatts.   

1.2.1. Stand-alone system PV  

Stand-Alone PV stands for any system that relies solely on solar energy as a source of 

electrical energy and can range from milli-watts to kilowatts or more. These systems may 

include accumulators that store the energy produced by the PV modules during the day 

(sunshine phase) and serve during the night (dark phase) or during periods when solar 

radiation is insufficient. A general scheme of its installation is depicted in Figure (1-2). They 

can also meet the needs of an application without recourse to accumulators (for example, 

house PV installation) [6]. 



Chapter 1                                                Photovoltaic and batteries generalities 

 

8 
 

 

 

Figure (1-2): General schematic of a PV system  

 

1.2.2. Hybrid PV systems 

The hybrid systems, which are composed of a grid-connected photovoltaic (GPV) 

combined with a wind turbine or a fuel generator, or both. They are also isolated from 

electricity distribution systems. 

They are such good choices for applications that require a continuous supply of 

relatively high power when there is not enough sunlight at certain times of the year, or if we 

want to reduce our investment in photovoltaic module fields and/or storage batteries as 

shown in Figure (1-3) [6, 7]. 



Chapter 1                                                Photovoltaic and batteries generalities 

 

9 
 

 

Figure (1-3): Connection diagram for a Hybrid installation [7].  

Other photovoltaic systems can be also considered autonomous as the case of solar 

pumping water for irrigation or drinking. They can be also considered hybrid if the 

installation combines the system with another source of electrical energy as depicted in 

Figure (1-4) [8]. 

 

Figure (1-4): Diagram of an autonomous installation of solar water pumping type [9]. 
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1.2.3. Grid-connected PV systems 

Photovoltaic power systems connected to the grid, which are known as On-grid 

systems too, they are recent and innovative systems. They consist of a farm of photovoltaic 

panels and an inverter capable of transforming the energy supplied by the panels.   

In this type of systems, the electric power is closer to the place of consumption. As 

well, they have the advantage of increasing the capacity of transmission and reducing the 

distribution lines. The injection of photovoltaic power into the grid needs such special 

installations where the inverter must contain a certain number of protections against 

bidirectional situation occur into the electricity grid as illustrated is Figure (1-5). 

 

Figure (1-5): Diagram of a PV system connected to the grid, with batteries [10]. 

As a system connected to the grid, it produces its own electricity and sends its excess 

energy to the grid and gets supplies if necessary.  Therefore, it is always possible to use these 

batteries as backup power when a network failure occurs. 
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1.3.  Solar cells  

At the heart of any photovoltaic system there is a solar cell, which also called 

photovoltaic cell. The cell consists of a photodiode, which works without external 

polarization. By converting the light directly into electricity, the cell delivers direct current 

(DC) into the load as shown in Figure (1-6). In addition, its generator has very low reverse 

breakdown voltage. 

The diagram below depicts the operation of a basic solar cell. From physical view, 

solar cells made by a thin semiconductor wafer, which is specially treated to form an electric 

field, positive on one side and negative on the other. When light energy strikes the solar cell, 

electrons are knocked loose from the atoms in the semiconductor material [11].  

If electrical conductors are attached to the positive and negative sides, forming an 

electrical circuit, the electrons can produce an electric current. That current is electricity. 

This electricity can then be utilized to power a load as illustrated in Figure (1-6).  

 

 

Figure (1-6): Photovoltaic cell basic operation [11]. 

1.4.  Photovoltaic generator  

A photovoltaic generator is a set of solar cells electrically connected in series and/or 

in parallel to generate the desired current and voltage. Depending on the application, a GPV 

can compose from a simple cell, module, and array until reaching the level of a photovoltaic 

field as depicted in Figure (1-7). 



Chapter 1                                                Photovoltaic and batteries generalities 

 

12 
 

 

 

 

Figure (1-7): Concept of cell, module, and photovoltaic panel [12]. 

The serial connections of several cells increase the voltage for the same current, while 

the paralleling increases the current while maintaining the voltage. It is possible that the 

current of a cell can exceed 3A. However, the voltage remains low; it becomes obvious the 

use of serial connection to have a usable voltage [12]. 

1.5.  Modelling a photovoltaic cell  

The PV module can be modelled by modelling a cell, which can be represented by two 

different models.   

1.5.1. Single diode model  

In the model shown in Figure (1-8), the PV cell is represented by a current source 

parallel to a diode. The current source is represented by a current generated by the light Iph. 

This current varies linearly with the variation of the solar radiation [13, 14]. 
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Figure (1-8): Schematic of the single diode model [13]. 

 

In accordance with the single diode model, the current 𝐼𝑝ℎ can be expressed by the equation: 

 𝐼𝑝ℎ = 𝐼𝑑 + 𝐼𝐿 + 𝐼𝑠ℎ (1.1) 

and the current across the diode by equation given: 

 𝐼𝑑 = 𝐼0(𝑒𝑥𝑝 (
𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿)

𝐴𝐵𝑇
) − 1) (1.2) 

where 𝐼0 is the current of saturation of the diode (D). 𝑉𝐿 is the solar cell output voltage and 

𝐼𝐿 is the current of the load.  

By applying Kirchhoff’s voltage law, we get the equation:  

 𝐼𝑠ℎ𝑅𝑝 = 𝑉𝐿 + 𝐼𝐿𝑅𝑠 (1.3) 

To get the load current 𝐼𝐿 we should substitute between (1.2) and (1.3), the final equation 

of the single diode model is:  

 𝐼𝐿 = 𝐼𝑝ℎ − 𝐼0 (𝑒𝑥𝑝 (
𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿)

𝐴𝐵𝑇
) − 1) −

𝑉𝐿 + 𝑅𝑠𝐼𝐿
𝑅𝑝

 (1.4) 

where 𝒒 is charge of the electron and its value is 1.602 ∗ 10−19  C, B is the Boltzmann 

constant and its value is 1.380 ∗ 10−23 J/K, and the 𝑻 is the temperature of the solar cell that 

is 33° C which means 306.15 in Kelvin. A is the diode ideality factor.  
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1.5.2. Double diode model  

This model contains, in addition, a second diode placed in parallel with the current 

source. This diode is included to improve the accuracy characteristics of the PV cell. In 

addition, it takes into account the difference in the current flow when the current is low due 

to the charge recombination in the region of depletion of the semiconductor. Figure (1-9) 

shows this model [15, 16]. 

 

Figure (1-9): Schematic of the double diode model [15]. 

In accordance with the double diode model (D1) and (D2), the current Iph can be formed by 

the equation: 

 𝐼𝑝ℎ = 𝐼𝑑1 + 𝐼𝑑2 + 𝐼𝐿 + 𝐼𝑠ℎ (1.5) 

and the current across the diodes their equations given: 

 𝐼𝑑1 = 𝐼01(𝑒𝑥𝑝 (
𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿
𝐴1𝐵𝑇

) − 1) (1.6) 

 
𝐼𝑑2 = 𝐼02(𝑒𝑥𝑝 (

𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿
𝐴2𝐵𝑇

) − 1) 
(1.7) 

𝐼01 and 𝐼02 are the current of saturation of the two diodes respectively 𝐼𝑑1 and 𝐼𝑑2. 𝑉𝐿 is the 

solar cell output voltage and 𝐼𝐿 is the current of the load.  

The voltage of the load gets by applying Kirchhoff’s voltage as:   
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 𝐼𝑠ℎ𝑅𝑝 = 𝑉𝐿 + 𝐼𝐿𝑅𝑠 (1.8) 

The final equation of the double diode model is:  

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼01 (𝑒𝑥𝑝 (
𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿)

𝐴1𝐵𝑇
) − 1) − 𝐼02 (𝑒𝑥𝑝 (

𝑞(𝑉𝐿 + 𝑅𝑠𝐼𝐿)

𝐴2𝐵𝑇
) − 1) −

𝑉𝐿 + 𝑅𝑠𝐼𝐿
𝑅𝑝

 (1.9) 

where A1 and A2 represent the diode ideality constants. 

1.6.  Overview of battery technologies  

Since the first development by Gaston Planté in 1859 of a rechargeable lead-acid 

battery, batteries have revolutionized the way in which energy is stored. Nowadays they have 

allowed a great mobility and independence for different sectors and applications were 

previously immobile like telecommunication, measuring instruments, medical equipment 

…etc. On the other hand, batteries are unavoidable solutions for aeronautics, space 

(satellites) and newly for smart phones, tablets and electric vehicles (EV) [17]. 

Through the almost worldwide encouragement of sustainable development and the 

exploitation of renewable energies to replace other forms of energy (fossil fuels, nuclear 

energy … etc.), batteries (accumulators) are put in value as a solution of storage of energy 

that can be easily recovered in electrical form by an induced discharge phase, and 

subsequently regenerate it during a charging phase.  

Today's batteries have the advantage of being recycled because the majority of 

constituent components are recovered at their end of life (EOL) and can be reused to 

manufacture other.  

1.7.  Construction of battery  

The battery consists of several electrochemical cells (element). Although the terms 

battery and cell are often used interchangeably, cells are modules (blocks) with which 

batteries are built. 

The cells are assembled according to prismatic, cylindrical or other structures to end 

up having the elementary module or specific battery, which is designed in voltage, current 

and lifetime standards or for a determined application [18, 19]. 
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The essential constituents of a battery are: 

 The galvanic cell: This is the basic electrochemical block in a battery, consisting of a 

set of positive and negative plates divided by separators, immersed in the electrolyte 

solution and included in a tank. Each cell has a nominal voltage, for example 2.1Volts 

for a lead-acid battery, so there are six cells in series in a lead-acid battery of nominal 

voltage 12 Volts [20]. (see Figure (1-10)) 

 Active ingredients: This is forming the positive and negative plates. The energy 

released during their chemical reactions, allows the production of electrical energy. In 

a lead-acid battery, the active ingredients are lead dioxide (PbO2) in the positive plates 

and lead (Pb) in the negative plates. 

 The grids: whose role in a battery is to support the active ingredient in the plate, so it 

represents the support of this material to ensure the distribution of the current. In a 

lead-acid battery, the grid is an alloy of lead and antimony or calcium. These last two 

are used to strengthen the lead grid [19].  

 The electrolyte: it represents the Conductive Channel in which the plates are 

immersed, and which allows the ionic exchanges between them. In the case of an open 

lead-acid battery, the electrolyte is a solution of sulfuric acid (30% H2SO4). This 

electrolyte can be gelled, as is the case of sealed lead-acid batteries (SLA) [20]. (see 

Figure (1-11)) 

 The plates: they are the basic elements of a battery, composed of grids and the active 

ingredient, sometimes called electrodes [19]. 

 The plugs: which allow the filling of the battery and the departure of the gases formed 

during the charge for the open batteries, in their places one can have valves in the case 

of the batteries of type "VRLA". 

 Separators: These are micro porous sheets whose role is to prevent short circuits 

between plates of opposite natures; they complement the support of the active 

ingredient [18, 19]. 

 Terminals: Connect the battery to the external circuit. 
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 Tray: Made from a variety of materials, acid-resistant insulators, like plastic, ebonite 

or other materials. 

 

 

 

 

Figure (1-10): Exploded prismatic structure used for lead acid battery (Type VRLA)[19]. 
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Figure (1-11): Exploded cylindrical structure view of the different elements of Li-Ion cell 

(also used for Ni-Cad and Ni-Mh batteries) [18].  

1.8.  Battery electrochemical principle 

It is necessary to understand the basic chemical phenomena governing the operation 

which occur inside batteries in order to justify the choice of methods, models, and 

subsequently better interpret the results of these interactions. The schematic diagram of an 

electrochemical cell is shown in Figure (1-12). 

During a discharge of the accumulator, the oxidation reaction that occurs at the anode 

releases one or more electrons in the external circuit. These electrons then circulate to the 

cathode where they participate in the reduction reaction (gain of one or more electrons). 

Simultaneously, the anions and cations migrate into the electrolyte solution between the two 

electrodes to preserve the charge balance. When the anode is completely oxidized (or the 

cathode completely reduced), these reactions are completed and the battery is discharged. 

As for the charge, it is carried out by applying an electric current to the electrodes in order 

to generate the opposite reactions [21, 22]. 

In discharge, the anode is the negative terminal of the battery and the cathode is the 

positive terminal. On the other hand, in the charging phase, the negative electrode is the 
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cathode and the positive is the anode, the electrons then flowing in the other direction [23]. 

 

Figure (1-12): diagram of battery chemical operations  

1.9.  Battery type and potential  

The battery potential reflects to the voltage nominal of the terminal voltage of battery 

cell, which is related to the cell cathode and anode type. 

1.9.1. Lead-Acid batteries 

Lead-acid batteries are one of the most popular and the oldest technology in batteries. 

In today’s time, Lead-acid batteries have high reliability and low cost due to their mature 

technology [21]. Among the disadvantages of this technology are the low specific energy 

and the short service life [24]. 

Moreover, Lead-Acid batteries are in the foreground, at 65%, of the world battery 

market, given their involvement in the automotive sector, industrial traction applications and 

in isolated and emergency energy installations.  

Lead-acid batteries are one of the most common secondary batteries, used primarily 

for storing large cell potential. These are commonly found in automobile engines.  Its 

advantages include low cost, high voltage and large storage of cell potential; and 

disadvantages include heavy mass, incompetence under low-temperatures, and inability to 
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maintain its potential for long periods of time through disuse [25, 26]. The reactions of a 

lead-acid battery are shown below: 

 cathode (reduction): 

𝑃𝑏𝑂2 + 𝐻𝑆𝑂4
− + 3𝐻+ → 𝑃𝑏𝑆𝑂4 + 2𝐻2𝑂 

 Anode (oxidation)  

𝑃𝑏 + 𝐻𝑆𝑂4
− → 𝑃𝑏𝑆𝑂4 +𝐻

+ + 2𝑒− 

 Overall  

𝑃𝑏 + 𝑃𝑏𝑂2 + 2𝐻𝑆𝑂4
− + 2𝐻+ → 2𝑃𝑏𝑆𝑂4 + 2𝐻2𝑂 

Discharging occurs when the load is connected and where the cell potential equals 2.02V. 

Therefore, charging occurs when the car is in motion and where the electrode potential 

equals -2.02V, a non- spontaneous reaction which requires an external electrical source. The 

reverse reaction takes place during charging. 

1.9.2. Nickel-Cadmium battery 

The nickel-cadmium (Ni-Cd) pair was first exploited in 1890 by Waldemar JUNGER, 

which start in service as a battery at the beginning of the 20th century. It is another common 

secondary battery that is suited for low-temperature conditions with a long shelf life [27].  

However, the nickel-cadmium batteries are more expensive and their capacity in terms 

of watt-hours per kilogram is less than that of the nickel-zinc rechargeable batteries [26, 28]. 

It has a potential equal to 1.29V.  

Nickel-cadmium battery has high specific energy with no degradation for deep 

charge/discharge cycles. However, cadmium is very toxic and it has high recycling cost, 

which is why its application has been limited. Besides, there exist other non-toxic 

compositions of nickel batteries, nevertheless, they suffer from memory, high self-discharge, 

high cost and shortened life [29]. 

The Ni-Cd memory effect, affected cells that were repeatedly only partially 

discharged. The result was that after multiple partial discharges the cell would only discharge 

to the level it had been repeated discharged to [29]. 

Furthermore, Nickel-Cadmium dominated portable and aerospace applications. 

Besides, more performance with even lighter and less bulky batteries is beneficed. Therefore, 

https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Electrochemistry/Voltaic_Cells/The_Cell_Potential
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research work has been conducted to allowing the implementation of other couples such as 

(Nickel-Metal-Hydride and Nickel-Hydrogen). 

 cathode (reduction): 

2𝑁𝑖𝑂(𝑂𝐻) + 2𝐻2𝑂 + 2𝑒
− → 2𝑁𝑖(𝑂𝐻)2 + 2𝑂𝐻

− 

 anode (oxidation): 

𝐶𝑑 + 2𝑂𝐻 → 2𝐶𝑑(𝑂𝐻)2 + 2𝑒
− 

 overall:  

𝐶𝑑 + 2𝑁𝑖𝑂(𝑂𝐻) + 2𝐻2𝑂 → 2𝐶𝑑(𝑂𝐻)2 + 2𝑁𝑖(𝑂𝐻)2 

1.9.3. Lithium-Ion battery  

Lithium-Ion (Li-ion) is the newest technologies, which is still under research and 

development. Among other different batteries technologies, Li-Ion shows promising 

application to electric vehicle (EV) due to their high specific energy, high voltage operation 

and long cycle of life. 

 Despite that, the cost still remains high and their life is significantly compromised by 

deep discharge cycles and is significantly affected to temperature [29, 30].   

However, Lithium-ion batteries are ubiquitous in our daily lives. Most of us carry one 

around in our phone. There are several types of lithium-ion batteries. The main difference 

between them is their cathode chemistry such as: 

 Lithium cobalt oxide (LiCoO2) 

  Lithium iron phosphate (LiFePO4) 

 Lithium manganese oxide (LiMn2O4), 

 Lithium polymer 

 Lithium nickel manganese cobalt oxide (LiNiMnCoO2 or NMC) 

Different kinds of lithium-ion batteries offer different features, with trade-offs between cost, 

efficiency and safety. It has two attractive characteristics; light (6.94g / mol) and high energy 

density (3860 mAh / g), the latter has been studied since the 1950s.  
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However, the first commercial batteries in Li-Ion have emerged only since the beginnings 

of 1997. Today, several varieties are available, the most frequently used are Lithium-Ion (Li-

Ion) and Li-Polymers (Li-Po), while the terminal voltage varies between 3 to 4.2V. 

 anode: 

𝐿𝑖𝐶6 → 𝐿𝑖+ + 𝑒− + 𝐶6 

 cathode: 

𝐿𝑖𝐹𝑒(𝐼𝐼𝐼)𝑃𝑂4 + 𝑥𝐿𝑖
+ + 𝑥𝑒− → 𝐿𝑖𝐹𝑒(𝐼𝐼)𝑃𝑂4 

𝐹𝑒𝑃𝑂4 + 𝐿𝑖
+ + 𝑒− → 𝐿𝑖𝐹𝑒𝑃𝑂4 

 The overall: 

𝐿𝑖𝐹𝑒𝑃𝑂4 + 6𝐶 → 𝐿𝑖𝐶6 + 𝐹𝑒𝑃𝑂4 

1.10. Battery classification 

The batteries are grouped under two main classes: primary (non-rechargeable) and 

secondary (rechargeable) accumulators. There are also other types of classifications based 

on a particular structure (technological design) or a defined field of use. In Table (1-1), it is 

shown a classification with several examples of both kinds of batteries [31]. 

 

Table (1-1): Classification of different battery types in primary or secondary cells 

Primary batteries Secondary batteries 

 

Zinc Carbon, Lithium, 

Alkaline 

 

Sealed Lead Acid, Lithium-Ion, Lithium-Polymer, 

Nickel Metal-Hydride, Nickel Cadmium 

 

1.10.1. Primary batteries 

They are unable to be electrically charged. They are used only once times, after they 

must be changed because the chemical reactions that governs them are irreversible. Besides, 

their price is relatively high.  

However, primary batteries are very convenient for certain applications such as 

flashlight, instrumentation apparatus, toys, and launchers in the space field. The main 

advantages of a primary battery are a very high specific energy, appreciable service life, no 
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maintenance required, and ease of use. 

1.10.2. Secondary batteries 

A secondary battery is an electrochemical device for storing electricity and then 

restoring it on demand. This kind of battery can be electrically charged once discharged by 

the passage of an electric current through these electrodes in the opposite direction of the 

discharge current. This gives it its appearance as an electrical energy storage device known 

as the “Accumulator”. 

First application 

 In first case, the accumulators are used as a means of storing energy, which are 

generally connected to an electric source to be charged (alternator, electrical network, GPV 

system, etc.), a charge that consumes the energy delivered by the power supply. Also as an 

accumulator in discharge mode, for example, car, airplane electrical installations, satellite, 

uninterruptible power supply (UPS) [31]. 

Second application 

 In this case, they are used in place of primary batteries in discharge regime, thereby, 

the benefit of being rechargeable multiple times (cycles) rather than disposable is attained. 

By way of example, it can avoid changing them each time for certain stages, so this choice 

is a fort point made for certain stages of the launcher in order to cover the phases of the pre-

launch tests and also to avoid changing them in the event of delayed launch [32, 33]. 

1.11. Specifications by battery chemistry 

Batteries come with a good deal of specifications which you would find with their 

specs, or datasheet. Common specifications include the type of cell the battery is in, its 

standard voltage, its AH or mAH rating, its standard charge (for rechargeable), and its rapid 

charge. 

The technological characteristics of batteries as well as the chemical phenomena 

governing their operation are common for all electrochemical systems. In this sense, we 

group together the parts dealing with the structures, the principles and the control of charge 

and / or discharge. By other parts, we highlight the specificities of each battery. 
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Table (1-2): Comparative specifications between different batteries types [18]. 

Specifications Lead Acid Ni-Cd Ni-MH 
Li-ion 

Cobalt Manganese Phosphate 

Specific Energy 

Density 

(Wh/kg) 

30-50 45-80 60-120 
150-

190 
100-135 90-120 

Life Cycle  

(80% discharge) 
200-300 1000 300-500 

500-

1,000 
500-1,000 

1,000-

2,000 

Fast-Charge 

Time 
8-16h 1h typical 2-4h 2-4h 1h or less 1h or less 

Self-

Discharge/month 

(room temp) 

5% 20% 30% <10% 

Cell Voltage  

(nominal) 
2V 1.2V 1.2V 3.6V 3.8V 3.3V 

Charge Cut-off 

Voltage(V/cell) 

2.40 Float 

2.25 

Full charge detection by 

voltage signature 
4.20 3.60 

Discharge Cut-

off 

Voltage(V/cell, 

1C) 

1.75 1.00 2.50-3.00 2.80 

Charge 

Temperature 

-20 to 

50°C 
0 to 45°C  0 to 45°C  

Discharge 

Temperature 

-20 to 

50°C 
-20 to 65°C -20 to 60°C 

Maintenance 

Requirement 

3-6 

Months 

(topping 

charge) 

30-60 days 

(discharge) 

60-90 days 

(discharge) 
Not required 

Safety 

Requirements 

Thermally 

stable 

Thermally stable, fuse 

protection common 
Protection circuit mandatory 

In Use Since Late 1800s 1950 1990 1991 1996 1999 

Toxicity Very High Very High Low Low 

In Table (1-2), we cite and cover the different types of batteries and their 

classifications. In more detail we discuss the commonly used accumulators, while trying to 
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identify its famous terminologies and reactions involved in the evolution of their state [18, 

34, 35]. 

1.12. Batteries comparison  

A comparison across battery technologies is possible by comparing their specific 

power and energy density on the Ragone plot [36]. In a Ragone plot, the y-axis denotes the 

amount of energy density available, while the x-axis denotes how that energy varies 

according to their technologies per masse. The Figure (1-13) illustrates how lithium-ion 

batteries are about a third of the weight and half of the volume when compared to lead-acid 

and other batteries technologies. Lithium-ion batteries are in a league of their own when 

compared to all other battery types since they are significantly more energy dense. 

Furthermore, it can be seen that Li-Ion have high specific energy but high power density, 

which is showing smaller sizes and lighter weight cells [36]. 

 

 

Figure (1-13): Ragone plot of various energy storage technologies [36] 

Energy density: is a measure of how much energy the battery can store, in a given size 
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or mass. So a battery with a higher energy density can power a load for longer than one with 

a low energy density and the same physical size or mass. Its units are in Wh/kg or Wh/m3. 

Note the use of hours in the unit- power x time = energy. 

Power density: measures how quickly the battery can deliver energy. In other words, 

it's equivalent to the maximum current you can draw from a battery of a given size. Units 

are W/kg or W/m3. 

1.13. Battery terminology  

Each battery is characterized by the following parameters: 

1.13.1. Terminal voltage 

Terminal voltage refers to the voltage across the battery terminal when a load is applied 

to the battery. This voltage often varies with respect to SOC and discharge/charge currents. 

1.13.2. Open circuit voltage 

This voltage refers to the voltage across the battery’s terminals with no load applied. 

There is a direct relationship between this voltage and SOC. 

1.13.3. Capacity 

The coulomb metric capacity is defined as the total Amp-hours available when the 

battery is discharged at a given C-rate from 100% SOC to cut-off voltage. Capacity decreases 

with increasing C-rate [37]. 

1.13.4. Internal resistance 

The internal resistance of a battery limits the amount of power that is delivered from 

the battery. Often internal resistance is designed to be small to allow for more power to be 

delivered; however, the internal resistance increases over time due to sulfation and grid 

corrosion of the battery [20]. Furthermore, the amount of energy available in the battery or 

state of charge (SOC), affects the apparent internal resistance of the battery. Li-ion has higher 

resistance at a full charge stage and at the end of discharge but little resistance in between 

[38]. 
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1.13.5. Usable power  

It is obtained from the product of battery voltage (𝑉𝐿) and the maximum current that it 

can tolerate (𝐼𝐿). This usable power must be at least equal to the peak power so as to provide 

the electricity throughout all the operating range. 

1.13.6. Cut off voltage 

Cut off voltage refers to the minimum allowable voltage at which the battery is referred 

as “empty”. 

1.13.7. Full voltage  

Called also overcharge voltage, it refers to the maximum voltage, which allows the 

battery consider fully charged such as Li-ion and Lead-Acid fully charged at 4.2V and 

2.03V, respectively.  

1.13.8. Stored Energy  

This parameter is going to determine the autonomy of the electric vehicle (EV) and the 

possibilities of recovering for a hybrid electric vehicle (HEV). The energy of the battery is 

expressed as a function of its capacity in Ampere-Hour (Ah) and its voltage, while the 

storage energy is expressed by Watt-hour. 

1.13.9. Self-discharge phenomenon 

It is the spontaneous decomposition (without external intervention) of the active 

ingredients of the cell, from a charged state to a discharge state [20]. It is interpreted as a 

loss of EMF due to internal leakage current. According to different readings, primary 

batteries are the least affected by the effect self-discharge, subsequently come the secondary 

(rechargeable batteries), see Table (1-2). 

1.13.10. Life cycle 

This number refers to the amount of times the battery may be charge and discharged 

before its retired, see Table (1-2). 
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1.13.11. Charge rate 

Charge rates are used to describe and compare different batteries’ discharge currents. 

The C-rate is a normalized value against the battery capacity, which differs across batteries. 

1.13.12. Notion cell, module and packs 

Often HEV or stand-alone systems contain high power battery packs. The smallest 

battery unit inside a Lead-acid or Li-Ion battery pack is the cell. These cells are arranged in 

series and parallel to achieve a required voltage and capacity. Often the first arrangement of 

cells is called module, which are arranged as well in series and parallel to create the battery 

pack. It is important to mention that each cell has its own SOC, capacity and internal 

resistance [39]. Figure (1-14) depicted the all possible combinations for battery pack.  

 

 

 

Figure (1-14): Battery packs connections.  
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1.14. State of charge (SOC) 

 There exists one possible definition of the state of charge (SOC) could be express its 

whole meaning, which is defined as the ratio of the remaining charge of the battery and the 

total charge while the battery is fully charged at the same specific standard condition.  

The SOC is often expressed in percentage, where 1 or 100% means fully charged and 

0% means fully discharged. This parameter can be compared to the fuel tank gauge of a 

vehicle [40, 41]. 

However, the whole meaning of the SOC is illustrated in Figure (1-15) below. 

 

Figure (1-15): State of charge.  

 𝑆𝑂𝐶 =  
𝑄𝑟
𝑄𝑛

∗ 100 (1.10) 

Where 𝑄𝑟 represents the capacity remaining and 𝑄𝑛 represents the total capacity available 

of the battery. Therefore, as a simple solution, SOC evolution can be tracked according to 

the equation (1.11): 

 𝑆𝑂𝐶(𝑡) = (𝑆𝑂𝐶0 −
1

𝑄𝑛
∫ 𝐼𝐿(𝑡)𝑑𝑡) ∗ 100
𝑡

0

 (1.11) 
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Where 𝑆𝑂𝐶0 referes to initial state of charge, 𝐼𝐿 is the current applied of load and 𝑆𝑂𝐶(𝑡) 

represents the actual state of charge. 

1.15. Depth of discharge  

The Depth of discharge (DOD) is a measurement of the percentage of battery capacity 

that has been used. In others, is represented as the opposite of SOC and may be calculate as 

[42]: 

 𝐷𝑂𝐷 = (1 − 𝑆𝑂𝐶) ∗ 100 (1.12) 

1.16. State of health (SOH) 

The SOH measures the irreversible degradation that occurs in the battery performance 

due to cycling and aging. SOH allows for an easy comparison with a healthy battery. The 

best way to evaluate the health of a battery is by testing its capacity [40]. Some factors that 

affect the battery's capacity are the temperature at different SOC, the level of SOC it is 

charged every time, cycling, and depth of discharge (DOD) [43]. Furthermore, The SOH of 

a battery serves as an indicator of the battery life conditions between its beginnings of life 

to retirement. Often SOH is a unit less value similar to the SOC that indicates the available 

remaining use.  

Often, batteries are retired when their overall capacity or maximum power drops to 

80%, which is referred as capacity fading and power fading [44]. 

1.17. Conclusion 

In this chapter, we gave some general information about the photovoltaic systems, 

their usage and how they work, besides a detailed descriptive on the batteries, their history, 

their operating principle as well as their main characteristics. Then, we presented the lithium-

ion technology, its different technologies, and their characteristics. We conclude at this level 

that lithium-ion technology and Lead-acid battery technology come to maturity and is used 

in different fields such as transport, satellites, projects space and photovoltaic. 

 For Lithium-Ion batteries, progress still needs to be made to ensure their safety 

operating. Two axes are favoured: the choice of materials not very inclined to thermal 

runaway and control electronics to ensure the use of the cell within its limits. 
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The identification of the state of the battery and more particularly the state of charge 

is critical for applications such as space, HEV and EV, the risks and the expectations impose 

to maintain the SOC at a certain level (in an interval) for delivering the power required during 

the mission. With a DOD limit so as not to over discharge or shorten battery life. Also, a 

capped SOC threshold that allows regeneration of stored energy and an optimized charge 

profile that minimizes the risk of overcharging. 

 The requirements (protection and performance) of the mission for its storage unit are 

translated into the appropriate BMS system. Therefore, the expected accuracies are 

dependent on the adapted approach in BMS, which is adopted in the model and method of 

identifying the parameters.  

Despite the history of research and development in the different fields of application 

of batteries, there is currently no chemical, mathematical or electrical model to reproduce 

accurately and in various cases its operation. The only models available do not offer enough 

precision or only can be used under certain narrowly defined conditions. 

On the basis of the knowledge and evolution of the battery in operation storage, a 

solution which combines the use of modelling with evolutionary parameters to identify the 

SOC in continuous way is required. 
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2.1.  Introduction  

The reliability, safety, and longevity of any battery operations necessitate an efficient 

battery management system (BMS), which is involved of advanced techniques. Therefore, 

the number of research articles of BMS strategies published in journals and conferences have 

been increasing rapidly in lasts years [17, 45], especially on battery states estimation focus. 

Generally, it is worthwhile to summarize systemically the states estimation methods 

for BMS practitioners, in the hope of providing some inspiration and review in this subject.  

In this chapter, conducted by an up-to-date literature survey in combination with 

practical applications, a technical review on the development of BMS and key states 

estimation methods for batteries have been given. 

2.2.  Battery management system 

In the 1990s, the BMS was developed for monitoring the operation status of lead-acid 

batteries  [46]. At this stage, the acquisition of battery parameters, including the voltage, 

current and temperature, and battery charge/discharge control were the main functions of 

BMSs, and the SOC was mainly indicated by the cell terminal voltage and open circuit 

voltage [2].  

From the 2000s, combined with battery models, state observers were developed for 

battery SOC estimation [47, 48]. In the early years, multiple sampling channels for cell 

voltage and temperature measurement were commercially integrated as a single chip, which 

significantly reduces the size and cost of BMSs.  

Until now, the functional requirement of BMS appears to be a more sophisticated and 

complex trend [49], and the core functions of BMS mainly include cell and pack monitoring 

and protection, states estimation, cell balancing, thermal management, charge/discharge 

control, and data communication and record, as shown in Figure (2-1). 
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Figure (2-1): Block diagram of battery management system.  

So, the role of BMS is to ensure the following tasks:  

 Monitor the voltage and current during charge and discharge  

 Ensure proper charge/ discharge current. 

 Estimate the SOC and SOH of the cells using implemented algorithm. 

 The Thermal Control of the battery is intended to keep the batteries within a safe 

operating range. This control can go from a simple measurement of the temperature 

in order to review the strategy of the auxiliary equipment to put in service as it is the 

case for VRLA batteries, until reheating or the cooling of the battery through a 

thermal control active (active radiator, heater, thermostat ... etc.) in the case of Ni-

MH and / or Li-Ion batteries. Ventilation system can be envisaged to release the 

hazardous gases generated by the battery. 

 Balance of the cells, in order to achieve optimal performance of the battery module 

while this rebalancing is necessary for multi-cell batteries (serial/parallel). The BMS 
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controls this rebalancing of the cells through a strategy predefined into algorithm. 

 The protection of the battery from risks by avoiding overload or over discharge or 

other major anomalies (temperature increase for Li-Ion) that can occur in case of 

battery failure or equipment in the surrounding environment. This protection can be 

physical, relay for emergency stop or sending alarm (report to the user). 

 Monitoring the state of the battery and information communication (SOC, DOD, 

temperature, alarms, gauge ... etc.). 

The main functions of the BMS are depicted in Figure (2-2). 

 

 

Figure (2-2): BMS main functions. 

2.3.  Profile of charge and discharge batteries 

The safety, durability, and performance of a battery is highly dependent on how it is 

charged or discharged [50]. An abuse can significantly reduce its life and can be dangerous. 

Therefore, a BMS includes, on board, both a load control protocol and an implemented 

discharge strategy. 
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Figure (2-3) shows the typical profiles of the load protocol used for almost all batteries 

[51]. 

 

Figure (2-3): Charge profile constant current (CC), constant voltage (CV).  

2.3.1. Constant Voltage Charge (CV) 

This charging regime that maintains the voltage at a constant value (𝑉𝑓𝑢𝑙𝑙) is suitable 

for all types of battery; it is probably the most famous profile given the simplicity of its 

implementation. The charging current (𝐼𝑏) of the battery varies throughout the charging 

process. Therefore, 𝐼𝑏  can be important at the initial stage of charging and gradually 

decreases to zero when the battery is fully charged.  

The disadvantages of this method are: the requirement of a very high power at the 

beginning of the load, the need for control of the overload and also the control of the 

temperature of the battery. In general, the life of the battery is reduced compared to other 

protocols [52]. 

2.3.2. Constant current (CC) charge 

In this charging regime, the charging voltage applied to the battery is controlled to 

maintain a constant current (𝐼𝑏 = 𝐼𝑐𝑐). The SOC will increase linearly as a function of time 

during this constant current regime. The challenge of this method is to determine the full 

state of charge SOC = 1 or 100%.  
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The cut-full threshold can be determined by the monitoring of the parameters (T°, V, 

t), the increase of temperature, the gradient of increase of the temperature, increase of the 

tension, the change negative voltage and the elapsed charging time [53]. 

2.3.3. Combined charge Protocol CC-CV 

This method is based on the combination of constant voltage and constant current 

during the charging process of a battery. Figure (2-3) shows a charge profile of a Li-ion cell 

(18650HC). At the initial stage, the battery can be pre-charged to a constant low value 

current if the cell is not pre-charged before (𝑉𝐿 = 𝑉𝑝𝑟), the factory protection threshold). 

 Then, it is activated to charge it with a constant current at a higher value (fast charging 

phase). Thereby, when the battery voltage (or SOC) reaches a certain threshold point (𝑉𝐿= 

4.2 or SOC = 80%), the load is changed to charge at constant voltage (healthy charge phase). 

Constant voltage charge can be used to maintain battery voltage if the DC charge supply is 

still available (charge hold phase). As a complementary phase, a constant voltage profile can 

be added for maintenance at low load currents; an external self-discharge circuit is used to 

prevent any degradation of the battery. 

Also, other proposed load protocols can be used to reduce load time by a linear current 

decay load (LCD) protocol and to limit overload capacity losses, a modified LCD protocol 

called MLCD; Their combination is also appreciated [54]. 

2.3.4. Discharge regime 

It should be noted that the discharge regime of a battery depends on the power 

demand imposed by the application; it can vary from a simple constant current discharge to 

a random profile. However, the discharge control protocol implemented in the BMS, when 

sizing the power system, must limit the degradation of the battery while ensuring the safety 

of battery operations and avoid the deep discharge.  

2.4.  Internal states relationships 

Overly estimates of battery states would result in waste or abuse of battery available 

capabilities, which could even lead to fire and explosion risks. So, the last researches on 

BMS focuses on the development of battery states estimation methods that are capable of 

determining internal battery status robustly for the safe, reliable and efficient battery usage. 



Chapter 2                                                                               SOC estimation review 

 

38 
 

Therefore, the battery states of interest include: 

 State of charge (SOC), which is a quantity representing the stored charge 

capability of the battery. 

 State of health (SOH), which is a quantity representing the aging level of the 

battery. 

 State of energy (SOE), which is a quantity representing the stored energy 

capability of the battery. 

 State of power (SOP), which is a quantity representing the delivered or 

absorbed power capability of the battery. 

The SOC usually is defined as the level of the remaining charge stored in a battery 

to its full capacity. Effectively, it is reviewed as fuel gauge of battery available energy, which 

is determined according to terminal voltage, current of load, cell temperature and battery 

aging. Likewise, the SOE is also calculating by these factors, which is required for indicating 

the state of available energy of the battery. While, the SOH is governed by the aging path of 

the battery, as well as, it is slow varying-time and affected by ambient temperature.  

Moreover, The SOP is dependent on SOC/SOE and SOH. In specific, the SOP has a 

short prediction time which is typically lower than 20 second [55]. The reported relationships 

between these different states are depicted in Figure (2-4). 

 

 

Figure (2-4): Relationships of battery states. 
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2.5.  State of charge estimation methods 

The SOC defined as the ratio of the remaining charge to the full charge stored in a 

battery. It represents a “fuel gauge” where it is an indispensable indicator for the safe 

operation of batteries. 

2.5.1. Coulomb-counting method 

Coulomb-counting, also called ampere-hour (Ah) integral, is the most basic and 

simplest method to estimate battery SOC [40], as expressed as: 

 𝑆𝑂𝐶(𝑡) = (𝑆𝑂𝐶0 −∫
𝜂𝐼𝐿(𝑡)

𝑄𝑛
𝑑𝑡) ∗ 100

𝑡

0

 (2.1) 

where 𝑆𝑂𝐶(𝑡) and 𝑆𝑂𝐶0 denote the SOC values at time t and the initial time, respectively, 

𝐼𝐿 is the loading current at time t (positive for charging and negative for discharging), and η 

the coulomb efficiency that can be considered as 1.  

Due to the primary advantage achieved by its ease of use and implementation with few 

computation efforts, the Coulomb-counting method has been widely used in real 

applications, especially during the early stages of the development of BMSs.  

The effectiveness of this method is basically dependent on the accuracy of current 

measurement and initial SOC value. Because of the inevitable cumulative error of current 

detection, the SOC estimation results suffer from significant divergence problems, especially 

after performing over a long period. Therefore, it needs a periodic calibration procedure for 

correcting the initial accumulated charge value, which is the disadvantage of limits its direct 

applications in practices. Hence, the Coulomb-counting method is often used in combination 

with other techniques, such as the following open circuit voltage (OCV) and model-based 

methods [56-58]. 

2.5.2. Open circuit voltage method  

The OCV method is typically applied to recalibrate the SOC value. An OCV-SOC 

curve of Lead-acid (LA) battery is depicted in Figure (2-5), where the SOC interval is 5%. 

However, at each SOC interval the relationship between the OCV and SOC can be fitted as 

a segmented function, as given in the following equation: 
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 𝑂𝐶𝑉 = (𝛼𝑖 ∗ 𝑆𝑂𝐶) + 𝛽𝑖 (2.2) 

where 𝑎𝑖 and 𝑏𝑖 are the parameters of the ith segmented function. 

 

Figure (2-5): The OCV-SOC curve of a Lead-acid battery cell. 

If the OCV is obtained in advance, then it is easy to compute the SOC by using equation 

(2.2). However, there are several existing points that should be taken into account when 

applying the OCV method for SOC estimation [59]. 

Accurate SOC estimation requires precise battery OCVs. However, it typically takes 

a long rest time for batteries to recovery their fundamental terminal voltage, which refers at 

that point to OCV. Therefore, it limits its feasibility in applications. Thus, the strategy for 

how to obtain the OCV in a short period of time needs to be further developed. 

The OCV strategy is an open-loop estimator that doesn’t have the capability to 

eliminate voltage detection errors and uncertain disturbances [60]. The cell terminal voltage 

detection sensor with high accuracy and low disturbances noises is therefore needed in this 

method. Some types of batteries have a relatively flat OCV-SOC curve, especially for 

LiFePO4 cells. This means that a small OCV measurement error may lead to a larger SOC 
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divergence. In this case, it requires cell terminal voltage detection sensors with extremely 

high accuracy, which increases the cost of BMSs. 

In [61] addressed that the OCV-SOC curve of LiFePO4 cells of the 18650-cylindrical 

type is related to the ambient temperature, and a single OCV-SOC table used in the 

estimation algorithm would cause erroneous results. To address this problem, an offline 

OCV-SOC-temperature table was established to estimate the SOC in the paper, where the 

verification indicated that it can provide better results than that without considering ambient 

temperature.  

In [62], it can be observed that OCV-SOC values of a Li-NMC cell differ from 

different aging levels. For robust and accurate battery SOC estimation at various ambient 

temperatures and cell aging levels, it is suggested to establish a multi-dimension OCV table 

including various influenced factors, such as an OCV-SOC-temperature-aging table in 

advance.  

2.5.3.  Model-based methods 

The schematic of battery model-based method shown in Figure (2-6) mainly consists 

of a battery cell, a state observer or filter, and a battery electrical circuit model (ECM) or 

electrochemical model (EM).  

 

Figure (2-6): Schematic of battery model-based SOC estimation methods. 
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The input for both the real battery and battery model can be the loading current and 

ambient temperature. Therefore, the principle of SOC estimation is to compare the cell 

terminal voltage with the output voltage of the battery model for generating a residual 

voltage, and then to feed it back to the model through an observer or a filter for revising the 

model parameters and states. Hence, the residual voltage is gradually eliminated, while the 

SOC of the battery model is gradually closed to the actual value.  

Battery model-based SOC estimation methods always exhibit desirable merits, such as 

closed-loop, insensitive to the initial SOC value and uncertain disturbances, and availability 

of estimated error bounds, which have attracted enormous attention. Various techniques of 

observers and filters including sliding-mode observer (SMO), particle filter (PF), 

proportional-integral (PI) observer, H-infinity (H∞) observer, different versions of Kalman 

filter (KF), and so forth, are extensively applied in model-based SOC estimation methods. 

2.5.3.1. Kalman filter based methods 

The KF is an optimal recursive solution for linear systems, which assume that the noise 

in both the transition and measurement processes is an independent Gaussian type. However, 

KF tends to diverge in nonlinear systems. Different extensions of KF, such as extended KF 

(EKF), sigma-point KF (SPKF), unscented KF (UKF), central difference KF (CDKF), and 

fading KF (FKF) have been proposed to address this issue, and therefore were widely 

employed for estimating the SOC of batteries with non-linear characteristics. The key idea 

and steps of the EKF algorithm for battery SOC estimation including prediction update and 

measurement update were first elaborated in Plett’s series of papers [47, 49].  

In the following research, Lee et al. [59] employed a modified OCV-SOC relationship 

and measurement noise models with EKF to achieve more robust estimates for all cells. 

Since EKF can equilibrate the algorithm complexity and estimation accuracy well, it is 

regarded as being capable of implementation into a microprocessor for efficient operations 

in BMSs. 

However, an argument against using EKF is that it linearizes battery model 

nonlinearities, thus leading to linearization errors. To tackle this problem, Plett [49] proposed 

the SPKF method for estimating the SOC of LiPB high-power cells, which highlighted its 

superiority in terms of estimation accuracy compared with the EKF. It is noted that there is 

little or no additional cost at the gains of SPKF compared with that of EKF, and the 
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implementation of SPKF requires no analytic derivation or Jacobians as in EKF [49, 63]. 

Moreover, the performances of EKF and SPKF for SOC estimation were comparatively 

studied in [64], where both estimated robustness against uncertainties and convergence 

behaviour with an erroneous initial value were improved in the SPKF method. Meanwhile, 

CDKF and UKF are the two most common used variants of SPKF, which are also applied 

for SOC estimation.  

A nonlinear enhanced self-correcting battery model was employed with the CDKF 

estimator to achieve more accurate SOC estimation results in [49]. With a UKF algorithm, 

obtained accurate estimates while greatly reducing the computational time in inferring SOC 

from a rigorous battery EM [65].    

It is noted that accurate knowledge of process and measurement noises covariance is 

highly required in all variants of KF for precise SOC estimation. Erroneous knowledge of 

noises covariance may result in considerable errors in estimated results. In this aim of 

adaptively matching the process and measurement noises covariance in real-time, adaptive 

KF based estimators, such as adaptive EKF (AEKF) and adaptive UKF (AUKF) were 

applied for battery SOC estimation. In [66], an AUKF estimator was investigated with an 

improved battery Thevenin model achieved by adding an extra RC branch to a conventional 

Thevenin model for the estimation. Both the maximum SOC estimation error and mean SOC 

estimation error can be reduced to low levels in comparison to using EKF.  

In [67] further developed AEKF for estimating the SOC of a series-connected lithium-

ion battery pack, in which a battery pack model was established as a cell unit model for 

avoiding cell-to-cell variations in the battery pack. Besides, AUKF for SOC estimation was 

presented in [66], where the comparative study results indicated that AUKF has a better 

accuracy than AEKF and EKF. The other problem is that the model and measurement noises 

of varied extensions of KF are restricted by the Gaussian distribution. However, it does not 

relate well to practices, which may have an adverse effect on the convergence behaviour and 

estimated accuracy. 

2.5.3.2. Sliding-mode observer 

The SMO is another effective technique for state estimation in nonlinear systems 

subject to uncertainties and disturbances [68]. It is designed to force and confine the system 

state to stay in a pre-constructed surface, known as the sliding (hyper) surface, which 
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exhibits desired dynamics. The SMO design for SOC estimation was described in [69, 70], 

where the systematic design approach for SMO in combination with state equations of 

battery ECMs with was present, and the convergence of SMO was proved by Lyapunov 

functions.  

The modelling errors caused by simple ECMs were effectively compensated by the 

SMO, and therefore, under the real driving environments, the proposed method showed 

robust tracking performance against modelling errors and uncertainties. Due to its simple 

calculation and robust estimation characteristic, the SMO was suggested to be directly 

applied in hybrid EVs. However, an inevitable issue of the conventional SMO is the 

chartering phenomenon, which is caused by the discontinuous switching control. To tackle 

the above problem, in [71] proposed adaptive switching gain SMO approaches for 

minimizing chattering levels. In the meantime, the accuracy of SOC estimation was 

improved by adaptively adjusting switching gains for compensating modelling errors. With 

the same aim, in [70] employed an adaptive discrete-time SMO for estimating the OCV of a 

battery cell and then predicting the SOC with an enhanced Coulomb-counting algorithm.  

In [72], the elimination of chattering in both the output voltage and SOC estimates was 

achieved by the application of a second order discrete time SMO that can drive not only the 

sliding variable but also its derivative to zero. Compared with the conventional first-order 

SMO approach, the proposed method showed a drastic reduction in both the estimation error 

and chattering phenomenon while maintain the robustness of the SMO approach. Although 

the effectiveness of adaptive SMO approaches and the second-order SMO method for 

attenuating chattering levels was validated, this benefits from the additional complexity and 

computation cost of the algorithms. 

2.5.3.3. Particle filter 

The particle filter (PF) is a sequential Monte Carlo approach, which aims to obtain a 

set of particles (also called samples or individuals) as well as importance weights assigned 

to the particles for representing the posterior probability density of the system [73]. The main 

operations of PF include particle propagation, importance weight computation, and 

resampling [74]. 

 In [75], a PF based battery SOC estimation algorithm was proposed, where the 

experimental results showed that PF and EKF have similar performance in estimation 



Chapter 2                                                                               SOC estimation review 

 

45 
 

accuracy, but the execution time of PF is six times faster than that of EKF. Since LFP 

batteries have very flat OCVs with hysteresis between charging and discharging which bring 

challenges for estimating the SOC. 

 For improving the estimation robustness, in [76] presented a PF based multi-model 

data fusion technique for battery SOC estimation. In this approach, a battery ECM and EM 

with PF were employed to infer SOC values, separately, and then the SOC values and their 

weights were adjusted by using PF and weighted average methodology. Although the 

validations indicated that this method can achieve better accuracy compared with 

conventional approaches of the single battery model, it was at the expense of additional 

computational efforts. It was reported that the calculation process of conventional PF 

requires a massive number of particles for accurate SOC estimation. 

Accordingly, the proposal distribution of PF included the new observation 

information, and the number of particles can be significantly reduced. Moreover, with the 

consideration of the cells’ inconsistencies in a battery pack, in [77] developed a UPF based 

approach for the estimation of the battery pack SOC.  

2.5.3.4. H-infinity observer 

H-infinity (H∞) observer has been effectively applied to handle state estimation 

problems involving multivariate systems with cross-coupling since the late 1990s [78, 79]. 

It is a worst-case robust design approach, which means that it is less sensitive to model 

uncertainties and disturbances. The satisfactory battery SOC estimates can be obtained by 

the application of H-infinity in model-based estimation blocks.   

Yan et al. [79] designed a H infinity observer for addressing SOC estimation problems 

of nickel metal hydride (Ni-MH) batteries in noised and uncertain environments. The 

verification indicated that the proposed approach has the stronger robustness than current 

integral and KF methods. When unknown or erroneous statistical properties of errors were 

provided, the H-infinity observer based method still offered good SOC estimation accuracy 

for a battery-powered robot that is used for inspecting power transmission lines.  

Likewise, for accurately estimating battery SOC and terminal voltage without a prior 

knowledge of process and measurement noises, H-infinity observer with a battery ECM 

whose parameters were extracted by a genetic algorithm was used in [80], where the SOC 
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and voltage estimation error bounds are invariant with different measurement noise levels.  

Furthermore, to weaken the errors caused by a single battery model, Lin et al. [81] 

focused on a multiple battery ECMs fusion approach using the H-infinity algorithm for SOC 

estimation. In the proposed method, three H-infinity observers were applied with three 

different kinds of ECMs to predict their respective SOCs. Then, the SOCs were synthesized 

with optimal weights to determine the battery SOC by the Bayes theorem.  

It was stated that the proposed approach highlighted its superiority in terms of 

robustness and estimation accuracy for both LMO and LFP batteries operated under dynamic 

conditions in comparison with the methods using sole battery ECM. However, the proposed 

distributed architecture with three observers, three models, and a fusion technique inevitably 

increases the computational burden, and the computational efficiency has not been evaluated 

in the article.  

For increasing the robustness and accuracy of the conventional H-infinity algorithm, 

the adaptive H-infinity estimator was designed for both SOC and SOE estimation in [82], 

where a moving estimation window of samples was employed to develop the covariance of 

the error innovation for adaptively updating the observation and system noise covariance. 

Compared with the conventional H-infinity and EKF methods, the adaptive H infinity 

estimator can reduce the maximum SOC estimation error and the mean SOC estimation error 

as well as the convergence time.  

According to the authors, the estimation results kept extremely high accuracy within 

0.1% when an erroneous initial SOC value was provided. However, the robustness of the 

proposed method against various ambient temperature and cell aging levels is suggested for 

further evaluation. 

2.5.3.5. Proportional-Integral observer  

The proportional integrator (PI) observer inherits the advantages of the proportional 

controller and integral controller and exhibits strong robustness against system uncertainties, 

which is the most usually used control approach in engineering applications. 

 The PI observer has the advantage over other observer and filter techniques in that it 

is computationally efficient, and therefore, it is well tracking to be embedded in low-cost 

target BMSs [83, 84]. Since it is hard to establish an accurate battery model for exactly 
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matching a battery’s dynamic behaviours, the PI observer was employed to improve the 

robustness against modelling uncertainties for SOC estimation in [85], where the structure 

of the proposed method with a battery ECM was presented, and its convergence with model 

errors was validated. 

 Moreover, in [86] quantitatively analysed the error sensitivity of battery ECM 

parameters including OCV, Ohmic resistance, polarization resistance, and capacity for the 

PI observer based SOC estimation method. It was stated that the OCV has a more significant 

influence on the estimation accuracy than other parameters. 

2.5.4. Machine learning methods 

Without the physical knowledge of a system, machine learning methods such as neural 

network (NN), support vector machine (SVM), and fuzzy logic (FL) have the ability to learn 

and approximate the relationship between the input and the output of the system, which have 

been widely applied to battery systems to estimate SOC. 

2.5.4.1. Artificial neural network  

Artificial neural network (ANN) is inspired by the way that the human brain processes 

information and is an intelligent mathematical tool for system modelling [87]. Therefore, an 

ANN typically consists of an input layer, one or more hidden layers, and an output layer to 

demonstrate a complex nonlinear system. Different learning algorithms can be employed to 

train the input data and the target data to acquire the parameters of the network.  

However, the most often used learning method, back-propagation, was employed to 

train the relationship between battery parameters including cell terminal voltage and loading 

current and targeted SOCs in [88] for estimating battery SOC. The experimental results 

indicated that the NN method could perform well if the trained data is identical to the real 

experience.  

Considering the effect of battery capacity degradation, a battery capacity aging model 

that was built according to the test data at various temperatures was introduced as an input 

parameter of a Radial Basis Function ANN (RBFNN) in response to the varying aging levels 

and temperatures in [88, 89].  
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The verification of the proposed method showed a good robustness against varying 

battery degradation, temperature, and loading profiles. Moreover, a large amount of reliable 

experiment data is required for accurately deducing the battery aging model and training the 

network.  

2.5.4.2. Support vector machine  

Support vector machines (SVMs), originally introduced as support vector networks 

[90], are supervised learning models that are used for data classification and regression 

analysis. SVMs can effectively transform a non-linear model using kernel functions and 

regression algorithms to a linear model in high dimension by using creditable training data 

[91]. The training process is also likely to be time-consuming. A battery SOC estimator using 

the SVM technique was proposed in [91].  

The battery test data including cell terminal voltage, loading current, temperature, and 

SOC were used for training the parameters of the SVM model. With the input variables of 

battery cell voltage, current, and temperature, the SVM model was able to estimate battery 

SOC accurately with an estimated coefficient of determination of 0.97.  

Furthermore, it is addressed that a relatively large estimated error can be observed for 

some points of discontinuity of the current. This may cause problematic estimates in real 

applications especially with dramatically changed loading current. With the goal of 

achieving robust SOC estimation, an iterative weighted least squares SVM (WLS-SVM) 

algorithm was proposed in [92], where the key idea is similar to that of [91], namely 

establishing a relationship of SOC to cell voltage, current and temperature. The verified 

results showed that the proposed estimator can achieve good robustness for SOC estimation.  

Moreover, an optimized SVM for regression (SVR) with double search optimization 

process was employed for SOC estimation in [90]. The main purpose of the double step 

search was to reduce the time of training processes for selecting the optimal parameters. The 

proposed SOC estimator outperformed the estimations based on artificial NN in terms of 

efficiency and accuracy. However, since the results were verified in a vehicle simulator 

ADVISOR, it is recommended to evaluate the performance of the proposed method in real 

situations. 
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2.5.4.3. Fuzzy logic  

Fuzzy logic (FL) mimics human control logic and is a way of processing data which 

incorporates a simple and rule-based approach to solving a control problem. The 

implementation process of FL includes fuzzifying inputs into membership functions, 

computing the output based on the rules, and de-fuzzifying the fuzzy output. In [93], they 

used ac impedance and voltage recovery measurements as the input of an FL model for 

estimating battery SOC. The proposed method was implemented in a microcontroller for the 

application of portable defibrillators.  

Moreover, in  [94] proposed an adaptive neuro fuzzy inference system (ANFIS) for 

online SOC correction. The average SOC of the battery pack was estimated by the KF 

method and then was corrected by the ANFIS with the information of cell differences and 

current. The proposed method has good accuracy and robustness against varying loading 

current, battery state, and aging, but it needs relatively high computational efforts.  

Several numbers of approaches for estimating battery SOC have been proposed in 

literature, most of them are classified in Figure (2-7). 

 

Figure (2-7): Classification the approaches for SOC estimation 
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2.6.  Conclusion 

A brief comparison of the aforementioned SOC estimation methods regarding to their 

complexity and accuracy is summarized in Table (2-1).  

Table (2-1): The comparison of different SOC estimation methods regarding to their 

complexity and accuracy  [1].  

SOC 

estimation 

Methods Complexity Accuracy 

Coulomb counting 

method 
low 

Low (especially 

after performing 

over a long period) 

OCV method low 

Low (especially for 

batteries with flat 

voltage plateau) 

Model based methods 

High (especially 

with a battery 

electrochemical 

model ) 

High 

Machine learning 

methods 
medium 

Depending on 

training data sets 

 

The functional requirement of the lithium-ion battery management system (BMS) 

has appeared as a more sophisticated and complex trend, especially in estimating battery 

states. Overly pessimistic or optimistic estimates of battery states would lead to waste or 

abuse of battery available capabilities, and the states estimation is therefore one of the major 

challenges of BMSs.  

This chapter mainly presents a technical review on key states estimation methods for 

lithium-ion batteries. It is noted that the machine learning methods can be applied for 

modelling the relationship of target state to input variables, but the estimated error is highly 

dependent on the training data. Among the reported techniques, model-based methods are 

the most popular ones for different states estimation, which is primarily attributed to their 

inherent traits such as closed-loop and insensitive to the initial value and uncertain 
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disturbances. However, in order to achieve more reliable and robust states estimation; the 

exiting issues of different techniques need to be further addressed. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3  

Battery modelling 
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3.1.  Introduction 

Researches in the field of stand-alone systems, electric vehicle, energy distribution, 

and power control strategy, as well as the estimation of batteries state of charge (SOC) and 

state of health (SOH), are experiencing an important increase, due to the growing interest in 

this field. Therefore, a lot of Researches are settled to improve battery models accuracy, 

especially those concerning lead-acid and Lithium-ion batteries, where has become a crucial 

objective. Therefore, for that reason, in literature, a wide range of different approaches are 

representing battery behaviour. They are varying from simple to complex degrees while the 

battery is treated as a nonlinear system.   

A battery pack is composed of smaller batteries called cells. They are arranged in series 

and parallel to achieve the desired voltage and capacity. Each cell has its own SOC, capacity 

and internal resistance, which makes it instinctively to represent a battery pack as an electric 

circuit. The representation of this circuit of the battery circuit is known as the equivalent 

circuit model (ECM).  

This model is popular due to its simplicity and fast computing time, which making it 

a good candidate for control-oriented applications [95, 96].Thus, making them perfect to be 

used and implemented in a BMS. 

ECMs are models based on electrical components such as ideal voltage sources, 

resistors, and capacitors to simulate the behaviour of the battery [97]. The vast majority of 

ECM models are semi-empirical models where the process of calculating the final outputs 

is based on two distinctive activities. First, the OCV with respect to SOC must be known as 

prior by performing laboratory experiments where the battery is put through sequences of 

discharge and resting periods [98]. Second, ECM parameters such as resistors and capacitors 

must be calibrated through input/output data using mathematic parameter identification 

techniques such as least square methods [97]. 

A drawback of this kind of ECM is that these models do not rely on the physical 

behaviour of the battery, therefore calculating the power fading and aging effect of the 

battery becoming impossible. In this thesis, different ECMs models were identified and 

selected for analysis, which will be detailed in the following subsections. 
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3.2.  What’s the importance of modelling a battery? 

For most applications using battery models, it is generally important to accurately 

predict the electrical characteristics of the battery, including the voltage across it, and the 

current flowing through it. Additionally, an estimation of State of Charge (SOC, a 

normalized estimation of how much chemical energy is stored in a cell) is required. If battery 

models are linked to thermal management simulations, accurate heat dissipation from the 

battery must be captured [99]. 

Batteries are used in our life with several applications, so anyone has a portable device 

can tell you batteries degrade over time. There are many electrochemical factors that lead to 

the degradation of a Li-ion battery.  For instance, the active materials in the cathode and 

anode tend to crack over time and there are undesirable side reactions that lead to growth of 

films on active material particles in both the cathode and anode in case of Lithium-Ion 

battery.   

Furthermore, under extreme conditions, such as lead-acid battery suffers from 

sulfation phenomena, which shorten the battery life whereas Lithium-ion battery suffers 

from Lithium plating process. 

Security simulation and testing is a significant theme. Extreme conditions, for 

example; hot, cold environment or deep discharge could be disastrous for the battery. This 

is the main reason to use cell models while efforts trying to enhance them in order to capture 

electrochemical behaviour and prediction of the internal state.   

3.3.  Battery models  

The use of mobile devices is often limited by the capacity of the employed batteries. 

Therefore, the battery lifetime determines how long one can use a device. Thereby, battery 

modelling can help to predict, and possibly extend its lifetime. For this reason, many 

different battery models have been developed over the past years [97, 99].  

However, we will give an overview of the different battery models are available, and 

evaluate their suitability to track the battery state. 
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3.3.1. Electrochemical models 

It is possible to achieve a high accuracy by using electrochemical models that aim to 

capture all the behaviours’ of the battery. They are suitable for understanding the distributed 

electrochemistry reactions in the electrodes (such as, the reactions from Figure (3-1), 

assuming LixC6 anode and LixCoO2 cathode) and electrolyte.  

However, in order to describe the battery chemistry charge/discharge carrier 

mechanisms, they deploy a high number of partial differential equations (PDEs) with a large 

number of unknown parameters, which must be solved simultaneously with a high 

computational expense and a significant requirement of memory. It is not allowed to use for 

online estimation due to their poor fitting extrapolation problem [100]. 

 

 

Figure (3-1): Basic reactions diagram of a Lithium-ion cell.  

 

This kind of battery modelling tries to describe all the details of physics phenomenon 

that occurs inside the battery. Figure (3-1) shows the anatomy of a Lithium-ion cell battery, 

which has four main components:  
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 The negative composite electrode connected to the negative terminal of the 

cell. 

  The positive electrode connected to the positive terminal of the cell. 

  The separator. 

 The electrolyte. 

 

Figure (3-2): Schematic of a lithium-ion battery electrochemical model.  

 

Based on the electrochemical principles shown in Figure (3-2), it is assumed that the 

solid spherical particles uniformly disperse along X-axis, and the intercalation and de-

intercalation process of lithium-ion in and out of these solid spherical particles, which are 

presented by the complex governing equation of the cell terminal voltage as follow [101]: 

 𝑉𝐿(𝑡) = Φs(𝑂
+, 𝑡) − Φe(𝑂

−, 𝑡) − 𝐼𝐿(𝑡)𝑅𝑒𝑚 (3.1) 

 

where Φs(𝑂
+, 𝑡) and Φe(𝑂

−, 𝑡)  represent the electric potential at the ends of two solid 

electrodes, respectively. 𝑅𝑒𝑚 represents an empirical resistance though 𝐼𝐿(𝑡) and 𝑉𝐿(𝑡) are 

the loading current and terminal voltage, which play the role of input and output respectively. 
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Furthermore, this section will explain briefly the complex governing equations of the 

electrochemical model:  

 Transport in solid phase: 

The diffusion of solid in the electrolyte phase as shown in Figure (3-2) may be 

described the amount of concentration of lithium inside the electrode by spherical shape 

using the following equation:  

 
𝜕𝐶𝑠(𝑥, 𝑟, 𝑡)

𝜕𝑡
=
𝐷𝑠
𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝐶𝑠(𝑥, 𝑟, 𝑡)

𝜕𝑟
) (3.2) 

where this equation refers to both electrodes and  𝐷𝑠 is the 𝐿𝑖+ coefficient of diffusion in the 

intercalation of the electrodes. 𝐶𝑠 refers to concentration of solid phase lithium and 𝑟 is the 

radius of sphere ( see Figure (3-2)). 

 Transportation in electrolyte:  

The concentration of Li+ in the electrolyte phase is governed by deriving the changes 

in gradient diffusive flow of ions. The following PDE describes the dynamics [100]: 

 𝜖
𝜕𝐶𝑒(𝑥, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝐷𝑒𝑓𝑓

𝜕𝐶𝑒(𝑥, 𝑡)

𝜕𝑥
) + 𝛿(1 + 𝑡+)𝑗(𝑥, 𝑡) (3.3) 

 

where ϵ  is the volume fraction, 𝐷𝑒𝑓𝑓 is the Li+ diffusion coefficient in the electrolyte which 

can be calculated based on Bruggman relation [102].  𝑡+  is the Li+ transference in the 

electrolyte and  j is the wall-flux of Li+ on the intercalation particle of electrode. 𝐶𝑒 refers 

to electrolyte concentration.  

Furthermore, 𝛿 denote the specific electrode surface area and it can be defined as the 

porosity equation of the electrode expressed as:   

 𝛿 =
3

𝑅𝑠
(1 − 𝜖 − 𝜖𝑓) (3.4) 

 

 𝑅𝑠 is the radius of intercalation of electrode, 𝜖𝑓  is the volume fraction of fillers and 𝜖 refers 

to volume fraction of the electrode.  
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 Electrical potentials:  

The relationship between the current inside the electrode and the electrode potential is 

described by Ohm’s law.  

 𝜎𝑒𝑓𝑓 (
𝜕2

𝜕𝑥
Φs) = 𝛿F𝑗 (3.5) 

 

In the electrolyte phase, the 𝜎𝑒𝑓𝑓  effective electronic conductivity may be expressed as: 

 𝜎(1 − ϵ − ϵf) and 𝜎  refers the electronic conductivity in solid phase. F refers to Faraday’s 

constant. 𝑗 is the applied current density. Furthermore, by combining Kirchhoff’s law with 

Ohm’s law the electrolyte phase yields:    

 −𝜎𝑒𝑓𝑓 (
𝜕Φ𝑠

𝜕𝑥
) − 𝑘𝑒𝑓𝑓 (

𝜕Φe

𝜕𝑥
) +

2𝑘𝑒𝑓𝑓𝑅𝑇

F
(1 − 𝑡+)

𝜕 ln(𝐶𝑒)

𝜕𝑥
= 𝑗 (3.6) 

 

Where 𝑘𝑒𝑓𝑓 is the effective ionic conductivity of the electrolyte, and Φ𝑠 and Φ𝑒 represent 

potential reaction for each electrode. F refers to Faraday’s constant and 𝑇 is the ambient 

temperature. 

 Butler-Volmer kinetics 

 

The equation that describes the relationship between the current density, 

concentrations and over-potential: 

𝑗 = 𝑘(𝐶𝑠,𝑚𝑎𝑥 − 𝐶𝑠,𝑠𝑢𝑟𝑓)
0.5(𝐶𝑠,𝑠𝑢𝑟𝑓)

0.5(𝐶𝑒)
0.5 (exp (0.5

𝐹𝜇

𝑅𝑇
)) − exp (0.5

𝐹𝜇

𝑅𝑇
) (3.7) 

Where 𝐶𝑠,𝑚𝑎𝑥 is the maximum concentration of Li+ ions in the intercalation particles of the 

electrode and 𝐶𝑠,𝑠𝑢𝑟𝑓  the concentration of Li+ ions on the surface of the intercalation 

particles of the electrode [100, 103].  𝑘 refers to the reaction rate constant. 

Furthermore, 𝜇 = 𝛷𝑠 − 𝛷𝑒 − 𝑈0 is the over-potential of  intercalation reaction, 𝑈0 refers to 

the open circuit potential for the electrode material (generally determined from curve-fitting 

on experimental measurement terminal voltage).  
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3.3.2. Thermal model  

Most of battery types have good performance at room temperature. If the temperature 

of the battery is too high or too low its performance is affected significantly. Lithium-Ion 

battery have need a special care in case of high temperature, thermal management systems 

ensure that the battery remains within the range of safe temperature preventing it from 

bursting into flames or significantly reducing its life expectancy [104, 105]. Temperature 

models have been developed for thermal control purposes. It used for determining the core 

and surface temperature of the cell as depicted in Figure (3-3). 

 

 

Figure (3-3): Schematic of Thermal model [105].  

 

It is based on cylindrical battery cell using classical heat transfer theory, while the heat 

transfer can be expressed by these equations [105]: 

 𝑇̇𝑐 =
𝑑𝑇𝑐
𝑑𝑡

=
𝐼𝐿
2𝑅𝑒
𝐶𝑐

+
𝑇𝑠 − 𝑇𝑐
𝐶𝑐𝑅𝑐

 (3.8) 

 𝑇̇𝑠 =
𝑑𝑇𝑠
𝑑𝑡

=
𝑇𝑓 − 𝑇𝑠

𝐶𝑠𝑅𝑢
+
𝑇𝑠 − 𝑇𝑐
𝐶𝑠𝑅𝑐

 (3.9) 
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where 𝑇𝑠 and 𝑇𝑐 are the surface and core temperature, respectively measured. 𝑇𝑓  is the input 

ambient or coolant temperature of the system. The parameter  𝐶𝑐 is the heat capacity of the 

battery core , 𝐶𝑠 is related to the heat capacity of the battery surface. 𝑅𝑒 represent the internal 

resistance where it is considered as an unknown parameter to be identified. A convection 

resistance 𝑅𝑢 is modelled between the surface 𝑇𝑠  and the surrounding coolant 𝑇𝑓 to account 

for convective cooling. 𝑅𝑐 denotes a conduction resistance between 𝑇𝑐 and 𝑇𝑠. 𝐼𝐿 represents 

the load or charge current to the model. 

The complete parameter set for this model includes 𝐶𝑐, 𝐶𝑠 , 𝑅𝑒, 𝑅𝑐, and 𝑅𝑢, of which 

the values cannot be easily calculated. Furthermore, the core's resistance and surface's 

resistance are formulated to store the entering or leaving amount of heating flux similarly. 

This is yielding four parameters as summarized in Table (3-1). 

Table (3-1): Thermal model parameters. 

Thermal Model 

Core 𝑪𝒄 𝑹𝒄 

Surface 𝑪𝒔 𝑹𝒔 

States 𝑻𝒄 𝑻𝒔 

Inputs 𝑰𝑳 𝑻𝒇 

 

3.3.3. Mathematical models 

In general, these models are so abstract that they cannot be used to develop a specific 

model, but they are still considered as a useful resource for system designers. They use 

empirical equations or mathematical methods to predict the system state behaviour and 

evolution, as well as its properties, such as the autonomy of a battery or its capacity [106]. 

3.3.3.1. Behavioural model 

Behavioural models use empirical data and often neglect the underlying physical or 

electrochemical behaviour of the battery. Based on the experimental data, their model was 

therefore labelled by collecting the data in a one-dimensional array up to an n-dimensional 

array, which is known as a look-up table. One of the most established patterns of behaviour 

is Peukert's Law [65] : 



Chapter 3                                                                                        Battery modelling 

 

61 
 

 𝑄𝑡ℎ = 𝐼𝑑𝑖𝑠
𝑝𝑘 ∗ 𝑡𝑑𝑖𝑠 (3.10) 

 

Where 𝑄𝑡ℎ denotes the theoretical capacity of the battery expressed in Ah. Idis  represents 

the discharge current, 𝑡𝑑𝑖𝑠 is the maximum discharge time expressed in hour (h) while 𝑝𝑘 is 

known as the Peukert coefficient or Peukert constant, which varies from 1 to 2. This 

parameter is strongly depending on the battery technology. The battery capacity in equation 

(3.9) is then can be expressed as follow [65, 107, 108]: 

 𝑄𝑡ℎ =
𝐾1

(𝐼𝑑𝑖𝑠)𝑝𝑘−1
 (3.11) 

 

where 𝑄𝑡ℎ represents the theoretical capacity remaining at the given discharge current 𝐼𝑑𝑖𝑠. 

And the values of parameters 𝐾1, 𝑝𝑘  depend on temperature, concentration of electrolyte 

and type of battery technology. Therefore, it can be determined by identification with 

experimental data curve. For example, Figure (3-4) shows the remaining capacity for a Lead-

acid battery of 120 Ah at different C-rate. 

 

Figure (3-4): Available capacity at Peukert’s coefficient 1.08-1.5 [107].  
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3.3.3.2. Shepherd model 

Another well-established Behavioural model is the Shepherd model [38]. It uses the 

following equation to predict the terminal voltage during charging/discharging conditions: 

 𝑉𝐿,𝑘 = 𝑉𝑜𝑐 + 𝑅𝑠𝐼𝐿,𝑘 +
𝜇

𝑞𝑠(𝑡)
 (3.12) 

where, 𝑘 is time index. 𝑉𝐿 represents the model terminal voltage, 𝑉𝑜𝑐 refers to the initial cell 

voltage (𝐸𝑜), 𝑅𝑠  is the cell’s internal resistance, 𝜇  is a constant number and  𝑞𝑠  is the 

instantaneous stored charge of battery and 𝐼𝐿 denotes cell current (positive for discharge and 

negative for charge). 

Since its introduction, further modification has been done to this equation which 

introduced more 𝜇 to 𝜇𝑛  constants to capture higher nonlinearities resulting in following 

models such as: Unnewehr model, Nernst model and Plett who combined several of the 

previously mentioned models to derive a self-correcting model which accounted for 

hysteresis effects of the battery [38, 47]. 

It is one of the most widely used electrochemical models, for instance it is commonly 

employed for the hybrid electric vehicle (HEV) description. This model describes directly 

the electrochemical behaviour of the battery in terms of voltage and current [106]. 

 𝑉𝐿,𝑘 = 𝑉𝑜𝑐 − 𝑅𝑠𝐼𝐿,𝑘 +
𝜇

𝑆𝑂𝐶𝑘
 (3.13) 

where 𝑘  is a time step, 𝑉𝐿,𝑘  is the terminal voltage of the model, 𝑉𝑜𝑐  is the open circuit 

voltage (𝑉𝑜𝑐 ), 𝑅𝑠  is the internal Ohmic resistance of the battery, 𝜇 is the polarization 

resistance (expressed in ohms), 𝐼𝐿,𝑘 is the instantaneous current (amps), and 𝑆𝑂𝐶𝑘 is the cell 

SOC. 

3.3.3.3. Electrical equivalent circuit models 

Electrical equivalent circuit (EEC) models consist of a combination of voltage sources, 

resistors and capacitors. Unlike the other models in constructive components but they try to 

model the battery behaviour.  
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They are based on the reproduction of the dynamic characteristics and working 

principles of the battery using circuit theory. Their accuracy lies within 1-5% and their low 

computational intensity makes them really accurate for real-time simulation use [106]. 

In literature, there exist several models based on simple electrical components. They 

collect together to form a complex circuit with different degree of complexity and numerous 

parameters.   

3.3.3.3.1. Simple battery model 

The most commonly used   model and the simplest ECM, which it is used to 

approximate the output voltage of the battery. It consist of two most critical parameters: 

Open Circuit Voltage (OCV) based on the SOC of the battery, and equivalent Internal 

Resistance 𝑅𝑖𝑛𝑡 of the battery [109].  

In simple terms, the battery is modelled as an ideal voltage source (OCV) and the 

resistor represents the energy loss when releasing that energy. Figure (3-5), depicts the 𝑅𝑖𝑛𝑡 

Model circuit. 

 

Figure (3-5): Schematic of simple battery model.  

 

The output voltage of the ECM  𝑽𝑳, or also called terminal voltage, is calculated as follows:  

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑹𝒊𝒏𝒕 𝑰𝑳 (3.14) 
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A disadvantage of this model is the parameter dependence on SOC levels, and 

temperature. Parameter curves have to be derived offline experimentally using constant 

current (CC) and constant voltage (CV) charge and discharge cycles while subject to a 

constant temperature [110]. The experimental setup is often composed of a battery test 

system, a thermal chamber for environment control, and a host computer.  

Similar experiments are performed at different temperatures and look-up tables are 

created for the models. Afterwards, the data is processed using software such as MATLAB 

for parameter identification. Other parameter identification techniques include genetic 

algorithms, and least square method [111]. 

Lastly, the battery output voltage suffers from hysteresis making the 𝑅𝑖𝑛𝑡 vary when 

charging/discharging. Figure (3-6), illustrates a model of the hysteresis effect in Lead-acid 

battery. 

 

Figure (3-6): The average hysteresis between charge and discharge.  
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In this purpose, a modified 𝑅𝑖𝑛𝑡 model includes the effects of hysteresis is proposed in 

Figure (3-7), which consists of charge and discharge resistors [112].   

 

Figure (3-7): Schematic of hysteresis model.  

 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑹𝒅𝒊𝒔𝒉/𝒄𝒉 𝑰𝑳 (3.15) 

3.3.3.3.2. Partnership for a new generation of vehicle 

(PNGV) model 

The US government and the US council for automotive research (USCAR) established 

the Partnership for a New Generation of Vehicles (PNGV) model in 1993 based mainly on 

the polarization characteristics of the battery [113].  

Moreover, this model has been adopted in the “PNGV battery test Manual”, which 

details test to be performed to batteries. The program addresses improvements in national 

competitiveness in manufacturing and in the implementation of energy saving innovations 

in passenger vehicles [114]. 

The PNGV model is illustrated in Figure (3-8). The model consists of 5 

parameters:𝑉𝑜𝑐 , 𝐶0 , 𝑅0 , 𝑅1  and 𝐶1  which correspond to physical traits of the battery. 𝑉𝑜𝑐 

represents the OCV of the battery. 𝐶1 represents the capacitance of the parallel plates and 

the diffusion effects of the battery. 𝑅1 represents the non-linear resistance of the battery due 



Chapter 3                                                                                        Battery modelling 

 

66 
 

to the contact resistance between the plates and the electrolyte. Lastly, 𝐶0 depicts the 𝑉𝑜𝑐 

variation generated by the accumulation of the load current and scales the battery storage 

capacity [113]. 

 

Figure (3-8): Schematic of Partnership for a new generation of vehicle model [113].  

 

Therefore, the PGNV model can be represented by the following equations: 

 𝑼̇𝟎 =
𝟏

𝑪𝟎
 (3.16) 

 𝑽̇𝟏 = −
𝟏

𝑹𝟏𝑪𝟏
𝑽𝟏 +

𝟏

𝑪𝟏
𝑰𝑳 (3.17) 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑼𝟎 − 𝑽𝟏 − 𝑹𝒔𝑰𝑳 (3.18) 

3.3.3.3.3. Thevenin Model 

The Thevenin model is often called the first-order RC model, because it consists of a 

parallel resistor-capacitor (RC) circuit in series with a resistance 𝑹𝒔 . This model is similar 

to the Rint model with the addition of a RC branch. Figure (3-9), depicts the Thevenin ECM. 
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Figure (3-9): Schematic of the First-order Thevenin model.  

 

The RC branch is composed of 𝑹𝟏 and 𝑪𝟏 elements which represent the polarization 

resistance and the transient response during charging and discharging of the battery. The 

polarization resistance is used so that the battery does not provide energy right away to the 

system. In simple words, the RC circuit represents the time for the battery takes to release 

the total amount of power [47]. 

Furthermore, 𝑽𝟏 represents the voltage across the RC branch, 𝑰𝑳 represents the current 

passing through the 𝑹𝒔, and 𝑽𝑳 represents the terminal voltage, 𝑽𝑶𝑪, of the ECM. 

Lastly, the Thevenin model may be represented by the following ODE and corresponding 

terminal voltage equation [99]: 

 𝑽̇𝟏 = −
𝟏

𝑹𝟏𝑪𝟏
𝑽𝟏 +

𝟏

𝑪𝟏
𝑰𝑳 (3.19) 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑽𝟏 −𝑹𝒔𝑰𝑳 (3.20) 
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3.3.3.3.4. Dynamic model  

To include in the model the phenomenon of diffusion at the electrode-electrolyte 

effect, based on the 𝑅𝑖𝑛𝑡  model a series resistance 𝑅𝑠  is included to capture the internal 

resistance and a polarized capacitor (𝐶𝑝) is integrated as well as shown in Figure (3-10). 

 Therefore in this model [112], the effect of the transient currents seen on various 

applications (e.g. EV and/or HEV in urban traffic) during the change of regime (C-rate) or 

the phase (charge/discharge) is taken into consideration.  

 

Figure (3-10): Schematic of the dynamic model.  

 

Since this model adopted to develop a state of charge estimation, its dynamic 

equations for charge and discharge are given by:  

 𝑰𝑳 =
𝑽𝑷 − 𝑽𝒐𝒄

𝑹𝒔
 (3.21) 

 𝑽̇𝒑 = −
𝟏

𝑹𝑪𝑪𝒑
 𝑽𝒑 +

𝟏

𝑹𝑪𝑪𝒑
 𝑽𝒐𝒄 −

𝟏

𝑪𝒑
𝑰𝑳,       𝑽𝒑 > 𝑽𝒐𝒄 

(3.22) 

 𝑽̇𝒑 = −
𝟏

𝑹𝑫𝑪𝒑
 𝑽𝒑 +

𝟏

𝑹𝑫𝑪𝒑
 𝑽𝒐𝒄 −

𝟏

𝑪𝒑
𝑰𝑳,       𝑽𝒑 < 𝑽𝒐𝒄 

 𝑽𝑳 = 𝑽𝒑 − 𝑹𝒔𝑰𝑳 (3.23) 

The current IL is considered to have positive sign when the battery is charging. This circuit 

model is formed to model the internal working of the battery to count the losses energy [112].    
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3.3.3.3.5. Second-order Thevenin model 

In document [113, 115], they carried out a Dual Polarity (DP), which is an 

enhancement to the first-order Thevenin model. Since the first-order Thevenin model cannot 

accurately capture both of the polarization characteristics of the battery by using one RC 

branch, the DP model attempts to capture the concentration polarization and the 

electrochemical polarization separately by using two different RC branches, hence its name 

dual polarity [98]. Figure (3-11), shows the DP model circuit schematic. 

 

Figure (3-11): Schematic of the second-order Thevenin model (DP).  

 

This model allows refining the description of polarization characteristics of the 

battery and simulating the concentration polarization and the electrochemical polarization 

separately, which leads to an improved simulation at the moments of end of charge or 

discharge compared to the first-order Thevenin model. 

The DP model may be studied by breaking it into three pieces: The open-circuit 

voltage  𝑽𝒐𝒄 , which is reproduced by a voltage source. resistances 𝑅𝑠  , 𝑅1 , 𝑅2   which 

describe the battery’s internal resistance, electrochemical polarization, and polarization 

resistance, respectively. Besides, the capacitances 𝐶1, and 𝐶2 implemented to characterize 

the transient response during the transfer of power to/from the battery and the 
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electrochemical and concentration polarization separately. Finally, the circuit behavior may 

be described by the following set of equations: 

 𝑽̇𝟏 = −
𝟏

𝑹𝟏𝑪𝟏
𝑽𝟏 +

𝟏

𝑪𝟏
𝑰𝑳 (3.24) 

 𝑽̇𝟐 = −
𝟏

𝑹𝟐𝑪𝟐
𝑽𝟐 +

𝟏

𝑪𝟐
𝑰𝑳 (3.25) 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑽𝟏 − 𝑽𝟐 − 𝑹𝒔𝑰𝑳 (3.26) 

3.3.3.3.6. Third-order Thevenin model 

The DP model may modify by adding another RC branch due to more accuracy and 

efficiency as denoted in [116, 117]. It contains three pieces: The open-circuit voltage 𝑽𝒐𝒄, 

series resistances 𝑅𝑠 , and three parallel branches formed by  𝑅1, 𝑅2, 𝑅3, which represent the 

battery’s internal resistance, electrochemical polarization, and polarization resistance, and 

the capacitances 𝐶1 , 𝐶2  and 𝐶3  implemented to characterize the transient response under 

different current profiles. The Figure (3-12) depicted the schematic of the third-order 

Thevenin model. 

 

Figure (3-12): The third-order Thevenin model.  

 

Where the governing equations can be expressed as: 

 𝑽̇𝟏 = −
𝟏

𝑹𝟏𝑪𝟏
𝑽𝟏 +

𝟏

𝑪𝟏
𝑰𝑳 (3.27) 
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 𝑽̇𝟐 = −
𝟏

𝑹𝟐𝑪𝟐
𝑽𝟐 +

𝟏

𝑪𝟐
𝑰𝑳 (3.28) 

 𝑽̇𝟑 = −
𝟏

𝑹𝟑𝑪𝟑
𝑽𝟑 +

𝟏

𝑪𝟑
𝑰𝑳 (3.29) 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑽𝟏 − 𝑽𝟐 − 𝑽𝟑 − 𝑹𝒔𝑰𝑳 (3.30) 

3.3.3.3.7. N-order Thevenin model 

The n-order model called also Randle model, it consists of n network branches as illustrated 

in Figure (3-13). It uses multiple RC branches, which is expressed by the N order to get more 

accuracy and high precision [118, 119].   

 

Figure (3-13): The N-order Randle model.  

 

 𝑽̇𝟏 = −
𝟏

𝑹𝟏𝑪𝟏
𝑽𝟏 +

𝟏

𝑪𝟏
𝑰𝑳 (3.31) 

 𝑽̇𝟐 = −
𝟏

𝑹𝟐𝑪𝟐
𝑽𝟐 +

𝟏

𝑪𝟐
𝑰𝑳 (3.32) 

 

. 

. 

. 

 

 𝑽̇𝒏 = −
𝟏

𝑹𝒏𝑪𝒏
𝑽𝒏 +

𝟏

𝑪𝒏
𝑰𝑳 (3.33) 

 𝑽𝑳 = 𝑽𝒐𝒄(𝑺𝑶𝑪) − 𝑽𝟏 − 𝑽𝟐 −⋯− 𝑽𝒏 − 𝑹𝒔𝑰𝑳 (3.34) 
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3.3.3.3.8. Resistor-Capacitor (RC) model 

The resistor-capacitor (RC) model is composed of two capacitances and three 

resistances as shown in Figure (3-14) [120, 121]. The large capacitance 𝐶𝑏 describes the 

ability of the battery to store electric charges, the small capacitance 𝐶𝑠 represents the surface 

capacity and the diffusion effect of the Li-ion battery, 𝑅𝑖𝑛𝑡 is the terminal resistance, 𝑅𝑠 is 

the surface resistance, and 𝑅𝑏 is the end resistance. 

 

Figure (3-14): Resistor-Capacitor model. 

 

Voltages  𝑉𝑐𝑏 and  𝑉𝑐𝑠 at both ends of the two capacitances are the status variables, 

terminal current  𝐼𝐿  is the input variable, and terminal voltage 𝑉𝐿  is the output variable. 

Governing equations are formulated based on Kirchhoff’s law from which the RC model 

equations are deduced. 

 𝑽̇𝒄𝒃 = −
𝟏

(𝑹𝒔 + 𝑹𝒃)𝑪𝒃
𝑽𝒄𝒃 +

𝟏

(𝑹𝒔 + 𝑹𝒃)𝑪𝒃
𝑽𝒄𝒔 +

𝑹𝒔
(𝑹𝒔 + 𝑹𝒃)𝑪𝒃

𝑰𝑳 (3.35) 

 𝑽̇𝒄𝒔 =
𝟏

(𝑹𝒔 + 𝑹𝒃)𝑪𝒔
𝑽𝒄𝒔 −

𝟏

(𝑹𝒔 + 𝑹𝒃)𝑪𝒔
𝑽𝒄𝒔 +

𝑹𝒃
(𝑹𝒔 +𝑹𝒃)𝑪𝒔

𝑰𝑳 (3.36) 

 𝑽𝑳 =
𝑹𝒔

𝑹𝒔 + 𝑹𝒃
𝑽𝒄𝒃 +

𝑹𝒃
𝑹𝒔 + 𝑹𝒃

𝑽𝒄𝒔 + (
𝑹𝒔𝑹𝒃
𝑹𝒔 + 𝑹𝒃

+ 𝑹𝒊𝒏𝒕)𝑰𝑳 (3.37) 
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3.3.3.3.9. Hybrid model 

A hybrid model is composed of two sub-circuits. The first circuit is a first-order Thevenin 

model, second , third or RC model to capture the dynamics of the battery but the second one 

is formed by a capacitor 𝑪𝒃 to indicate the maximum energy available. Therefore, Figure (3-

15) presents an overview of its general structure [122]. 

 

 

Figure (3-15): Schematic of hybrid model with two stages.  

 

3.4.  Conclusion  

The aforementioned models are mainly developed and proposed on the basis of 

equivalent circuit models (ECMs). Therefore, these ECMs are basically derived from 

empirical knowledge and experimental results, which is used to idealize element of the 

circuit to represent electrical behaviours of batteries. 

In literature, there exist a lot of ECMs models, which are designed in various circuit 

but they lie in main basis of simplicity. The flexibility of this kind of model is remarkable in 

representing the behaviour of battery when include network branches.  
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4.  

4.1.  Introduction  

In this chapter, estimation strategies for State of Charge (SOC) are discussed. 

Therefore, a description of the evolution of SOC estimation techniques and strategies is 

considered. The application of various estimation techniques to estimate SOC in battery 

systems is presented and It is followed by simulation and experimental procedure used in 

model fitting and SOC estimation.  

Furthermore, this chapter summarized two SOC estimation techniques which are 

extended Kalman filter (EKF) and sliding mode observer (SMO). At the end, a conclusion 

is provided.  

4.2.  Estimation technique  

Estimation theory is a branch of statistics science that concentrates on generating 

estimated values of parameters using measured empirical random data. Therefore, 

Estimation is used to extract information from measurement signals provided by sensors. It 

is used in many fields such as target tracking, control, monitoring, filtering, navigation, and 

communication [52].  

Furthermore, some of the estimation algorithms are embedded in most daily used 

devices in our life and in industry. Extracting information from known signal has received 

high demand in recent years especially into industry caused by the absence of a real sensor 

or the high cost of building one to predict invisible internal states.  

However, this problem is called parameters estimation, which belongs to probability 

science that investigates into engineering problems. It is based on optimizing the quality of 

extracted information and its robustness and reliability. 

The state estimation problem consists of three parts: the physical system, the 

measurement system, and the state estimator. Furthermore, Figure (4-1) shows the general 

block diagrams of the state estimation process, where both the physical system and the 

measurement system will add noise to the input and output signals since it will be used by 

the state estimator to derive an estimate of the true states of the physical system. 
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Figure (4-1): General blocks of state estimator.  

 

In this thesis, the physical system to be analysed is the battery and the states will vary 

depending on the selected ECM but may include SOC and values of the polarization effects 

(capacitors) as it can be seen in Chapter 3.   

Discrete time state-space representation is commonly used in filtering for modelling 

of a system under consideration as follows [52]: 

 𝒙𝒌+𝟏 = 𝑨𝒌𝒙𝒌 +𝑩𝒌𝒖𝒌 +𝒘𝒌 (4.1) 

 𝒚𝒌 = 𝑪𝒌𝒙𝒌 +𝑫𝒌𝒖𝒌 + 𝒗𝒌 (4.2) 

 

where 𝑥𝑘 ∈ ℝ
n∗1 is the state vector, 𝑢𝑘 ∈ ℝ

p∗1 is the input vector, 𝑦𝑘 ∈ ℝ
m∗1 is the system 

output vector, 𝑤𝑘 ∈ ℝ
n∗1  is the system noise, and 𝑣𝑘 ∈ ℝ

m∗1  is the measurement noise. 

𝐴𝑘 ∈ ℝ
n∗n,𝐵𝑘 ∈ ℝ

n∗p, 𝐶𝑘 ∈ ℝ
m∗n, and 𝐷𝑘 ∈ ℝ

m∗p are the system input, measurement and 

feed through matrices. Therefore, equation (4.1) and (4.2) are the state and measurement 

equations.  

4.3.  Kalman filter observer  

The basic Kalman filter is limited to a linear assumption. However, there are more complex 

systems which they can be nonlinear. Furthermore, there exist different versions of Kalman filter to 

deal with this problem. In this part we will introduce different Kalman filter versions.  
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4.3.1. Kalman filter  

Kalman filter (KF) is a well-known estimation theory introduced by Rudolf Emil 

Kalman in 1960 [123]. This filter provides a recursive solution through linear optimal 

filtering to estimate systems’ state variables. The Kalman filter is an optimal state estimation 

method for discrete linear time-varying (LTV) systems [124].  

It uses a set of recursive equations and input measurements containing noises. The 

Kalman filter estimates unknown variables more precisely by finding the minimum mean 

squared error estimate of the present state of the system.  

Considering the discrete LTV system of Figure (4-2), whereas the state space model 

of the process has been described in equations (4.1) and (4.2). 

 

 

Figure (4-2): Block diagram of discrete Kalman filter system.  

 

Figure (4-3) depicts the Predictor-Corrector algorithm of the KF. The states of the 

system are estimated using the system model and input, where the estimate is projected 

forward in time of the current state estimate to obtain the ‘a priori’ for the next time step.  

Therefore, a correction step is then added based on the innovation technique, thus 

forming the updated or a posterior. The corrector step is responsible for the feedback, which 

is adding the new measurement into the ‘a priori’ estimate to generate an improved version 

of it [124]. 
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Figure (4-3): Overview of predictor-corrector technique.  

 

Consider the discrete-time system defined by equation (4.1) and (4.2), where the 

variable 𝑤𝑘  is the system noise, and 𝑣𝑘  is the measurement noise. The KF assume that 

both 𝑤𝑘  and 𝑣𝑘 are independent of each other, and have zeros mean Gaussian 

distribution as shown below: 

 𝒑(𝒘𝒌)~𝓝(𝟎,𝑸𝒌) (4.3) 

 𝒑(𝒗𝒌)~𝓝(𝟎, 𝑹𝒌) (4.4) 

 

Where 𝑄𝑘 and 𝑅𝑘 are the system and measurement noise covariance, respectively. 

  The KF has two stages. The first stage called the prediction, which consists of two 

main equations form the system states and covariance by using the model and input 

measurement. The predicted state vector and covariance expressed by:   

 𝒙̂𝒌+𝟏 = 𝑨𝒌𝒙̂𝒌 + 𝑩𝒌𝒖𝒌 (4.5) 

 𝑷𝒌+𝟏/𝒌 = 𝑨𝒌𝑷𝒌/𝒌𝑨𝒌
𝑻 + 𝑸𝒌 (4.6) 
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𝒙̂𝒌+𝟏 denotes priori state estimate at step 𝑘 + 1 , whereas 𝑥̂𝑘 is the posterior state estimate 

at step 𝑘. 𝑷𝒌+𝟏/𝒌 denotes priori error covariance update at step 𝑘 + 1 , whereas 𝑷𝒌/𝒌 is the 

posterior error covariance at step 𝑘 . Where k denotes the time step and 𝑇  denotes the 

transpose matrix of 𝐴𝑘. 

The second stage involves three recursive equations. Thereby, a correcting step 

referred to computing the Kalman gain (𝐿𝑘 ), which is denoting the level of uncertainty 

‘boundary of error’. It will be calculate using the following equation: 

 𝑳𝒌 = 𝑷𝒌+𝟏/𝒌𝑪𝒌
𝑻 ∗ (𝑪𝒌𝑷𝒌+𝟏/𝒌𝑪𝒌

𝑻 + 𝑹𝒌)
−𝟏 (4.7) 

 

Thus, a refined posteriori state estimate 𝒙̂𝒌+𝟏 𝒌+𝟏⁄  is then calculated based on the 

output measurement of the system, such that: 

 𝒙𝒌+𝟏 𝒌⁄ +𝟏 = 𝒙̂𝒌+𝟏/𝒌 + 𝑳𝒌(𝒚𝒌 − 𝑪𝒌𝒙𝒌+𝟏/𝒌) (4.8) 

 

The associated posterior error updates the covariance 𝑷𝒌+𝟏 𝒌⁄ +𝟏 as: 

 𝑷𝒌+𝟏 𝒌⁄ +𝟏 = (𝑰 − 𝑳𝒌𝑪𝒌)𝑷𝒌+𝟏/𝒌 (4.9) 

Where 𝐼 is the identity matrix. Lastly, this process is repeated iteratively throughout the linear 

state estimation problem until the input/output data reached the end.   

In summary, the KF uses the entire observed input data and output measurement data to 

find the minimum squared error estimate state of the true state 𝑥𝑘. However, the KF yields 

the optimal solution to the linear estimation problem. 

4.3.2. The extended Kalman filter (EKF) 

Since the KF has been received the first time in 1960, extensive research has been done 

after to edit and performs its reliable mathematical with nonlinear systems as a tool that 

enhances the computational efficiency.  Furthermore, its cost for implementation is 

significantly cheaper than enhancing the system with more accurate sensors if exist or 

enhance the estimator if there is no sensor able to measure internal states.  

In reality, most of the systems are highly nonlinear systems. Therefore, it was natural 

for the KF to be extended to tackle nonlinear systems. 
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In the EKF the system model is linearized around the current a priori state estimate. 

The linearized model is then used for the calculation of the Kalman gain. In this way the 

nonlinear system can be presented as: 

 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘 (4.10) 

 𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘 (4.11) 

 

where equation (4.10) represent the state equation at the previous time step 𝑘 to the future 

time step 𝑘 + 1, and equation (4.11) represents the output equation which relates the state to 

the output, both 𝑤𝑘 and 𝑣𝑘 represent the system and measurement noise and are assumed to 

be white noise with zero mean and known covariance 𝑄 and 𝑅 respectively. 

The EKF linearizes the estimation around the current estimate using partial derivatives 

(First-Order Taylor series expansion) of the system and measurement functions to compute 

estimates. By linearizing, the EKF may introduce instability as it may overlook system 

nonlinearities that were not capture with the model [88, 104, 117, 118]. The following 

equation depicts the first-order Taylor approximation: 

 𝒇(𝒙) ≈ 𝒇(𝒙̂) +
𝝏𝒇

𝝏𝒙
|
𝒙=𝒙̂

(𝒙̂ − 𝒙) (4.12) 

 

By applying the first order into equations (4.10) and (4.11), yields to:  

 𝑭𝒌 =
𝝏𝒇(𝒙𝒌, 𝒖𝒌)

𝝏𝒙𝒌
 (4.13) 

 𝑮𝒌 =
𝝏𝒈(𝒙𝒌, 𝒖𝒌)

𝝏𝒙𝒌
 (4.14) 

the matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 as follows : 

 𝑨𝒌 =
𝝏𝒇(𝒙𝒌, 𝒖𝒌)

𝝏𝒙𝒌
 (4.15) 

 𝑩𝒌 =
𝝏𝒇(𝒙𝒌, 𝒖𝒌)

𝝏𝒖𝒌
 (4.16) 
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𝑪𝒌 =

𝝏𝒈(𝒙𝒌, 𝒖𝒌)

𝝏𝒙𝒌
 

(4.17) 

 
𝑫𝒌 =

𝝏𝒈(𝒙𝒌, 𝒖𝒌)

𝝏𝒖𝒌
 

(4.18) 

After update state estimation and error covariance as previous equations (4.5) and (4.6). 

The Kalman gain is then calculated using the linearized model as: 

 𝑳𝒌 = 𝑷𝒌+𝟏/𝒌𝑪𝒌
𝑻 ∗ (𝑪𝒌𝑷𝒌+𝟏/𝒌𝑪𝒌

𝑻 + 𝑹𝒌)
−𝟏 (4.19) 

 

The posteriori estimates are then obtained as: 

 𝒙̂𝒌+𝟏 𝒌⁄ +𝟏 = 𝒙̂𝒌+𝟏/𝒌 + 𝑳𝒌(𝒚𝒌 − 𝑪𝒌𝒙𝒌+𝟏/𝒌) (4.20) 

 

In this step, posterior state is estimated. 𝒚𝒌 is the real measurement output which refers to 

the real terminal voltage of battery. 

The associated posterior error updates the covariance 𝑷𝒌+𝟏 𝒌⁄ +𝟏 as: 

 𝑷𝒌+𝟏 𝒌⁄ +𝟏 = (𝑰 − 𝑳𝒌𝑪𝒌)𝑷𝒌+𝟏/𝒌 (4.21) 

In this stage, posteriori error covariance is estimated and updated. The Kalman steps repeat 

again until reaches all time step.  

The Extended Kalman Filter algorithm is summarized in Figure (4-4). 

 

 

Figure (4-4): Overview on general extended Kalman filter equations. 
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The EKF may provide big error since 𝑄𝑘 and 𝑅𝑘 are depending on 𝑃𝑘 and 𝐿𝑘. If the 

variance of the measurement noise 𝑅𝑘 is small, for 𝑃𝑘 constant, the measurement is weakly 

noisy.  

Furthermore, the high value of the gain will give more weight to the measurements, 

which indicate low confidence in the model. Therefore, an adaptive way is adopted in term 

of control the covariance 𝑄𝑘 and 𝑅𝑘 to provide more confidence to the model since they 

update iteratively. 

4.3.3. The adaptive extended Kalman filter (AEKF) 

Based on the previous work on the Kalman filter (KF), it became clear to us that to 

reach optimal performances, it is necessary to have correct aprioris on matrices F, G, H, Q, 

R and initial P, while the Kalman filter works on the assumption that state and measurement 

models as well as the statistical distribution of noise are well known. If any of these 

conditions are not fulfilled, the KF estimator is degraded. Generally, these parametric 

knowledge of the parameters are taken through analyses empirical data on previously 

acquired data or simulator. 

The results are considered constant and implemented in the filter. This approach leads 

to the non-adaptation of the system with evolution to external conditions (sensors) where it 

does not take into account unknown disturbances during the implementation of the filter and 

the lack of information on the physical system. 

In order to make the Kalman filter more robust, several methods are put forward. There 

are a lot version focuses on adaptive versions, the famous version is focused on the adaptive 

law that tries to update the statistical distributions of the noise of the system (state) or /and 

that of the observation, in the most comprehensive formulation of the Kalman filter, which 

is the EKF filter. 

The adaptive EKF (AEKF) based on the previous equations of the EKF, which is 

popular in estimation. On the other hand, the AEKF includes an adaptive law, which allows 

us to estimate the covariance of noises recursively and regressively while they vary with the 

operating conditions [125, 126]. 

According to equations (4-5) and (4-6), the computation of EKF requires accurate 

estimation of  𝑄𝑘  and 𝑅𝑘 , which is vary during the operation process. The advantage of 
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AEKF is that can adaptively update 𝑄𝑘   and 𝑅𝑘 , therefore the AEKF is formulated as 

follows:  

1. Innovation: 

 𝑒𝑘 = 𝑦𝑘 − 𝑔(𝑥̂𝑘
−, 𝑢𝑘) (4.22) 

𝑒𝑘 is innovation sequence which calculate the error between real output measurement 𝑦𝑘 and 

estimated state.    

2. Adaptive law: 

The covariance has been iteratively calculating  𝑯𝒌  and updating 𝑹𝒌  respectively 

 𝐻𝑘 =
1

𝑀
∑ 𝑒𝑖 ∗ 𝑒𝑖

𝑇

𝑘

𝑘−𝑀+1

 (4.23) 

 𝑅𝑘 = 𝐻𝑘 − 𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 (4.24) 

M is the size of moving estimation windows. 𝑒𝑖 is defined as the difference between 𝑦𝑘 and 

the predicted observation 𝑔(𝑥̂𝑘
−, 𝑢𝑘) at step 𝑘 . 

3. State estimation covariance 

 𝑃𝐾
− = (𝐼 + 𝐴𝑘𝑡)𝑃𝑘−1(𝐼 + 𝐴𝑘𝑡)

𝑇 + 𝑄𝑘 (4.25) 

𝒕 is the sampling time and 𝑇 is the transpose matrix. 

4. Kalman gain  

 𝐿𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇 ∗ (𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘)
𝑇 (4.26) 

5. State estimate update  

 𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐿𝑘𝑒𝑘 (4.27) 

6. Update state covariance  

In this stage the AEKF estimate and update the process noise covariance 𝑄𝑘 and covariance 

𝑃𝑘
+, respectively[127].  
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 𝑄𝑘 = 𝐿𝑘𝐻𝑘𝐿𝑘 (4.28) 

 𝑃𝑘
+ = (𝐼 − 𝐿𝑘𝐶𝑘)𝑃𝑘

−(𝐼 − 𝐿𝑘𝐶𝑘)
𝑇 + 𝐿𝑘𝑅𝑘𝐿𝑘

𝑇  (4.29) 

4.3.4. State of Charge Estimation using KF 

The fundamental feature that makes the EKF optimum observatory for nonlinear 

systems is the recursion option, while the linearization process makes it suffer from 

disturbances. The EKF is designed to deal with noisy measurement data and can be correct 

wrong initial state value due to its feedback control.  

Furthermore, its equations are formed in discrete space to estimate SOC, whereas the 

state equation for the battery model is obtained through multiple internal or hidden states as: 

𝑥1 = 𝑉1, 𝑥2 = 𝑆𝑂𝐶. As depicted in Figure (4-5) 

 

 

 

Figure (4-5): Presentation of internal states estimation.  

 

As mentioned before, SOC, in contrast to terminal voltage and current, is an inner state 

of the battery and should be estimated instead of directly measurement and absence of real 

sensor. The equations (4.5) and (4.6) linearized and transformed in discrete space as:  
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 𝒙𝒌+𝟏 = 𝑨𝒌𝒙𝒌 +𝑩𝒌𝑰𝑳,𝒌 +𝒘𝒌 (4.30) 

 𝑽𝑳,𝒌 = 𝑪𝒌𝒙𝒌 +𝑫𝒌𝑰𝑳,𝒌 + 𝒗𝒌 (4.31) 

where 𝑺𝑶𝑪𝒌  is the observation of 𝑺𝑶𝑪 at time step, which is computed by the equation 

(4.29): 

 𝑺𝑶𝑪𝒌 = (𝑺𝑶𝑪𝟎 −
𝜼𝑰𝑳,𝒌𝒕

𝑸𝒏
) ∗ 100 (4.32) 

In this equation, 𝒕 is the sampling time, 𝜼  is the columbic efficiency, in this thesis assumed 

to equal to one. 𝑸𝒏  denotes the usable capacity of the battery’s available capacity. 

4.3.4.1. Partnership for a new generation of vehicle (PNGV) 

model 

The PNGV model may be represented by transforming its continuous equations to state 

space form as:  

 𝑼̇𝟎 =
𝟏

𝑪𝟎
𝐼𝐿 (4.33) 

 𝑽̇𝟏 = −
𝟏

𝑪𝟏𝑹𝟏
𝑉1 +

1

𝐶1
𝐼𝐿 (4.34) 

With terminal voltage expressed as: 

 𝑽𝑳 = 𝑽𝒐𝒄 + 𝑽𝟏 +𝑼𝟎 + 𝑹𝒔𝑰𝑳 (4.35) 

The states space forms are: 

 [
𝑼𝟎,𝒌+𝟏
𝑽𝟏,𝒌+𝟏

] = [
𝟏 𝟎

𝟎 𝟏 −
𝒕

𝑹𝟏𝑪𝟏

] [
𝑼𝟎,𝒌
𝑽𝟏,𝒌

] +

[
 
 
 
𝒕

𝑪𝟎
𝒕

𝑪𝟏]
 
 
 

𝑰𝑳,𝒌 (4.36) 

 𝑽𝑳,𝒌 = 𝑽𝒐𝒄(𝑺𝑶𝑪) + 𝑽𝟏,𝒌 +𝑼𝟎,𝒌 + 𝑹𝒔𝑰𝑳,𝒌 (4.37) 

𝒕 is the sampling time. 
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4.3.4.2. 1st order Thevenin model  

Lastly, the Thevenin model may be represented by the following equations as: 

 [
𝑺𝑶𝑪𝒌+𝟏
𝑽𝟏,𝒌+𝟏

] = [
𝟏 𝟎

𝟎 𝟏 −
𝒕

𝑹𝟏𝑪𝟏

] [
𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌

] +

[
 
 
 
−𝒕 ∗ 𝜼

𝑸𝒏
𝒕

𝑪𝟏 ]
 
 
 

𝑰𝑳,𝒌 (4.38) 

 𝑽𝑳,𝒌 = [
𝝏𝑽𝒐𝒄
𝝏𝑺𝑶𝑪

−𝟏] [
𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌

] − 𝑹𝒔𝑰𝑳,𝒌 (4.39) 

4.3.4.3. 2nd order Thevenin model  

 [

𝑺𝑶𝑪𝒌+𝟏
𝑽𝟏,𝒌+𝟏
𝑽𝟐,𝒌+𝟏

] =

[
 
 
 
 
𝟏 𝟎 𝟎

𝟎 𝟏 −
𝒕

𝑹𝟏𝑪𝟏
𝟎

𝟎 𝟎 𝟏 −
𝒕

𝑹𝟐𝑪𝟐]
 
 
 
 

[

𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌
𝑽𝟐,𝒌

] +

[
 
 
 
 
 
 
−𝒕 ∗ 𝜼

𝑸𝒏
𝒕

𝑪𝟏
𝒕

𝑪𝟐 ]
 
 
 
 
 
 

𝑰𝑳,𝒌 (4.40) 

 𝑽𝑳,𝒌 = [
𝝏𝑽𝒐𝒄
𝝏𝑺𝑶𝑪

−𝟏 −𝟏] [

𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌
𝑽𝟐,𝒌

] − 𝑹𝒔𝑰𝑳,𝒌 (4.41) 

4.3.4.4. 3rd order Thevenin model  

 

[
 
 
 
𝑺𝑶𝑪𝒌+𝟏
𝑽𝟏,𝒌+𝟏
𝑽𝟐,𝒌+𝟏
𝑽𝟑,𝒌+𝟏 ]

 
 
 
=

[
 
 
 
 𝟏
𝟎
𝟎
𝟎

𝟎

𝟏 −
𝒕

𝑹𝟏𝑪𝟏
𝟎
𝟎

𝟎
𝟎

𝟏 −
𝒕

𝑹𝟐𝑪𝟐
𝟎

𝟎
𝟎
𝟎

𝟏 −
𝒕

𝑹𝟑𝑪𝟑]
 
 
 
 

[
 
 
 
𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌
𝑽𝟐,𝒌
𝑽𝟑,𝒌 ]

 
 
 
+

[
 
 
 
 
 
 
 
 
−𝒕 ∗ 𝜼

𝑸𝒏
𝒕

𝑪𝟏
𝒕

𝑪𝟐
𝒕

𝑪𝟑 ]
 
 
 
 
 
 
 
 

𝑰𝑳,𝒌 (4.42) 

 𝑽𝑳,𝒌 = [
𝝏𝑽𝒐𝒄
𝝏𝑺𝑶𝑪

−𝟏 −𝟏 −𝟏]

[
 
 
 
𝑺𝑶𝑪𝒌
𝑽𝟏,𝒌
𝑽𝟐,𝒌
𝑽𝟑,𝒌 ]

 
 
 
− 𝑹𝒔𝑰𝑳,𝒌 (4.43) 

4.3.5. OCV-SOC mapping  

A unique relationship between OCV and SOC has been experimentally determined, 

which can be presented with nonlinear function.  Therefore, SOC can be mapped OCV 

through the OCV-SOC relationship.  
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In Figure (4-6) is shown a mapping OCV-SOC relationship extracted points from 

experiment and fitted with MATLAB. However, the OCV defined as the terminal voltage 

without current load and system is in steady state.  

However, the OCV can be changed throughout the variation of temperature, in this study 

the temperature ambient is 25° C.   

 

Figure (4-6): OCV-SOC relationship mapping for lithium-ion battery.  

4.3.5.1. Partial derivatives  

For all battery models, the Jacobians derivatives can be computed by taking partial 

derivatives of these equations 𝐴𝑘and 𝐶𝑘 with respect to the states. It is noticeable that the 

Jacobin of the equation 𝐴𝑘 is independent of state of charge, which remains constant.  

In the other hand, 𝐶𝑘 is relatively dependent in differential terms of 𝑉𝑜𝑐 and 𝑆𝑂𝐶, 

which can be calculated through Taylor’s approximation as presented in the algorithm in 

Table (4-1). 
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Table (4-1): Algorithm for computing the partial derivative 
𝝏𝑽𝒐𝒄

𝝏𝑺𝑶𝑪
 

Algorithm 1 

1: a mapped curve 𝑉𝑜𝑐 vs 𝑆𝑂𝐶 with 𝑓 function  

2: for 𝑘 =1,2,…,n do 

           if 𝑘 = 0  

                  
𝜕𝑉𝑜𝑐

𝜕𝑆𝑂𝐶
=

𝑉𝑜𝑐(𝑆𝑂𝐶𝑘+1)−𝑉𝑜𝑐(𝑆𝑂𝐶𝑘)

𝑆𝑂𝐶𝑘+1−𝑆𝑂𝐶𝑘
  

           else if 𝑘 = 𝑛  

                   
𝜕𝑉𝑜𝑐

𝜕𝑆𝑂𝐶
=

𝑉𝑜𝑐(𝑆𝑂𝐶𝑘)−𝑉𝑜𝑐(𝑆𝑂𝐶𝑘−1)

𝑆𝑂𝐶𝑘−𝑆𝑂𝐶𝑘−1
 

           else if 𝑘 = 0  

                   𝑉𝑜𝑐,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =
𝑉𝑜𝑐(𝑆𝑂𝐶𝑘+1)−𝑉𝑜𝑐(𝑆𝑂𝐶𝑘)

𝑆𝑂𝐶𝑘+1−𝑆𝑂𝐶𝑘
 

                   𝑉𝑜𝑐,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 =
𝑉𝑜𝑐(𝑆𝑂𝐶𝑘)−𝑉𝑜𝑐(𝑆𝑂𝐶𝑘−1)

𝑆𝑂𝐶𝑘−𝑆𝑂𝐶𝑘−1
 

                   
𝜕𝑉𝑜𝑐

𝜕𝑆𝑂𝐶
=

𝑉𝑜𝑐,𝑓𝑜𝑟𝑤𝑎𝑟𝑑−𝑉𝑜𝑐,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

2
 

          end for 

        According to the above algorithm, the 
𝝏𝑽𝒐𝒄

𝝏𝑺𝑶𝑪
 as function of 𝑆𝑂𝐶 can be depicted as 

shown is Figure (4-7). 

 

Figure (4-7): Partial derivative of 𝑉𝑂𝐶 with respect to SOC curve.  
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The pulse-rest sequences are widely used for characterizing the internal resistance, 

the diffusion coefficient or the OCV. The measurement of voltage relaxation and the time 

constants of this electrochemical model and the simulations of the pulse-rest sequences are 

discussed.  

 

Figure (4-8): The transient response for a pulse discharge curve.  

 

In the literature is reported the simplest equivalent electrical circuit able to simulate 

approximatively the dynamics of a lithium ion cell’s and Lead-acid cell, shown in  

Figure (3-9). In details, the internal resistance 𝑅𝑠 represents the ohmic drop associated to 

charge transfer. The resistance 𝑅1  and 𝐶1  parallel branch is attributed to physical and 

chemical phenomena. These electrical components require multiple tests to be identified as 

function of the SOC. 

Consequently, large libraries of resistances and capacitance are created and 

implemented in the model with a look-up table. Furthermore, such as an example the 

impulsion reported in Figure (4-8) for the Lithium-Ion battery at 1C-rate, 90 % SOC & 25°C, 

illustrates the part of the voltage used to identify these electrical components. 
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In order to identify the parameters of the battery in depicted in Figure (3-9), it is 

recommended to apply a pulse current and extract them from the transient response. At room 

of ambient temperature (25°C), a Lithium-ion battery is used in the test, which has a nominal 

voltage of 3.6 V and a nominal capacity of 10 Ah. A battery testing bench is constructed to 

settle the experiment, and it consists of a power supply, electronic loads and switches for 

safety. The testing platform is illustrated in Figure (4-9). The testing prototype can control 

charging / discharging battery, the data sampling stored into PC host via interface program 

designed by using the MATLAB/Simulink software. 

Host PCCurrent 
sensor

Voltage
 sensor

Variable 
Load DC power

 supply

Relay

Temperature
 sensor

Arduino board

Relay

Battery

Power connection

Control connection

 

Figure (4-9): The platform of the experiment. 

  

There is off-line parameters identification method, which is widely applied. It is 

based on minimizing the error between the battery output and the mathematical model with 

the help of some algorithms. Therefore, this is a robust off-line extraction method, which is 

used to fit the terminal voltage of the collected data with some mathematical functions.  

 However, By the aid of the previous principle, a pulse current profile was applied to 

determine the model parameters. As shown in Figure (4-10), the pulse discharge current 

consists of 10 sequences of discharge and rest. For the fully charged cell (SOC = 1), each 

pulse discharge approximate 10% of the nominal capacity equivalent to 10% of the SOC. 

From the experimental data, the  Voc  at different SOC can be observed. 
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 Consequently, the nonlinear relationship between the 𝑉𝑜𝑐 and SOC can be piecewise 

linearized as a function of SOC as: 

 𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝛼𝑖 𝑆𝑂𝐶 + 𝛽𝑖 (4.44) 

where 𝛼𝑖  and 𝛽𝑖 are constants for each SOC range and theirs values are summarized in Table 

(4-2). 

Table (4-2): Values of relationship between 𝑉𝑜𝑐-SOC of Li-ion battery.  

SOC 1-0.9 0.9-0.8 0.8-0.7 0.7-0.6 0.6-0.5 0.5-0.4 0.4-0.3 0.3-0.2 0.2-0.1 0.1-0 

𝜶𝒊  1.23 1.01 1.06 0.9 0.57 0.31 0.48 0.88 0.46 0.17 

𝜷𝒊 3.40 3.371 3.287 3.407 3.475 3.345 3.147 3.035 3.075 2.87 

 

Figure (4-10): Pulse current discharge.  

  

The other parameters of the battery model are determined based on the curve of the 

terminal voltage as shown in Figure (4-11). To identify the model parameters, the terminal 

voltage response after 10% SOC for each step discharge is used to extract the 10 sets of 

circuit parameters. In Figure (4-12), a view of voltage response after a pulse discharge is 

magnified to present more details.    
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Figure (4-11): The terminal voltage response Li-Ion battery.  

 

Figure (4-12): The transient response for a pulse discharge.  

 

The 𝑅𝑠  resistance is calculated from the instant drop or jump voltage when the 

current applied or stops. The calculated values for each SOC range are shown in  
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Figure (4-12). It shows that the 𝑅𝑠 change slowly in the range of 0.2 to 1, while it increases 

rapidly in the rest range. So, the ohmic resistance can be calculated by using the following 

equation: 

 
𝑅𝑠 =

|
𝑈1 − 𝑈2
𝐼𝐿

| + |
𝑈3 − 𝑈4
𝐼𝐿

|

2
 

(4.45) 

 During the relaxation period as shown in Figure (4-12), in the interval 𝑡0 ≤ 𝑡 ≤ 𝑡1 , 

the terminal voltage increase slowly to reach the 𝑉𝑜𝑐  and 𝑉1 denoted as U5 and U4 in Figure 

(4-12), respectively. So, the terminal voltage can be expressed as: 

 𝑉𝐿(𝑡) =  𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑉1. 𝑒
−
𝑡0
𝜏  (4.46) 

Where 𝜏 = 𝑅1𝐶1 is the time constant of polarization. The red curve shown in Figure (4-12), 

it is the terminal response fitted by using the equation (4-46) in MATLAB curve fitting tool. 

However, the  𝑉1 (U4) was solved by setting the current 𝐼𝐿 to zero in equation (3-18)-(3-19) 

and solve the differential equation, thus, 𝑅1 and 𝐶1 can be calculated as: 

 𝑅1 =
𝑉1(𝑡0)

𝐼𝐿(𝑡0)(1 − 𝑒
−
𝑡0
𝜏 )

 (4.47) 

 𝐶1 =
𝜏

𝑅1
 (4.48) 

 To identify the parameters of the 2nd order Thevenin and 3rd order Thevenin models, 

the terminal voltage for 2nd order model (Figure (3-11)) is expressed as follow:  

 𝑉𝐿(𝑡) =  𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑉1. 𝑒
−(
𝑡0
𝜏1
)
− 𝑉2. 𝑒

−(
𝑡0
𝜏2
)
 (4.49) 

Where 𝜏1 and 𝜏2 are the time polarization for 𝑉1 and 𝑉2 respectively. The same as previous, 

the terminal voltage for the 3rd order model (Figure (3-12)) can be presented as:  

 𝑉𝐿(𝑡) =  𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑉1. 𝑒
−(
𝑡0
𝜏1
)
− 𝑉2. 𝑒

−(
𝑡0
𝜏2
)
− 𝑉3. 𝑒

−(
𝑡0
𝜏3
)
 (4.50) 
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 After identifying all the model parameters for different SOCs, the parameters can be 

assumed as constant except in low SOC range. The parameters are presented in Figures (4-

13), (4-14) and (4-15) respectively to 𝑅𝑠, 𝑅1, and 𝐶1 for the 1st order Thevenin model. 

 

Figure (4-13): The calculated 𝑅𝑠 value versus SOC.  

 

Figure (4-14): The 𝑅1 value versus SOC.  
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Figure (4-15): The 𝐶1 value versus SOC.  

4.3.5.2. Proposed model  

  Instead of a look-up table, a function of OCV model is proposed. It is designed to fit 

the OCV-SOC experimental data and capture its behaviour phenomena. The model structure 

is chosen for online implementation with EKF algorithm, it concerns to enforce the accuracy 

of SOC estimation.  

 The OCV of the battery is essential potential, which can give an approximate 

estimation of the SOC; several models were proposed in the literature [39,45,46]. Some of 

these models are simple with less parameter, and some are very complex. However, the OCV 

equations are multiple; in Table (4-3) a review from literature is presented. 

Some of them were hard to implement in real-time, as well as, some other models 

are combined between logarithmic and exponential functions. In fact, some models proved 

their accuracy as in [13], but their number of parameters needs time-consuming.     
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Table (4-3): OCV models overview 

OCV functions Reference 

𝑂𝐶𝑉(𝑧) = 𝑎1𝑧 + 𝑎2 [45] 

𝑂𝐶𝑉(𝑧) =  𝑎1𝑧
6 + 𝑎2𝑧

5 + 𝑎3𝑧
4 + 𝑎4𝑧

3 + 𝑎5𝑧
2 + 𝑎6𝑧 + 𝑎7 [39] 

𝑂𝐶𝑉(𝑧) =  𝑎1 +
𝑎2
𝑧
+ 𝑎3𝑧 + 𝑎4 ln(𝑧) + 𝑎5ln ( 1 − 𝑧) 

[46] 

𝑂𝐶𝑉(𝑧) =  𝑎1 +
𝑎2
𝑧
+ 𝑎3𝑧

2 + 𝑎4e
−a5(1+z) 

[10,47] 

 Therefore, proposed a combined analytic model for OCV, in order to create a model 

that fits closely the OCV closely and also able to deal with the behaviour of the battery 

dynamics. In this aim, an exponential function combined with logarithm is modelled as well 

as the root mean square error (RMSE) is taken into consideration. Thereby, the RMSE of 

other models like the polynomial has high RMSE.   

OCV-SOC relationship can be written as:  

 𝑂𝐶𝑉(𝑧) = 𝑎1𝑒
𝑎2𝑧 + 𝑎3𝑒

𝑎4𝑧 + 𝑎5ln (𝑧) (4.51) 

 The selected OCV model is compared with four different models, which summarized 

in Table (4-4). The fitted curves are presented in Figure (4-16).  

Table (4-4): Candidate OCV models. 

Model Equation of OCV(z) Number of coefficients 

Model 1 𝑂𝐶𝑉(𝑧) = 𝑎1𝑧
5 + 𝑎2𝑧

4 + 𝑎3𝑧
3 + 𝑎4𝑧

2 + 𝑎5𝑧 + 𝑎6 6 

Model 2 𝑂𝐶𝑉(𝑧) = 𝑎1𝑧
4 + 𝑎2𝑧

3 + 𝑎3𝑧
2 + 𝑎4𝑧 + 𝑎5 5 

Model 3 𝑂𝐶𝑉(𝑧) = 𝑎1 +
𝑎2
𝑧
+ 𝑎3𝑧

2 + 𝑎4𝑒
−𝑎5(1+𝑧) 5 

Model 4 𝑂𝐶𝑉(𝑧) = 𝑎1𝑒
𝑎2𝑧 + 𝑎3𝑒

𝑎4𝑧  4 

Proposed 𝑂𝐶𝑉(𝑧) = 𝑎1𝑒
𝑎2𝑧 + 𝑎3𝑒

𝑎4𝑧 + 𝑎5𝑙𝑛 (𝑧) 5 
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 The coefficients of studied models are tabulated in Table (4-5); all the values are 

obtained by the MATLAB curve fitting toolbox.  

Table (4-5): The coefficients of the fitted OCV models. 

parameters Model 1 Model 2 Model 3 Model 4 Proposed 

a1 -6.704 -1.716 3.11 3.368 2.383 

a2 16.72 4.622 - 0.005056 0.1392 0.5472 

a3 -14.01 -3.744 - 0.5843 0.003903 -2.019 

a4 4.69 1.682 0.05521 4.127 -6.563 

a5 0.03277 3.261 -1.681 - -0.8429 

a6 3.367 - - - - 

  

In [48] , the polynomial model is concluded as the best fit, but when see in Table (4-

6) that the proposed model defined in equation (4.48) has a low RMSE value, which presents 

the best fitting accuracy compared to the other models, and this well shown in Figure (4-16). 

The experimental points closely stand in the fitted model proposed.  

Table (4-6): Comparison between the OCV models’ error precision. 

 Model 1 Model 2 Model 3 Model 4 Proposed 

R-square 0.9977 0.9969 0.9956 0.9945 0.9978 

RMSE 0.01188 0.01326 0.01562 0.01696 0.01098 

In order to evaluate the effectiveness of our proposed OCV model for SOC 

estimation, the five OCV models are investigated in this study and show their performances. 

The Coulomb-counting is used as a reference of SOC estimation where the OCV-SOC 

relationship is given by look-up table. The SOC estimated is taken as a true SOC and the 

SOCs estimated by using EKF based on different investigated OCV models. 
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Figure (4-16): fitted OCV results at 25°C. 

 Actually, a dynamic discharge profile data is loaded and simulated, then, the SOC 

estimation is observed. The simulated SOCs are plotted for each OCV model as shown in 

Figure (4-16). The precision of the SOC estimation is computed by comparing the reference 

curve to the resulting curves as shown in Figure (4-17). In Table (4-6) has been presented 

the results of corresponding estimation RMSE error.    

 

Figure (4-17): EKF simulation based on OCV models. 
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 The AEKF technique is validated by using the pulse discharge tests. The comparative 

analysis shows the good tracking and matching between experiment and simulated results. 

The results of simulation and experiment for the pulse discharge test are shown in  

Figure (4-18), Figure (4-19), Figure (4-20) and Figure (4-21) respectively to the rate of 

discharge of 0.4 C, 0.5 C and 1C. 

 

Figure (4-18): Comparison between experimental SOC and AEKF estimated SOC under 

discharge test. 
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Figure (4-19): Comparison between experimental SOC and EKF estimated SOC under 

pulse current 0.4 C 

 

Figure (4-20): Comparison between experimental SOC and EKF estimated SOC under 

pulse current 0.5 C 
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Figure (4-21): Comparison between experimental SOC and EKF estimated SOC under 

pulse discharge current 1C. 

 

 In this test, the actual battery’s capacity is ranging in the level of 10%-95%, to protect 

it from damage. In order to investigate the nonlinear behaviour, 4 different functions [17], 

[33] for the OCV proposed to fit the OCV-SOC curve. The experimental data shown in Table 

(4-2) are used to identify the parameters of the proposed functions. The functions descriptive 

are shown in Table (4-4). 

Choosing the right OCV function is the key for better estimation SOC of the battery. 

Better estimation results were getting when using second order Thevenin model. Therefore, 

the high n-order Thevenin model gets high accuracy.  
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Figure (4-22): The SOC estimation with initial value of 0.6 for first order Thevenin model  

 

Figure (4-23): The SOC estimation error of first order Thevenin model.  
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Figure (4-24): The SOC estimation with initial value of 0.6 for second order Thevenin 

model  

 

Figure (4-25): The SOC estimation error of second order Thevenin model 
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Figure (4-26): The SOC estimation for initial value of 0.6 of third order Thevenin model 

 

Figure (4-27): The SOC estimation error of third order Thevenin model  
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In Figure (4-27), it can be seen that the SOC error less than the previous shown in 

Figure (4-25). The proposed function fits better than the other functions, and the result 

become better on tracking by using the third-order Thevenin model. The RMSE is 

summarized in Table (4-7) while the estimated and real terminal voltages were depicted in 

Figure (4-28). 

Table (4-7): The RMSE of SOC estimated for third model-based 

Functions Func1 Func2 Func3 Func4 

RMSE 0.0144 0.0168 0.0193 0.0201 

 

Figure (4-28): The terminal voltage and error of estimation. 
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4.4.  Sliding mode observer 

Battery behaviours are known by its highly nonlinear and dynamic model, due to the 

chemical reactions. Furthermore, the dynamics of the battery may not be fully known, since 

it is known as a black box and some of parameters appearing in the equations of 

mathematical model may vary.  

For instance, the internal resistance can be change as function of the temperature or 

aging. Generally, a lot of ECMs models have been widely used to estimate the SOC. 

However, dynamics, parameters variations, load and sensors disturbances are the main 

disturbances and uncertainties that can affect the effective estimating of the SOC. Therefore, 

it will be very difficult to limit these disturbances effectively if linear control methods like 

KF is adopted [69, 72, 128].  

To overcome the aforementioned problems other advanced methods have been 

proposed [33, 24-25]. These strategies include among others the sliding mode control 

(SMC). The SMC is a nonlinear control method known to have robust control characteristics 

under restricted disturbance conditions or when there are limited internal parameter 

modelling errors [26-29].  

The effectiveness of the SMC is guaranteed usually by using a switching control law. 

Unfortunately, this switching strategy often leads to a chattering phenomenon. In order to 

reduce the chattering phenomenon, a common method is to use the smooth function instead 

of the switching function [66-67].  

In this section, the EKF have been replaced by SMO. Therefore, first we start by a 

summary about sliding mode theory, then followed by the application of the sliding mode 

control to estimate the SOC, based on ECM model.  

4.5.  Sliding mode control history 

The concept of sliding mode control has appeared in Russian literature since the 

1950s. So, big work has been done on this concept of control mode until now [68-70]. 

4.5.1. Basic of sliding mode concepts  

Mode Control is a variable structure control consists of an algorithm inherently 

robust that can change structure and switch between two values according to a very specific 
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switching logic in parameters, nonlinear models against disturbances and uncertainty. The 

principle of sliding mode control is to force the system to reach a given surface called the 

sliding surface and to remain there until it reaches equilibrium. Therefore, when the system 

moves on the sliding surface or on the line, it is called the system slides. 

However, this control is done in two steps: the state trajectory start outside the surface 

and converges to the sliding surface (the line), then it is restricted to the surface for all 

subsequent time as depicted in Figure (4-29) [129-131]. 

 

Figure (4-29): Principle concepts of the sliding mode control. 

 

The controller consists of two parts. The first one is continuous representing the 

dynamics of the system during the sliding mode and also a discontinuous one, which is 

representing the dynamics of the system during the convergence mode.  
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The second term of SMC is essential to deal with the nonlinear control, because its 

role to eliminate or reduce the effects of imprecision and disruption of the model. The 

combination of this controller can be divided into two steps [129, 130]: 

 Choice of a suitable sliding surface so that the dynamic of the system 

confined to the sliding manifold produces a desired behaviour. 

 Design the control law, which forces the system trajectory to the 

sliding surface and keep it there. 

4.5.2. Sliding surface choice 

If the sliding surface is a linear combination of the error and its corresponding 

differentiations, it becomes a linear sliding surface S(x). Otherwise, if it is a nonlinear 

combination of the error and its corresponding differentiation, it becomes a nonlinear sliding 

surface 𝑆(𝑥, 𝑡). This problem is investigated in [132, 133], who’s proposed a general form, 

which consists of a scalar function given by:  

 𝑆(𝑥) = ((
𝑑

𝑑𝑡
+ 𝜆)

𝑟−1

∗ 𝑒(𝑥)) (4.52) 

with 𝑒(𝑥) = 𝑥𝑟𝑒𝑓 − 𝑥                                         

𝜆 : is a positive coefficient. 

 𝑟: is the relative degree, which is the number of times required to differentiate the surface 

before the input appears explicitly. Furthermore, for example: 

 𝑟 = 1 => 𝑆(𝑥) = 𝑒(𝑥)  

 𝑟 = 2 => 𝑆(𝑥) = (𝜆 ∗ 𝑒(𝑥)) + 𝑒̇(𝑥) (4.53) 

 𝑟 = 3 => 𝑆(𝑥) = (𝜆2 ∗ 𝑒(𝑥)) + (2𝜆 ∗ 𝑒̇(𝑥)) + 𝑒̈(𝑥)  

 

 



Chapter 4                   Battery SOC estimation using EKF and SMO observers 

 

109 
 

4.6.  Conditions of existence and convergence of the sliding mode 

The theory of Lyapunov stability provides a dynamic system stable approach. If we 

can build a positive definite function  𝑉𝑟, so that its derivative 𝑉𝑟̇. Therefore, the system is 

stable if the derivative is always negative. While this kind of method is habitually used to 

design sliding mode controller [134]. 

Afterword, the Lyapunov function candidate can be expressed as:  

 𝑉𝑟 =
1

2
 𝑆2(𝑥) (4.54) 

The derivative of equation (4.54) is:  

 𝑉𝑟 =  𝑆(𝑥)𝑆̇(𝑥) (4.55) 

The control stability is ensured under the following two conditions: 

 The Lyapunov function 𝑉𝑟 is positive definite. 

  The derivative of the Lyapunov function should be negative 𝑉𝑟̇ < 0 , it is sufficient 

to ensure that: 

 𝑆(𝑥)𝑆̇(𝑥) < 0 (∀ 𝑆) (4.56) 

This method is used to estimate the performance of the control and ensures 

asymptotically the convergence towards the sliding surface. 

4.7.  Drawback of sliding mode control 

The sliding mode control is designed in way to force the variables to arrive at sliding 

mode surface 𝑆 = 0 from the initial value after a period time. The sliding mode trajectory is 

shown in Figure (4-30).  

Thereby, From the Figure (4-30) appears the drawback of chattering problem due to 

the discontinuous control law acting on the sliding mode when system goes into sliding mode 

state. This phenomenon can increase the loss and reduce the estimation strategy. Therefore, 

it should be overcome as possible as we can [135]. 
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Figure (4-30): Problem of chattering phenomenon. 

4.8.  Sliding Mode Observer structure 

The sliding mode observer (SMO) is based on the same idea of sliding mode control. 

This type of observer uses the model of the system, employs high frequency switching to 

force the trajectory of the estimated variables to remain in the sliding surface [136, 137]. 

Figure (4-31) shows the general structure of sliding mode observer. 

 

Figure (4-31): Sliding mode observer structure. 
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The sliding surface is chosen to ensure the observed states converge to the actual 

states. Therefore, once the sliding mode is achieved, the SMO can reject certain external 

disturbances and internal parameter uncertainties. Afterword, The SMO synthesis is based 

on the comparison between observed and measured variables as expressed:  

 𝑒 = 𝑦 − 𝑦̂ (4.57) 

The design of the SMO consists of reduce the error (𝑒) between the measured outputs 

of the system by using switching function to get high convergence. The SMO is modelled in 

the following form:  

 

𝑥̂̇ = 𝑓(𝑥̂, 𝑢) + 𝑘 ∗ 𝑠𝑖𝑔𝑛(𝑦 − 𝑦̂) 

𝑦̂ = 𝐶(𝑥̂) 

(4.58) 

with: 

𝑥̂̇ : represents the estimated state 

𝑦 and 𝑦̂ : represent the real output and its estimated.  

𝑘 : is the switching gain.  

So, by using the equation (4.54) it is easy, simple and non-complex implementation 

to estimate the state of the system. This is the reason why the SMO is widely used, and duo 

to its robustness against parameter variations, disturbances and noise. 

4.9.  Solving the chattering problem 

The chattering problem has become the famous and biggest obstacle depending on 

the sliding mode control. The academics have continued their developing to weaken or avoid 

the chattering without interruption. In order to reduce or eliminate the chattering phenomena, 

a large number of researches have been using: smooth function, smooth function, filters (by 

adopt a low-pass filter), saturation function, observer, neural sliding, fuzzy sliding mode and 

higher-order sliding mode [138]. The saturation function has been chosen in order to limit 

the effect of chattering due to its simplicity and give a better response.  
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4.10. Application of sliding mode in battery SOC estimation  

Normally, battery ECM models used for estimating the SOC can be easily extended 

to form into SMO application. For each model, the SOC estimation requires only voltages 

and currents, which are measured by using its sensors.  

In this section, a sliding mode observer based on Thevenin model is presented to 

estimate directly the SOC by using voltages as output and current as input. Using the 

Thevenin model and based on the sliding mode structure theory, the proposed sliding mode 

observer is designed as: 

The terminal voltage 𝑉𝐿  mathematical characteristics can be presented by the 

governing equations as follows: 

 𝑉̇1 = −
1

𝑅1𝐶1
𝑉1 +

1

𝐶1
𝐼𝐿 (4.59) 

 𝑉𝐿 = 𝑉𝑜𝑐(𝑧) − 𝑅𝑠𝐼𝐿 − 𝑉1 (4.60) 

Where:  

𝑉𝐿 terminal voltage. 

𝑉𝑜𝑐 bridge relationship between OCV and SOC 

𝑅1𝐶1 polarization time. 

𝑉1 polarisation voltage across the RC branch. 

𝑅𝑠 internal resistance. 

𝑧  the state of charge (SOC). 

𝐼𝐿 current of the battery.  

While, the SOC defined as the ratio of remain capacity of a battery, and it can be 

presented in mathematical formula as: 

 𝑧(𝑡) = (𝑧0 −∫
𝜂𝐼𝐿(𝜏)

𝑄𝑛
) ∗ 100

𝑡

0

 (4.61) 
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where 𝑧0 is the initial SOC of the battery. 𝐼𝐿(𝜏) is the current in a short time, while it 

is considered positive for discharge and negative for the charge. 𝑄𝑛 is the nominal capacity 

of the battery. 𝜂 denotes the coulomb efficiency is this study taken as one, which is affected 

by the current range and temperature.  

For a small variation of SOC, the derivative form can be expressed as follow: 

 𝑧̇ = (−
𝐼𝐿
𝑄𝑛
) ∗ 100 (4.62) 

The OCV-SOC relationship can be extracted from charge discharge process; the 

average can be piecewise linearized in 20 sequences as depicted in Table (4-2), and presented 

in equation (4.59): 

 𝑉𝑜𝑐(𝑧) = (𝛼𝑖 ∗ 𝑧) + 𝛽𝑖 (4.63) 

4.10.1. Conventional sliding mode observer design  

There are two important stages required to design a sliding mode observer. Step one 

is choosing the sliding surface. The second step is designing a control law, which will 

conduct the state variables to the sliding surface and keeping them onto the surface. 

Define 𝑒 = 𝑉̂𝐿 − 𝑉𝐿 as the battery terminal voltage estimator error. So, the following 

sliding surface is defined as:  

 𝑆 = 𝑒 = 𝑉𝐿 − 𝑉̂𝐿 (4.64) 

where 𝑉𝐿, 𝑉̂𝐿 are the terminal voltage and estimated terminal voltage respectively.  

The conventional sliding mode observer (CSMO) can be modelled as following: 

 {
𝑥̂̇ = 𝑓(𝑥̂, 𝑢) + 𝑔 ∗ 𝑠𝑖𝑔𝑛(𝑦 − 𝑦̂)

    𝑦̂ = 𝐶(𝑥̂)                                        
 (4.65) 

where 𝑠𝑖𝑔𝑛(. )  is signum function. 𝑔 is the switching gain. 𝑦 and 𝑦̂ denote the true terminal 

voltage and estimated terminal voltage 𝑉𝐿, 𝑉̂𝐿, respectively. 𝑢 is the input control, which 

represent the current 𝐼𝐿 . x̂ is the estimated states. C is the matrix of control.  
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 Therefore, based on equation (4.59), (4.60), (4.62) and (4.63), the battery system can 

be formulated by the following steps, for fast sampling frequency in SOC estimation, the 

current change rate 𝐼𝐿̇ can be disregarded. We substitute equation (4.59) and (4.62) into the 

derivative of equation (4.64) and rearrange to differential equation: 

 𝑉̇𝐿 = −𝛼𝑖 (
𝐼𝐿
𝑄𝑛
) + (

𝑉1
𝑅1. 𝐶1

) − (
𝐼𝐿
𝐶1
) (4.66) 

Solving equation (4.60) for 𝐼𝐿 and rearranging it as follows: 

 𝐼𝐿 = −(
𝑉𝐿
𝑅𝑠
) + (

𝑉𝑜𝑐
𝑅𝑠
) − (

𝑉1
𝑅𝑠
) (4.67) 

And from equation (4.60), substitute into (4.63) and rearranging: 

 𝑉̇𝐿 = −𝑎1𝑉𝐿 + 𝑎1𝑉𝑜𝑐 − 𝑏1𝐼𝐿 (4.68) 

Substitute equation (4.67) into (4.62) result: 

 𝑧̇ = 𝑎2𝑉𝐿 − 𝑎2𝑉𝑜𝑐 + 𝑏2𝑉1 (4.69) 

where 𝑎1 = 1/𝑅1𝐶1 , 𝑎2 = 1/𝑅𝑠𝑄𝑛 , 𝑏1 =
𝛼𝑖

𝐶𝑛
+

𝑅𝑠

𝑅1𝐶1
+

1

𝐶1
 and  𝑏2 = 1/𝐶1. 

Thus, the final state-space of the system is expressed as follows: 

 {

𝑉̇𝐿 = −𝑎1𝑉𝐿 + 𝑎1𝑉𝑜𝑐 − 𝑏1𝐼𝐿
𝑧̇ = 𝑎2𝑉𝐿 − 𝑎2𝑉𝑜𝑐 + 𝑎2𝑉1      

𝑉̇1 = −𝑎1𝑉1 + 𝑏2𝐼𝐿                   

 (4.70) 

where the CSMO observer can be presented as: 

 

{
 
 

 
 
[

𝑉̇𝐿
𝑧̇̂
𝑉̇1

]  = [
−𝑎1 𝑎1𝛼𝑖 0
𝑎2 −𝑎2𝛼𝑖 𝑎2
0 0 −𝑎1

] [
𝑉𝐿
𝑧
𝑉1

] + [
−𝑏1
0
𝑏2

] 𝑢 + [
𝑎1𝛽𝑖
−𝑎2𝛽𝑖
0

] + [

𝑔1𝑠𝑖𝑔𝑛(𝑒𝑉𝐿)
𝑔2𝑠𝑖𝑔𝑛(𝑒𝑧)
𝑔3𝑠𝑖𝑔𝑛(𝑒𝑉1)

]

𝑦 = [1 0 0] [
𝑉𝐿
𝑧
𝑉1

]                                                                

 (4.71) 
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where the errors of states calculated as:  

 {

𝑒𝑉𝐿 = 𝑉𝐿 − 𝑉̂𝐿                                       

𝑒𝑧 = 𝑉𝑜𝑐(𝑧) − 𝑉𝑜𝑐(𝑧̂) = 𝛼𝑖(𝑧 − 𝑧̂)   

𝑒𝑉1 = 𝑉1 − 𝑉̂1                                       

 (4.72) 

with 𝑔1,  𝑔2 𝑎𝑛𝑑 𝑔3 are the switching gains. 𝑒𝑉𝐿 represents the error committed between real 

output and estimated, as well as 𝑒𝑧   and 𝑒𝑉1  errors of SOC and polarization voltage 

respectively.  

Conventional sliding mode observer (CSMO) with constant switching gains for SOC 

estimation have applied and its robustness proved against error modelling and uncertainties 

with selected gains. However, lower gains caused poor tracking and reduce chattering 

phenomena, in opposite high gains the tracking is better but caused undesired chattering as 

illustrated in Figures (4-32) and (4-33).  

 

Figure (4-32): CSMO based SOC estimation with large gains. 
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Figure (4-33): CSMO based SOC estimation with low gains.  

 

4.10.2. Modified sliding mode observer design  

The system states of the equivalent circuit can be improved through adaptive 

switching gains. Based on the CSMO and equivalent circuit model, we propose a modified 

gain for sliding mode observer (SMO). The states are estimated by the following equations 

as: 

 

{
 

 𝑉̇̂𝐿 = −𝑎1𝑉̂𝐿 + 𝑎1𝑉̂𝑜𝑐 − 𝑏1𝐼𝐿 +√𝑔1𝑠𝑖𝑔𝑛(𝑒𝑉𝐿)

𝑧̇̂ = 𝑎2𝑉̂𝐿 − 𝑎2𝑉̂𝑜𝑐 + 𝑏2𝑉̂1  + √𝑔2𝑠𝑖𝑔𝑛(𝑒𝑧)    

𝑉̇̂1 = −𝑎1𝑉̂1 + 𝑏2𝐼𝐿 +√𝑔3𝑠𝑖𝑔𝑛(𝑒𝑉1)                   

 (4.73) 

with √𝑔1,  √𝑔2 𝑎𝑛𝑑 √𝑔3 are the switching gains of the new SMO. The error dynamics of 

the terminal voltage error 𝑒𝑉𝐿 , 𝑒𝑧 and 𝑒𝑉1 are computed by: 
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 {

𝑒̇𝑉𝐿 = −𝑎1𝑒𝑉𝐿 + 𝑎1𝛼𝑖𝑒𝑧 + 𝑎1𝛽𝑖 − √𝑔1𝑠𝑖𝑔𝑛(𝑒𝑉𝐿)          

𝑒̇𝑧 = 𝑎2𝑒𝑉𝐿 − 𝑎2𝛼𝑖𝑒𝑧 − 𝑎2𝛽𝑖 + 𝑎2𝑒𝑉1  −√𝑔2𝑠𝑖𝑔𝑛(𝑒𝑧)

𝑒̇𝑉1 = −𝑎1𝑒𝑉1 −√𝑔3𝑠𝑖𝑔𝑛(𝑒𝑉1)                                           

 (4.74) 

Where sign(.) is singum function defined as:  

 𝑠𝑖𝑔𝑛(𝑒𝑉𝐿) = {

+1     𝑒𝑉𝐿 > 0
0        𝑒𝑉𝐿 = 0
−1     𝑒𝑉𝐿 < 0

 (4.75) 

Remark:  

Since the voltage and current of output and input are bounded, the whole system is 

bounded. 

Stability proof:  

Select the candidate Lyapunov function as: 

 𝑉𝑟(𝑒) = 0.5 𝑒𝑉𝐿
2  (4.76) 

The stability is ensured under two conditions as: 

 The Lyapunov function 𝑉𝑟 is positive definite. 

 The derivative of the sliding function has to be negative.  

 

𝑉̇𝑟(𝑒) = 𝑒𝑉𝐿𝑒̇𝑉𝐿 

= 𝑒𝑉𝐿(−𝑎1𝑒𝑉𝐿 + 𝑎1𝛼𝑖𝑒𝑧 + 𝑎1𝛽𝑖 −√𝑔1𝑠𝑖𝑔𝑛(𝑒𝑉𝐿) )   

(4.77) 

There exists an unknown finite positive switching gain g1 leads to 𝑉̇𝑟 < 0 , satisfy 

𝑔1 > 𝑎1(𝛼𝑖𝑒𝑧 + 𝛽𝑖) and validate the Lyapunov stability theory.  

Thus, in order to eliminate the chattering phenomena and higher the response of the 

SMO, the control switching gains are formed by using a saturation function.  

The saturation function illustrated in Figure (4-34), and expressed as follows[139]: 
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 𝑠𝑎𝑡(𝑒𝑉𝐿) = {
𝑠𝑖𝑔𝑛(𝑒𝑉𝐿)         𝑖𝑓 |𝑒𝑉𝐿| > 𝑠𝑖𝑔𝑚𝑎
𝑒𝑉𝐿

𝑠𝑖𝑔𝑚𝑎
                𝑖𝑓 |𝑒𝑉𝐿| < 𝑠𝑖𝑔𝑚𝑎 

 (4.78) 

with sigma  is the boundary of width.  

1

-1

sigma

-sigma

S(x)

Sat(s(x))

 

Figure (4-34): Saturation function 

4.11. Comparison between EKF and SMO 

To evaluate the robustness and figure out the high precision of the proposed observer, 

a mean value of noise with standard deviation of 0.01 is applied. Figure (4-35) and Figure 

(4-36) illustrate comparison estimation of SOC based on SMO and EKF. The SOC 

estimation results based on EKF and SMO and theirs committed errors of the observers, for 

continuous current discharge.  

The same experience repeated with pulse discharge is shown in Figure (4-35) and 

Figure (4-36) with sequences of pulse discharge current.    
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Figure (4-35): SOC estimated under 1C-rate current profile. 

 

 

Figure (4-36): SOC estimated under 1C-rate pulse current profile.  
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Therefore, the SMO has shown better tracking capability to the real SOC, also has a 

smooth error during the estimation, which means suitable and robustness technique. Table 

(4-8) summarized the corresponding RMSE and the settling times for two simulations, also 

the proposed algorithm shows strong robustness against low SOC estimation in the range of 

0.1 to 0.  

Moreover, it is clear that SMO is fast than EKF in time consumption and convergence 

as shows the comparison.  

Table (4-8): Comparison between EKF and MSMO techniques. 

Technique 
Pulse discharge Continuous discharge 

RMSE Time computation RMSE Time computation 

EKF 0.0176 0.726 S 0.0276 11.13 S 

SMO 0.0084 0.171 S 0.0038 1.429 S 
 

 

In addition, Table (4-9) present SOC convergence comparison between EKF and 

SMO at different initial SOCs, these results show the strong performance against wrong 

initial SOC.  

 

Figure (4-37): SOC convergence for both algorithms at different initial SOCs. 
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Therefore, it is clear that the convergence time for the SMO is less than the EKF 

more than 3 times. Thereby, the quick convergence helps to reduce error and gives better 

SOC tracking as depicted in Figure (4-37).  

Table (4-9): Convergence time at different initial SOCs 

 

 

 

4.12.  Conclusion  

In this section, an adaptive SOC technique has been developed for lithium-ion 

batteries. The proposed technique based on control theory to achieve robustness for SOC 

estimation. The strategy shows that the SOC can be determined with high accuracy based on 

the measurements of the battery voltage and current. Moreover, Lyapunov theory of stability 

analysis provides the convergence and stability of the proposed algorithm. The SMO has 

been established using the first-order Thevenin battery equivalent circuit model, the 

proposed algorithm shows performance to solve the problem of chattering and improvement 

of the convergence of the technique. The simulation and experimental results highlight the 

performance of the SMO in the context of SOC with high robustness for constant and pulse 

currents, which demonstrate the effectiveness of this adaptive technical estimation. 

In first step, the Extended Kalman Filter is used for SOC estimation. The benefit of 

EKF based ECMs models is the improvement of the system dynamics, which increase the 

accuracy of SOC estimations. The accuracy is increasing by using different ECMs model, 

which is include of RC branches. While in the sliding mode observer is used to enhance the 

estimation and to guarantee the system stability. The SOC is estimated by using a sliding 

mode observer based on first-order Thevenin model of the battery. The effectiveness of the 

proposed observer approaches has been verified through extensive computer simulations and 

compared with EKF.  

Simulation results have demonstrated not only truly SOC estimation but also many 

improvements on the dynamic responses as well as the steady state performances, in terms 

of time response, accuracy. In addition, the simulation results show that, the stochastic EKF 

has a great robustness during the application of third-order battery model.  The reversal 

Technique 𝑆𝑂𝐶0= 0.50 𝑆𝑂𝐶0= 0.70 

EKF 131 S 150 S 

SMO 55 S 30 S 
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mode, and during the measurement noise on the voltages and currents, which is generated 

by sensors. On the other hand, the added value of the SMO based on first-order Thevenin 

model is the amelioration in the system dynamics through the accuracy with less parameters 

and SOC estimation.  

Indeed, the obtained simulation results show better speed tracking performance at 

dynamic and steady states, acceptable estimations errors, robustness in different tests 

including pulse discharge. Therefore, these results affirm the ability of the proposed observer 

to guarantee good estimations in steady state and transients as well. 
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Summary of research 

A comparative study between different battery models and state of charge (SOC) 

estimation techniques was performed. Three categories of battery models were considered 

in this study based on equivalent circuit models. The SOC was estimated using two 

estimation strategies, namely the adaptive Extended Kalman filter (EKF) and adaptive 

sliding mode observer (SMO). The models and SOC estimation strategies were applied to 

experimental data provided by a prototype designed in the laboratory of LGEER of Chlef 

University. The results were validated using simulation models obtained from 

MATLAB/SIMULINK software platform. 

This thesis provided a detailed overview of Behavioural models and their 

implementation. The Behavioural models simulate the terminal voltage behaviour of the 

batteries without the need for the specification of the underlying physical or electrochemical 

reactions. These models can be simple starting with one state to capture the SOC, and 

progressively become more complex with more than one state used to capture the internal 

battery dynamics. The ECM models parameters were determined using experimental data 

and optimized using the MATLAB curve fitting toolbox. The EKF were applied to three 

different equivalent circuit models, and the SOC was estimated. The results were compared 

based on the SOC root mean squared error (RMSE).  

The three Equivalent circuit models and their implementation were considered due 

to these models are widely used, they are relatively simple and have fewer parameters to 

tune, and also they are easy to implement. The Equivalent circuit models consist of first-

order, second-order, or third-order resistance-capacitance (RC) models.  

The greatest RMSE difference occurred when applying the estimation methods on 

the third-order Thevenin Model. The EKF estimation results were consistent throughout all 

3 models (i.e., the SOC estimation error varied by under 0.5%). The EKF application results 

were less consistent; the SOC estimation error varied by upwards of 2.5%. The differences 

in consistency were likely due to the sensitivity of the EKF to modelling uncertainties.  

Furthermore, the results of applying both the EKF and SMO estimation strategies on 

the Equivalent circuit models were shown and discussed. The SMO strategy used to estimate 

SOC yielded the better performance in terms of estimation accuracy. Similar to the 

Behavioural models, the SOC estimation RMSE was improved by 15 to 60%, depending on 
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the model used. The most accurate model was the third-order RC model based on EKF 

observer but a bit slow due to large matrix. In opposite, the SMO algorithm was concluded 

that the first-order Thevenin model provides a better performance in tracking the SOC 

accurately then using EKF with the third order Thevenin model, beside very fast and simple 

in programming.   

Recommendations and future work  

A trade-off exists between model complexity, accuracy, and parameterization. It is 

recommended that the selection of a battery model should be made based on the required 

accuracy and the available computation power. For example, in some situations a simple 

first-order RC model may suffice; such as in simple, low current operating conditions. 

However, a more complicated model is required to capture nonlinearities present in 

environments involving fast transients or in order to capture more internal states depending 

on the state of health information. 

The first recommendation for new research involves further into including the 

temperature, which is dependent of model parameters were not considered in this thesis. 

Future studies can include energy balance equations in the models to incorporate temperature 

information and its effects on the system. Additionally, the temperature sensor placed for the 

cell along with sensors for terminal voltage and current. It will add more information to the 

experimental setup, which can be considered in modelling and SOC estimation.  

Furthermore, it is important to note that in most cases, the ECM is considered to be 

one dimensional model. The recommendation for new research involves focusing more in 

electro-chemical models, which can be extended to higher dimension (2-3). Therefore, a 

strategy could be developed to create more robust ECM models.  

Moreover, the aging effect of the cell was ignored in this work. A very important 

recommendation for future work includes the study of aging and its effects on a battery cell. 

This work is important because it may yield more accurate estimation for battery state of 

health (SOH) by lining temperature with model parameters and study its effects on the 

system. 
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Appendix A 

 

Figure (A-1): Schema block of the battery model in Matlab/Simulink.  

 

 

 

Figure (A-2): a view of the acquisition program used in collecting experimental data.  
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Figure (A-3): Photo of the test bench of the experiment  
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Figure (A-4): Matlab/Simulink schematic blocks of experiment. 
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Appendix B 

 

Figure (B-1): Datasheet of current sensor LA55. 
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Figure (B-2): Datasheet of voltage sensor LV25. 
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