REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE HASSIBA BENBOUALI DE CHLEF

FACULTE DES SCIENCES & SCIENCES DE L'INGENIEUR

DEPARTEMENT DE GENIE DES PROCEDES

MEMOIRE DE MAGISTER

Présenté par

M^{me} KADDOUR HEMISSI NORA Ingénieur d'état

CONTRIBUTION A L'ETUDE DE L'ENVELOPPE DE PHASE DE QUELQUES COMPOSES D'HUILE ESSENTIELLE AU VOISINAGE DU CO₂ SUPERCRITIQUE.

Soutenu publiquement le 11 Juillet 2007 devant le Jury composé de:

M. A. DAHMANI, Professeur, U.S.T.H.B M. B. BENSSEBIA, MA/CC, U.H.B.C M.A. OUAGUED, Professeur, U.H.B.C M. M. DOUANI, MA/MC, U.H.B.C M^{elle}S. KOUADRI MOUSTEFAI, MC, U.H.B.C Rapporteur Co-rapporteur Président Examinateur Examinateur Je dédie ce travail :

A la prunelle de mes yeux Mohamed et Salah Eddine. A mes très chers parents. A Hicham, Ihssen, younès, Rayan et Anfale. A ElHadj, ma sœur, mes frères et belles sœurs.

Remerciements

Mes remerciements vont tout d'abord à Monsieur DAHMANI A. Professeur à U.S.T.H.B qui a proposé et dirigé ce travail .Qu'il soit assuré de ma plus profonde reconnaissance.

C'est avec un grand plaisir que je remercie Monsieur BENSSEBIA B. qui a suivi de prés mon travail et dont sa disponibilité à mon égard ne s'est jamais démentie.

Mes remerciements s'adressent également à Monsieur OUAGUED A. Professeur à U.H.B.C, qui m'a fait l'honneur de présider le jury de cette thèse.

J'exprime toute ma gratitude aux membres de jury, à commencer par:

Mademoiselle KOUADRI MOUSTEFAI S. maître de conférence, U.H.B.C.

Monsieur DOUANI M. maître de conférence, U.H.B.C, pour avoir accepter de juger ce travail et de siéger à mon jury de thèse.

Merci à tous ceux qui ont contribué de près ou de loin à l'accomplissement de ce mémoire.

Un grand merci à mes parents qui m'ont toujours encouragé à poursuivre mes études et à aller toujours de l'avant.

ملخص

تقع مميزات المائع بالقرب من النقطة الحرجة عند نصف الطريق ما بين السائل و الغاز و يمكن تغيير ها بمجرد تغيير الضغط أوتغيير درجة الحرارة أو الاثنين معا، تعتبر هذه الخاصية مصدر للعديد من التطبيقات التي تستخدم المائع بالقرب من النقطة الحرجة كونه أحسن بديل من المذيب العضوي التقليدي. فالنزع من أول التطبيقات التي تطورت نظرا لسهولة فصل المذيب و المذاب المنتزع بطريقة انخفاض الضغط. يهدف هذا العمل على در اسة حركية حرارية لغلاف الأطوار لجملة متكونة من بعض المركبات الموجودة في الزيوت الأساسية و من ثاني أكسيد الكربون القريب من النقطة الحرجة. ولوصف توازن الأطوار قيمت مميزات كيمائيات فيزيائيات للأجسام النقية، في حين أن المعطيات الثنائية غير متوفرة، اقتصرت در استنا على جملة واحدة عند درجات للحرارة و ضغوط مختلفة. كما نقدم النماذج الخاصة بوصف توازن الأطوار و نستنتج أن من الممكن وصف ذلك جيدا باستعمال معادلة للحالة تكعيبية. في الأخير لحظنا صلة جد متقاربة مابين النتائية التي تحمل المائية في المائية في المائية في المائية المائية المائية المائية و المائية المائية في منوفرة، اقتصرت در استنا على ملية الأطوار و نستنتيم أن من الممكن وصف ذلك جيدا باستعمال معادلة المائلة المائية الخاصة بوصف توازن الأطوار و نستنتيا أن من الممكن وصف ذلك جيدا باستعمال معادلة الحالة تكعيبية. في الأخير لحظنا صلة جد متقاربة مابين النتائية التي تحصلنها من حسابات عن طريق العقل الالمائية و النتائيج التجريبية.

Résumé

Les propriétés des fluides supercritiques sont à mi-chemin entre celles des gaz et celles des liquide; ces propriétés peuvent en outre être considérablement modifiées par simple variation de la pression et/ou de la température. Cette spécificité est à l'origine de nombreuses applications dans lesquelles les fluides supercritiques se présentent comme des substituts de choix aux solvants organiques traditionnels. L'extraction est l'une des premières applications à avoir été développées; la facilité de séparation du solvant et des solutés extraits par simple dépressurisation constitue l'atout majeur de cette technique.

Ce travail est consacré à l'étude thermodynamique de l'enveloppe de phase du système impliquant quelques composés d'huile essentielle et le CO₂ supercritique. Pour décrire, l'équilibre entre phases les propriétés physico chimiques des corps purs ont été estimées, les données binaires étant indisponibles, seul le système 1,8-cinéole/CO₂ sera étudié à températures différentes 308,2, 313 et 323,2 K et à des pressions variant de 3 à 10 MPa. Nous présentons également les modèles généralement utilisés pour la description de l'équilibre de phases du système susmentionné. Nous en concluons que ce dernier peut être décrit correctement avec une équation d'état cubique. Enfin un programme de calcul sur ordinateur basé sur un calcul Flash présente une bonne corrélation des résultats avec ceux expérimentaux.

Mots clés: FSC; Equilibre thermodynamique; Modélisation; Extraction supercritique.

Abstract

The physico-chemical properties of supercritical fluids are halfway between those of gases and liquids; more these properties can be easily modified by a simple variation of pressure or/and temperature. It has been taken advantage of this feature to develop a lot of applications where the supercritical fluid serves as substitute for the conventional organic solvents. Extraction is one of the first applications developed; the major advantage of this technique results from the extreme easiness for separating the solvent from the solutes by a simple depressurization.

This work is dedicated to the thermodynamic study of phase envelope of system involving some compounds of essential oil and supercritical CO₂. For describing the phase equilibrium, the physico-chemical properties of the pure compounds are estimated. However, binary data being unavailable, only one system 1, 8-cineol/CO₂ will be studied at differents temperatures 308,2, 313 and 323,2 K and at pressures that vary from 3 to10 MPa. We also introduce that are generally used for describing the phase behavior of above –mentioned system. We conclude that cubic equations can describe it correctly. At last a computer program based on the Flash calculation introduce a good correlation with the experimental results.

Keywords: SCF; Thermodynamic equilibrium; Modelling; Supercritical extraction.

SOMMAIRE

Introduction générale	12
Chapitre 1 : Les fluides supercritiques	14
1.1 Introduction	15
1.2 Les Fluides supercritiques : Définition et propriétés	16
1.2.1 Définition	16
1.2.2 Propriétés	17
1.2.3 Le Dioxyde de carbone, solvant bio propre	17
1.2.4 Solubilité dans les FSC	
1.2.4.1 Influence de la masse volumique	20
1.2.4.2 Addition d'un co-solvant	21
1.2.5 Applications	21
1.3 Principe du procédé d'extraction par CO₂ supercritique	23
1.4 Techniques expérimentales	24
1.5 Conclusion	
Chapitre 2 : Etude thermodynamique des équilibres	
liquide-vapeur	27
2.1 Introduction	
2.2 Notions théoriques	
2.2.1 Degré de liberté	
2.2.2 Formule de Clapeyron	
2.3 Diagrammes de phases	
2.4 Formalisme thermodynamique	
2.4.1 Critère d'équilibre chimique	
2.4.2 Expression des coefficients de fugacité	
2.5 Conclusion	
Chapitre 3: Modélisation thermodynamique des équilibr	es de
phases	40
3.1 Introduction	41
3.2 Recherches hibliographiques	47
cia recuri cues pipulos apinques	

43
44
45
45
46
47
47
51
52
53
53
53
55
58
61
61 66
61 66 67
61 66 67 68
61 66 67 68 70
61 66 67 68 70
61 66 67 68 70
61 66 67 68 70 71 71
61 66 67 68 70 71 72 72
61 66 67 68 70 71 72 72 72
61 66 67 68 70 71 71 72 72 72 72

4.4 Diagrammes de phases avec des k _{ij} différents	80
4.5 Conclusion	
Conclusion générale	83
Bibliographie	
Annexes	

Nomenclature

- a Paramètre d'attraction des équations d'état;
- A $=aP/(RT)^2;$
- b Covolume des équations d'état;
- B =bP/(RT);
- K Constante d'équilibre;
- kij Coefficient d'interaction binaire;
- m Terme correctif des équations d'état cubiques;
- n Nombre de moles;
- Na Nombre d'atomes de carbone;
- P Pression;
- P_{VP} Pression de vapeur;
- Q Fonction objective;
- R Constante des gaz parfaits;
- T Température;
- V Volume molaire;
- V/F Taux de vaporisation;
- x_i Fraction molaire du composé i en phase liquide;
- y_i Fraction molaire du composé i en phase vapeur;
- x Vecteur composition en phase liquide;
- y Vecteur composition en phase vapeur;
- z_i Fraction molaire du composé i dans l'alimentation;
- z Vecteur composition de l'alimentation;
- Z Facteur de compressibilité ;

Indices

- c Critique;
- i Composé i;
- ij Binaire i-j;
- m Mélange;
- r Réduit;
- 0 Référence;

Exposants

- Etat de gaz parfait;
- v Vapeur;
- 1 Liquide;
- (0) Fluide de référence;
- (1 Fluide réel;
- exp Expérimental;
- cal Calculé;

Symboles grecs

- α Fonction de réajustement des équations d'état;
- ϕ Coefficient de fugacité;
- ω Facteur acentrique de Pitzer;
- μ Potentiel chimique;
- ε Tolérance.

Abréviation

- C Conventionnelle;
- EE Equation d'état;
- FSC Fluide supercritique
- fu Fugacité;
- P Panagiotopoulos et Reid;
- PR Peng-Robinson;
- PT Patel-Teja;
- RM Règle de mélange;
- SRK Soave-Redlick-Kwong;

Table des illustrations : Figures

Figure1.1-Diagramme P-T pour un corps pur 1	16
Figure1.2 -Diagrammes de phases (P,T) et (P, ρ) du CO ₂ pur	19
Figure1.3-Evolution de la viscosité du CO ₂ en fonction de P et T	20
Figure1.4-Diagramme du procédé d'extraction isotherme au CO ₂ supercritique	25
Figure 2.1-Courbes de diagrammes de phases des mélanges binaires	32
Figure 2.2 Diagrammes de phases des mélanges binaires de type I	33
Figure 2.3-Diagramme P-T-x pour la région liquide- liquide- vapeur d'un mélange	34
Figure 2.4-Diagrammes de phases des mélanges binaires de type III	36
Figure 2.5-Diagrammes de phases des mélanges binaires de type IV	.38
Figure 3.1-Structure moléculaire du 1,8-cinéole	64
Figure 3.2-Structure moléculaire du camphre	64
Figure 3.3 -Structure moléculaire de l' α -pinène	65
Figure 3.4 -Structure moléculaire de le β -pinène	65
Figure 3.5-Structure moléculaire du bornéol	.66
Figure 3.6-Structure moléculaire de l'acétate de bornyl	66
Figure 4.1 -Equilibre liquide-vapeur du système CO ₂ –Cinéole à T =308,2 K	76
Figure 4.2-Equilibre liquide-vapeur du système CO ₂ –Cinéole	
à T=313 K ,k _{ij} =0,075	77
Figure 4.3 -Equilibre liquide-vapeur du système CO ₂ –Cinéole à T=323,2 K	.77
Figure 4.4-Déviation dans les compositions des phases liquide et vapeur du binaire	
CO ₂ –Cinéole à T=313 K	79
Figure 4.5-Taux de vaporisation en fonction de la pression à T=308,2 K	80
Figure4.6-Taux de vaporisation en fonction de la pression à T=313 K	80
Figure 4.7-Taux de vaporisation en fonction de la pression à T=323,2 K	81
Figure 4.8-Variation du coefficient de fugacité du CO ₂ en phase vapeur en	
fonction de la pression et de la température	82
Figure 4.9-Equilibre liquide-vapeur du système CO ₂ –cinéole à	
T=313K à partir de l'équation de PR; k_{ij} =0	83
Figure 4.10-Equilibre liquide-vapeur du système CO ₂ –cinéole à	
T=313K à partir de l'équation de PR; k_{ij} =0,065	84
Figure4 11 -Equilibre liquide-yapeur du système CO ₂ –cinéole à	
rigure (rigurate vapeur du systeme CO ₂ emetore d	

Tableaux

Tableau1.1 -Ordre de grandeur de la densité, de la viscosité et du coefficient
d'autodiffusion D des gaz, des liquides et des fluides supercritiques17
Tableau 1.2 - Propriétés des composés adaptés aux applications supercritiques18
Tableau1.3 - Applications du fractionnement fluide-liquide 23
Tableau 1.4 - Applications industrielles de l'extraction fluide-solide 24
Tableau 3.1 - Types de calcul d'équilibre liquide-vapeur 54
Tableau 3.2 - Caractéristiques critiques estimées pour le 1,8-cinéole
Tableau 3.3 - Caractéristiques critiques estimées pour le camphre
Tableau 3.4 -Caractéristiques critiques estimées pour l' α -pinène
Tableau 3.5 - Caractéristiques critiques estimées pour le β -pinène
Tableau 3.6 - Caractéristiques critiques estimées pour le bornéol
Tableau 3.7 - Caractéristiques critiques estimées pour l'acétate de bornyl67
Tableau I.1 -Equilibre liquide- vapeur du système CO ₂ –cinéole basé sur le modèle
de PR à une température d'équilibre T=308,2 K105
Tableau I.2 -Equilibre liquide-vapeur du système CO2 –cinéole basé sur le modèle de
SRK à une température d'équilibre T=308,2 K105
Tableau I.3 - Equilibre liquide-vapeur du système CO2 – cinéole basé sur le modèle de
PR à une température d'équilibre T=313 K avec k _{ij} =0,075106
Tableau I.4 -Equilibre liquide-vapeur du système CO2 –cinéole basé sur le modèle de
SRK à une température d'équilibre T= 313 K avec k _{ij} =0,075106
Tableau I.5 – Equilibre liquide – vapeur du système CO2 – cinéole basé sur le modèle
de PR à une température d'équilibre T= 323,2 K107
Tableau I.6 -Equilibre liquide-vapeur du système CO2 –cinéole basé sur le modèle
de SRK à une température d'équilibre T=323,2 K107
Tableau I.7 – Données expérimentales de l'équilibre liquide-vapeur du mélange

INTRODUCTION GENERALE

L'utilisation de la technologie supercritique constitue une alternative aux procédés classiques. Cette technique, qui permet d'obtenir des extraits organiques parfaitement purs exempts de toutes traces de solvant, convient très bien aux secteurs de l'industrie pharmaceutique et de la cosmétique pour l'extraction des principes actifs et des parfums, respectivement. Les fluides supercritiques ont par rapport aux solvants chimico –organiques traditionnellement employés dans l'industrie l'avantage d'avoir un pouvoir solvant dit **"à géométrie variable"**: la solubilité des composés évolue avec les conditions de pression et de température du fluide. De nombreux fluides supercritiques sont étudiés, en particulier l'eau et le propane, mais le plus communément utilisé reste le CO_2 . Le CO_2 supercritique amorce brillamment l'ère de la Chimie Verte; Il est naturel, non toxique, inerte chimiquement, incolore et insipide. Cependant pour la mise en œuvre de tout procédé de séparation, à savoir l'extraction par fluide supercritique, la connaissance des propriétés thermodynamiques constitue l'une des principales étapes pour la réalisation et l'optimisation du procédé. Ces données d'équilibre peuvent être obtenues de deux manières :

• Soit expérimentalement, en établissant des diagrammes d'équilibre, cette méthode est coûteuse et l'information obtenue est plutôt d'ordre qualitatif.

• Soit par des modèles mathématiques, méthode plus rapide et plus économique, cependant l'information obtenue est moins fiable que celle expérimentale.

Aussi la méthode la plus recommandée consiste à conjuguer les deux méthodes.

Le recours a la simulation pour reproduire les propriétés thermodynamiques des fluides réels (corps purs ou mélanges), fait l'objet de recherches par les thermodynamiciens depuis plus d'un siècle. En effet, depuis que Van der Waals a proposé la première équation d'état applicable aux fluides réels, un nombre important de travaux a été entrepris dans ce domaine.

Avec le développement de l'outil informatique, de nouvelles équations d'état ont vu le jour constituant ainsi des modèles thermodynamiques utilisés avec succès dans le domaine du génie chimique et autres.

L'objectif de ce travail est l'étude de l'équilibre de phase du système impliquant le 1,8-cinéole en présence du CO₂ supercritique. Pour cela, dans un

premier chapitre théorique nous présentons une analyse bibliographique sur les fluides supercritiques. Elle couvre l'aspect propriétés et applications de ces fluides.

Dans le second chapitre, nous donnons un bref aperçu sur l'aspect thermodynamique des équilibres liquide-vapeur.

Le chapitre suivant, est consacré d'une part à la modélisation mathématique et d'autre part à la prédiction des propriétés critiques de quelques composés d'huile essentielle souvent inexistantes dans la littérature et fort indispensables pour le calcul des équilibres liquide-vapeur.

Le dernier chapitre concernant l'identification paramétrique des modèles, présente les résultats prévisionnels issus du calcul flash qui requiert les quelques données thermodynamiques estimées dans le chapitre précédent à l'aide d'un sous programme externe auquel le programme principal fera appel pour le calcul de l'équilibre liquide-vapeur. Par manque de données expérimentales, seul le système impliquant le 1,8-cinéole et le dioxyde de carbone sera étudié à différentes températures: 308,2, 313 et 323,2 K et à des pressions allant de 3 à 10 MPa. Pour finir une conclusion générale fera la synthèse de ce travail.

CHAPITRE 1

LES FLUIDES SUPERCRITIQUES

1.1 Introduction

Les fluides supercritiques (FSC) font l'objet d'un important effort de recherche, tant fondamental qu'appliqué. L'intérêt majeur de ces milieux réside dans la possibilité de moduler et d'ajuster continûment leurs propriétés physico –chimiques de l'état gazeux à l'état liquide (masse volumique, propriétés de transport ...).

Les procédés les mettant en œuvre sont divers et d'un intérêt grandissant dans de nombreux secteurs.

Au départ, la technique du CO_2 supercritique permettait de traiter l'uranium afin d'obtenir le fameux uranium enrichi destiné au fonctionnement des réacteurs nucléaires. L'arrivée du laser a rendu obsolète l'utilisation du CO_2 supercritique dans ce cas précis d'application.

Le transfert de cette technologie vers un grand nombre de secteurs de l'industrie laissait entrevoir de nouvelles perspectives. Dans la fabrication de la bière, elle a totalement remplacé les solvants pour l'extraction des principes amers du houblon. 50% du café décaféiné produit dans le monde est obtenu par extraction supercritique de la caféine. Le CO₂ supercritique est aussi utilisé dans l'industrie du luxe par les plus grands parfumeurs qui puisent ainsi dans les pétales de fleurs la plus claire et la plus concentrée des absolues, fidèle au parfum initial de la matière première.

Dans ce contexte, les fluides supercritiques peuvent être une alternative prometteuse pour réduire l'émission de composés organiques volatils [1].

1.2 Les Fluides Supercritiques : Définition et propriétés

1.2.1 Définition

Le diagramme (P, T) (figure1.1) précise les domaines des trois états de la matière s, l, v. Les raccordements de ces différents domaines correspondent aux transitions de phase. Au point triple coexistent les trois phases. Au delà, la courbe de vaporisation (liquide-gaz) présente un point d'arrêt. Ce point est dit point critique, audelà de ce dernier, défini par une pression, une température et une masse volumique critique (P_c, T_c et ρ_c) se situe le domaine supercritique [2].

Figure 1.1 Diagramme P-T pour un corps pur.

Au point critique, trois phénomènes sont mis en évidence:

- ✓ La masse volumique du liquide est identique à celle du gaz et on ne peut plus distinguer la phase liquide de la phase vapeur. Il n'y a plus d'interface l-g.
- ✓ Le fluide pur devient instable thermiquement et mécaniquement.
- ✓ Enfin on peut observer un phénomène d'opalescence critique. Celui–ci est dû à des fluctuations locales de masse volumique qui s'établissent sur des échelles spatiales comparables aux longueurs d'onde de la lumière d'observation (~500nm) [3].

1.2.2 Propriétés

De part leurs propriétés physico-chimiques, les fluides supercritiques présentent à la fois les avantages des fluides à l'état liquide et ceux des fluides à l'état gazeux. En effet, un corps pur à l'état supercritique présente une densité voisine de celle de l'état liquide, une viscosité proche de celle de l'état gazeux et une diffusivité intermédiaire. Ces caractéristiques répertoriées dans le tableau 1.1 confèrent aux fluides supercritiques un pouvoir appréciable de pénétration dans les mélanges de solutés [4].

<u>Tableau1.1</u>: Ordre de grandeur de la densité, de la viscosité et du coefficient d'autodiffusion D des gaz, des liquides et des fluides supercritiques.

Etat physique	ρ (g/cm ³)	η (g/cm.s)	$D (cm^2/s)$
Gaz	10-3	10-4	0,2
P=1bar			
Liquide	1	10 ⁻²	10 ⁻⁵
Fluide supercritique	0,3	10-4	10 ⁻³
$(\mathbf{T}_{\mathbf{c}},\mathbf{P}_{\mathbf{c}})$			

1.2.3 Le Dioxyde de carbone, solvant bio propre :

Le CO_2 se positionne en tête des fluides supercritiques industriels car il permet de développer des procédés à basse température pour des produits thermosensibles [5]. Le tableau 1.2 donne les valeurs des caractéristiques critiques pour quelques composés utilisés sous leurs formes supercritiques.

<u>Tableau1.2</u>:Propriétés de composés adaptés aux applications supercritiques. (DIPPR, 1985)

Fluide	Temnérature	Pression critique	Masse volumique
Tiulde	Temperature	r ression critique	Masse volumique
	critique T _c (⁰ C)	P _c (MPa)	$\rho_c (\mathrm{kg.m}^3)$
dioxyde de carbone	31,2	7,38	468
dioxyde d'azote	36,4	7,24	457
ammoniaque	132,4	11,29	235
eau	374,1	22,10	317
ethylène	9,5	5,06	220
ethane	32,5	4,91	212
propane	96,8	4,26	225
n-pentane	196,6	3,37	232
benzène	289,5	4,92	304
toluène	320,8	4,05	290

Chapitre 1

méthanol	240,0	7,95	275
éthanol	243,1	6,39	280
acétone	235,0	4,76	273

Le dioxyde de carbone (CO₂), naturellement à l'état gazeux et en abondance dans l'atmosphère, s'avère être un solvant exceptionnel dès qu'on le soumet à des conditions de pression et de température particulières. En élevant la température du CO₂ de quelques degrés (35°) par rapport à la température ambiante et en le soumettant en revanche, à une pression très élevée (70 à 300 bars), le CO₂ atteint un état critique, entre gaz et liquide. C'est cet état dit "supercritique" qui confère au dioxyde de carbone un fort pouvoir solvant, tout en lui conservant ses qualités intrinsèques [6].

Il présente par ailleurs de nombreuses propriétés qui en font un solvant de choix...

- Non toxique;
- Peu onéreux;
- Non inflammable;
- Haute pureté;
- Inodore;
- Des conditions critiques facilement accessibles;
- Un coefficient de diffusion élevé;
- Une faible réactivité chimique.

La figure1.2 montre bien que l'on peut ajuster la masse volumique du milieu dans des proportions notables, par variations de quelques MPa ou de quelques ⁰C. Par ailleurs il apparaît qu'une légère augmentation de la pression à température constante, entraîne un accroissement de la masse volumique et qu'une élévation de la température à pression fixée produit l'effet inverse [7].

Figure 1.2 : Diagrammes de phases (P,T) et (P, ρ) du CO₂ pur.

La figure 1.3 donne un aperçu sur l'évolution de la viscosité en fonction des paramètres P et T.

L'augmentation de la masse volumique avec la pression, à température constante, entraîne un accroissement de la viscosité. Par contre, lorsqu'on élève la température, à une pression fixée, la masse volumique du milieu décroît ce qui provoque une diminution de la viscosité.

Figure 1.3: Evolution de la viscosité du CO₂ en fonction de P et T.

1. 2.4 Solubilité dans les FSC

1.2.4.1 Influence de la masse volumique

La connaissance de la solubilité du soluté dans le milieu est une donnée importante et quasi- nécessaire pour le développement d'un procédé [3]. Le profil de solubilité du soluté dans le FSC évolue avec la pression et la température. Il peut être directement relié à ces paramètres en terme de paramètres de solubilité, de coefficient du viriel et de fugacité. C'est cette dernière relation qui va être mise en évidence. L'effet de chacune des pression et température sur la solubilisation des solutés dans les FSC est relativement simple néanmoins pour la pression : la solubilité des solutés augmente rapidement au voisinage du point critique du solvant alors qu'à haute pression, cette augmentation avec la pression est moins prononcée. L'évolution de la solubilité est le reflet de celle de la densité. L'effet de la température est bien plus complexe, et il faut là tenir compte des effets de la température sur la tension de vapeur du soluté ainsi que sur la densité du solvant supercritique. En effet, une augmentation de la température aura pour effets conjugués de provoquer une augmentation de la tension de vapeur du soluté d'une part, c'est-à-dire l'augmentation de sa volatilité, et la diminution de la densité du solvant d'autre part, qui aura pour conséquence de diminuer les interactions solvant-soluté. A haute pression (bien supérieure à la pression critique du solvant), la densité varie peu avec la température et la tension de vapeur a donc un

Chapitre 1

effet prédominant, ce qui se traduit par une augmentation de la solubilité avec la température. A basse pression, l'effet de la densité est prépondérant, et la solubilité diminue lorsque la température augmente. Cet effet correspond au phénomène de solubilité rétrograde.

1.2.4.2 Addition d'un co-solvant

Selon les conditions de température et de pression, le CO_2 supercritique est fluide apolaire ou peu polaire, d'une manière générale, il permet de solubiliser des composés apolaires et de faible poids moléculaire [8]. L'addition d'un tiers corps nommé modificateur polaire ou co-solvant ou encore entraîneur usuellement de volatilité intermédiaire entre celle du solvant et du soluté et dont l'ajout se fait par petite quantité (1-15%) modifie très peu les propriétés critiques et la densité du solvant. Ainsi par exemple, la solubilité de l'acide salicylique dans le CO_2 supercritique à 55 ^{0}C et 10MPa, est augmentée de deux ordres de grandeur uniquement par ajout de 3.5% de méthanol ou d'acétone [9].

1.2.5 Applications : [5] et [10]

Les applications des fluides supercritiques paraissent potentiellement très nombreuses mêmes si les développements industriels restent encore limités, principalement au domaine de l'extraction de produits naturels. Pourtant, il nous semble que plusieurs secteurs devraient connaître un brillant futur:

- A moyen terme, l'élaboration de matériaux poreux (aérogels, céramiques, mousses, et divisés (poudres...)

- A plus long terme, les réactions chimiques et biochimiques mises en œuvre dans un milieu supercritique qui constitue un nouveau type de solvant de réaction à propriétés variables.

A/ L'extraction fluide-liquide

Il est surprenant que constater que l'extraction fluide –liquide dont le potentiel de développement paraît beaucoup plus large que celui de l'extraction fluide –solide a retenu l'attention d'un nombre plus restreint d'équipe de Recherche et Développement. Pourtant, la mise en œuvre d'un procédé en continu peut conduire à des prix compétitifs et permet d'éviter les problèmes technologiques liés à la

Chapitre 1

manipulation de solide en batch. Les diverses applications du fractionnement fluide – liquide sont groupées dans le tableau 1.3.

Tableau 1.3 : Applications du fractionnement fluide –liquide			
	Développements industriels	Remarques	
Désasphaltage de résidus pétroliers.	Nombreuses unités industrielles de grande capacité (R.O.S.E .process (USA)	Procédé "OPTICRITIQUE"ASVAHL(F)	
Régénération des huiles usagées	Pilote	Procédé écologique (les solvants utilisés sont des hydrocarbures légers)	
Déterpénation des essences d'agrumes	Unité industrielle USA pilotes	Opération extrêmement délicate	
Extraction des arômes des boissons fermentées (vin, bière et cidre)	Développements en cours	Excellente sélectivité entre la fraction aromatique et l'éthanol	
Fractionnement supercritique des lipides:			
-Lécithine ex :huiles végétales	Pilote	Développement industriel en cours	
-Acides gras poly-insaturés ex : Huile de poisson	Pilote	Développement industriel en cours	
-Elimination du cholestérol/fractionnement du beurre	Recherche/ Pilote (Japon, USA, Europe)		
Extraction des polluants des eaux résiduaires	Installation industrielle à Baltimore (USA)	(Elimination des hydrocarbures chlorés, les chlorophénols et dérivés.	
Elimination des pesticides d'huiles	Recherche		
Purification de produits chimiques: -Alcools et azéotropes -Produits pharmaceutiques	Recherche/Pilote dans de nombreux pays		

B/ L'extraction fluide-solide:

C'est historiquement la première utilisation du CO_2 supercritique à l'échelle industrielle; ces procédés sont donc également les plus aboutis. Le tableau 1.4 présente les principaux procédés de séparation par fluide supercritique.

Tableau1.4: Applications industrielles de l'extraction fluide-solide			
Objectif	Développements industriels	Remarques	
Décaféination du café	Unités industrielles :	Fixation de la	
	-HAG (Allemagne)	caféine sur	
		charbon actif	
	-General Foods (USA)	Récupération de la	
		caféine en phase	
		acqueuse	
Décaféination du thé	SKW Trosberg(USA)		
Extraction des résines du	SKW(RFA)		
houblon	United	CO ₂ liquide ou	
	Brewereis(Australie)	supercritique	
		70 000 T/An	
	Pfizer (USA)	traitées	
Extraction d'épices	SKW(RFA)	Grande activité	
	Pfizer-cal (France)	R&D dans tout ce	
	Flavex(RFA)	secteur	
	Mori Seiyn(Japan)		
Extraction d'arômes	Nombreux laboratoires et		
	pilotes		
Extraction d'huiles	SKW		
essentielles	KRUPP(RFA),Pfizer		

1.3 Principe du procédé d'extraction par CO₂ supercritique

Le diagramme présenté dans la figure (1.4) illustre le principe de l'extraction basé sur la bonne solubilité des matières à extraire dans le CO₂, dans un premier temps où s'effectue l'extraction en elle même.

Dans un second temps et ce après détente, la séparation s'effectue, une étape dans laquelle cette solubilité doit être la plus faible possible, afin de récupérer l'extrait dans sa totalité. Dans ce type d'extraction le CO_2 est utilisé sous ces deux états liquide donc d'une pression inférieure à 60 bars et supercritique d'une pression pouvant aller jusqu'à

Figure 1.4 : Diagramme du procédé d'extraction isotherme au CO₂ supercritique.

1.4 Techniques expérimentales :

Alors que la thermodynamique dispose d'un nombre important de données et de modèles proches des conditions ambiantes il y a beaucoup moins d'informations disponibles aux pressions élevées, ceci revient en premier lieu aux erreurs systématiques induites lors des prélèvements des échantillons représentatifs des équilibres.

Les techniques de mesure d'équilibres à hautes pressions se rangent en général dans deux grandes classes techniques: les méthodes synthétiques et les méthodes analytiques ayant chacune des avantages et des inconvénients. Avec les méthodes synthétiques, la composition totale du mélange est connue à priori, et l'on fait varier une grandeur comme le volume ou la température pour rechercher les transitions de phase soit visuellement soit par suivi de la variation de la pression totale. Avec les méthodes par pesée, la précision des mesures P, T, x est très grande. L'observation directe (visuelle) de l'apparition de la phase liquide n'est pas un très bon moyen dans ce cas car elle nécessite malgré tout la condensation d'une quantité non négligeable de phase vapeur, ce qui conduit à un déplacement sensible de l'équilibre. Un des inconvénients majeurs

des méthodes synthétiques est de synthétiser le mélange soit volumétriquement soit par pesée, ce qui est fastidieux lorsqu'il y a plusieurs composés et conduit rapidement à une détérioration de la précision sur la composition (les quantités de chacun des composés s'amoindrissant). Pour les mélanges ayant plusieurs constituants, il est préférable d'utiliser une méthode analytique où chaque phase en équilibre pourra être étudiée séparément à partir d'échantillons. Pour des mélanges binaires et ternaires, le choix entre les méthodes synthétiques et analytiques dépend de plusieurs facteurs qui sont à prendre en compte dans le cahier des charges: niveau de température et de pression, nature du mélange, etc.

Les méthodes analytiques comportent plusieurs sous catégories :

- Les méthodes en circuit ouvert (type dynamique).
- Les méthodes en circuit fermé.

Les méthodes en circuit fermé comprennent les mélanges statiques et les mélanges à recirculation d'une ou plusieurs phases. Pour ces dernières, le temps nécessaire pour que l'équilibre soit établi n'est pas un paramètre limitatif, alors qu'il est critique pour les méthodes dynamiques en circuit ouvert.

Dans les mélanges statiques, il n'y a pas d'échange de matière entre la cellule d'équilibre et un quelconque organe périphérique. Les mélanges statiques et à recirculation permettant d'atteindre l'équilibre en jouant sur le temps de contact libre entre les phases sont dans des certaines mesures les plus satisfaisantes et les plus simples.

Il y a toutefois un inconvénient: c'est celui d'avoir un système de prélèvement fournissant des échantillons représentatifs et de taille suffisamment faible pour ne pas déplacer l'équilibre étudié ce qui est d'autant plus délicat prés du point critique du mélange.

Les méthodes dynamiques en circuit ouvert ont pour elles l'avantage de minimiser le temps de séjour du mélange dans la cellule d'équilibre, et de fournir de grandes quantités d'échantillons sans influence de ces dernières sur l'équilibre luimême. L'inconvénient est la difficulté à obtenir un réel équilibre principalement pour les mélanges de composition à grandes différences de volatilité, la consommation importante de mélange et l'utilisation d'un système de régulation complexe.

Toutes les méthodes analytiques ont un inconvénient en commun c'est celui de la nécessité d'avoir la méthode d'analyse appropriée pour l'étude des échantillons [14].

1.5 Conclusion

Les milieux FSC présentent donc de nombreux avantages pour réaliser des procédés de séparation telle l'extraction.

- ✓ On peut ajuster la solubilité du soluté et la sélectivité du milieu, par variation des conditions opératoires (pression, température, addition du co-solvant).
- ✓ Le transfert de matière est favorisé par de fortes diffusivités et de faibles viscosités, caractéristiques des FSC.
- ✓ Enfin il est possible dans certains cas, par simple détente, de récupérer un soluté complètement sec.

Chapitre 2 ETUDE THERMODYNAMIQUE DES EQUILIBRES LIQUIDE-VAPEUR

2.1 Introduction

La connaissance des lois d'équilibres entre phases, par une analyse thermodynamique du système ou, tout simplement, par une série d'expériences est fondamentale pour l'étude des séparations des mélanges. L'examen des courbes d'équilibre permet d'apprécier a priori si l'opération unitaire est envisageable. Enfin la connaissance de ces équilibres liquide-vapeur est indispensable pour la simulation et l'optimisation des opérations unitaires du génie chimique.

La plus grande partie du domaine de l'équilibre des phases est régie par deux relations théoriques fondamentales. La première est la règle de phase, qui définit l'allure générale du diagramme des phases, la seconde est la formule de Clapeyron qui détermine la pente des courbes de ce diagramme.

2.2 Notions théoriques

2. 2.1 Degré de liberté [15,16]

Il est nécessaire, pour définir complètement un système, d'indiquer les valeurs numériques d'un certain nombre de variables, que l'on choisit parmi la pression, la température, l'énergie interne, l'entropie et les concentrations des différentes phases. Parmi les variables, on distingue les variables extensives (qui dépendent de la masse) et les variables intensives dites variables d'état .Un équilibre entre phases ne dépendant pas des quantités réelles des diverses phases en présence, on ne tiendra compte que des variables intensives, comme la température, la pression et la concentration pour le décrire.

Le nombre de variables d'état qu'on peut faire varier de manière indépendante sans modifier le nombre de phases s'appelle le nombre de degré de liberté ou, parfois la variance du système.

Son calcul est effectué au moyen de la règle de phases ou règle de GIBBS.

Cette règle proposée par GIBBS fournit une relation générale entre le nombre v de degré de liberté d'un système, le nombre de phases φ et le nombre de constituants indépendants **C**.

Elle exprime que l'on a toujours pour un système non réactionnel :

$$\mathcal{V} = \mathbf{C} + \mathbf{2} - \varphi$$

Pour un système binaire (C=2) en équilibre liquide-vapeur (φ =2) la règle des phases indique que la variance est égale à v=2. Ceci signifie que l'on peut faire varier de manière indépendante deux variables d'état sans modifier le nombre de phases. Ces variables sont choisies parmi la température, la pression et la composition.

2.2.2 Formule de Clapeyron :

La courbe de tension de vapeur est limitée dans le domaine de faibles températures par le point triple qui représente les conditions dans lesquelles coexistent les phases solide, liquide et vapeur, et à haute température, par le point critique. La connaissance de la courbe de tension de vapeur est indispensable pour repérer les états de la matière, liquide et vapeur en particulier [17].

L'application de la condition d'équilibre permet d'établir la relation de Clapeyron .

$$\frac{dP^{sat}}{dT} = \frac{\Delta H}{T\Delta V}$$

Ou: ΔH est la chaleur latente correspondante au changement de phase, ΔV la variation de volume correspondante et P^{sat} la pression de saturation ou pression d'équilibre.

2.3 Diagrammes de phases :

Les comportements des équilibres de phases hyperbars pour des systèmes binaires sont caractérisés par des diagrammes de phases (P-T) obtenus à partir d'observations expérimentales ou de modèles thermodynamiques. De tels systèmes montrent cependant une grande variété de comportements. En effet, certains systèmes ont une simple région de coexistence de phases (ex: liquide – vapeur), d'autres présentent des azéotropes et des régions isolées, de non miscibilité liquide – liquide. Avant de décrire ces diagrammes de phases classés en cinq catégories générales de projections (P-T) pour les mélanges binaires et trois catégories pour les mélanges ternaires. Une définition de certaines abréviations dans ces représentations est toutefois indispensable [18, 19, 20,21] :

La LCST (lower critical solution temperature : Température critique inférieure de la solution) est:

• La température à laquelle deux liquides fusionnent de façon critique pour former une seule phase liquide quand la température est abaissée.

• La température à laquelle a lieu la même transition mais en présence d'une phase gazeuse non critique.

L'UCST (upper critical solution temperature: Température critique supérieure de la solution) est la température à laquelle deux liquides fusionnent de façon critique pour former une seule phase liquide quand la température est augmentée. L'UCST est inférieure à la LCST.

L'UCEP (upper critical end point :point critique final supérieur): Pour les systèmes liquide fluide supercritique, l'UCEP est le point d'intersection de la courbe UCST et de la courbe à trois phases liquide liquide vapeur (LLV). A l'UCEP une phase liquide et une phase vapeur fusionnent de façon critique pour former une phase unique en présence d'une autre phase liquide non critique quand la température est augmentée. Scott et Van Konynenburg [18] montrèrent que les diagrammes de phases des mélanges binaires peuvent être décrits en utilisant l'équation d'état de Van der Waals et être classés selon cinq types de diagrammes (figure2.1).

<u>Figure2.1:</u> Courbes de diagrammes de phases des mélanges binaires. Points C₁ et C₂ : points critiques des composants 1 et 2. Courbe en pointillée : courbe du mélange critique. Triangles : points critiques

Type I:

Les deux composants sont totalement miscibles et la courbe du mélange critique se déplace de façon continue entre les deux points critiques de ces derniers. Les systèmes de type I sont généralement composés de constituants chimiquement similaires ou qui ont des propriétés critiques de même ordre de grandeur. La figure 2.2 illustre les diagrammes P-x , P-T, et P-T-x de type I.

Figure 2.2 : Diagrammes de phases des mélanges binaires de type I.

La figure (2.2.c) représente un diagramme P-x à une température T_1 inférieure à la température critique des deux composants. L'enveloppe vapeur –liquide coupe l'axe de pressions en deux points: la pression de vapeur du composant 1 $[P_1^{vap}(T_1)]$ et la pression de vapeur du composant 2 $[P_2^{vap}(T_2)]$.

A une température T₂ supérieure à T_{C1} (figure 2.2.d), l'enveloppe (V-L) est similaire à celle décrite sur la figure (2.2.c), cependant elle coupe l'axe des pressions seulement à $P_2^{vap}(T_2)$.

Comme les diagrammes P-x sont déterminés à des températures de plus en plus élevées, les points critiques du mélange sont déterminés comme une fonction de la pression et de la composition (figure 2.2.a). Si ce diagramme P-T-x est projeté sur un diagramme P-T, une courbe de mélange critique est observée tel qu'il est montré sur la figure (2.2.b).

Parmi ces systèmes de type I nous citerons les mélanges binaires de dioxyde de carbone – n hexane et dioxyde de carbone – toluène.

Type II:

Cette classe de systèmes présente des similarités avec ceux du type I excepté la région où trois phases coexistent (L-L-V), cette ligne triphasique prend fin au point critique final supérieur (UCEP). La représentation à trois dimensions P-T-x de région LLV est montrée sur la figure 2.3.

<u>Figure 2.3</u>: Diagramme P-T-x pour la région liquide liquide vapeur d'un mélange binaire

Un exemple de mélange binaire de type II CO_2 -n octane (composés dont la polarité ou encore les dimensions de leurs molécules diffèrent).

Type III:

Tel qu'il est représenté sur la figure (2.1.c), il est à noter l'apparition d'une région LLV très proche du point critique du constituant le plus volatil. La branche de la courbe de mélange critique commençant au point critique du composant ayant la température critique la plus élevée entrecoupe la ligne LLV à la température critique inférieure de la solution (LCST). L'autre branche de la courbe qui commence au point critique du deuxième composant entrecoupe la ligne LLV à l'UCEP.

Aux températures inférieures à la LCST, une région LLV apparaît similaire à celle trouvée pour le type II.

Sur le diagramme P-T-x de la figure (2.4.a) apparaît le cas simple décrit ultérieurement de diagramme P-x à une température $T_1 \langle Tc_1$. Si la température est légèrement augmentée à T_2 le diagramme P-x sur la figure (2.4.c) prend la forme d'un système qui tend vers une immiscibilité du liquide (la phase liquide unique de

Chapitre 2

l'enveloppe V-L est sur le point de se diviser en deux phases liquides pour former un mélange à trois phases LLV). Ceci est montré sur la figure (2.4.c) par la droite sur la courbe de bulle.

L'inflexion horizontale sur la courbe de bulle représente la localisation de la LCST. Une branche de la courbe du mélange critique entrecoupe la ligne LLV précisément en ce point (figure 2.4.a).

A la température T_3 (figure 2.4.d) si la composition globale du mélange est inférieure à x^* un point critique L₁-Vest observé à une pression correspondant au sommet de l'enveloppe L₁-V. D'autre part si la composition globale du mélange est supérieure à x^* , le point critique LL est à une pression correspondant au sommet de l'enveloppe LL.

Pour une température T_4 supérieure à T_{C1} , l'enveloppe L-V qui est au dessus de la ligne LLV se rétrécit en un point d'inflexion horizontale.

A des températures supérieures à T₄ une simple boucle P-x est observée.

Pour ce type de systèmes nous noterons l'exemple du CO₂-Nitrobenzène.

Figure 2.4: Diagrammes de phases des mélanges binaires de type III.

Type IV:

Les diagrammes du type IV sont observés pour des mélanges binaires ayant des constituants de polarité différente. Comme le montre la figure (2.1.d) la courbe de mélange critique a deux branches. Cependant, la branche de la courbe qui débute au point critique du composé le moins volatil n'intercepte aucunement la région d'équilibre LLV comme pour le cas du type III.
Chapitre 2

A T₁ (figure2.5.c) un équilibre LLV est déjà établi. En partant d'un mélange de composition globale inférieure à x^* , nous rencontrons au dessus de la ligne LLV une enveloppe V-L qui coupe l'axe des pressions à P₁^{vap}. Pour des compositions supérieures à x^* , l'enveloppe L-L n'a plus la forme d'un dôme fermé avec un point critique. Les deux branches de l'enveloppe divergent à hautes pressions (cas rencontré pour les mélanges hydrocarbure - eau).

A T₂ (figure2.5.d) L'enveloppe V-L l'enveloppe V-L n'a plus de contact avec l'axe des pressions car la ligne d'équilibre V-L du composant le plus léger n'est jamais coupée à cette température.

A T_3 température supérieure à l'UCEP (figure2.5.e) deux phases existent et la courbe du mélange critique n'est pas coupée .Pour éviter toute confusion le diagramme P-x de la figure (2.5.e) n'est pas inclus dans le diagramme P-T-x .

La figure (2.5.f) montre qu'à une température T_4 l'enveloppe V-L présente un dôme fermé avec un point critique à une pression modérée .Une seule phase fluide existe à cette température pour des pressions plus élevées que la pression du mélange critique. Cependant si la pression augmente encore plus la phase fluide se divise en deux phases.

Deux droites d'équilibre sont représentées dans les deux régions à deux phases. Suivant la composition globale du mélange nous pouvons obtenir deux points critiques. L'un est au maximum de l'enveloppe V-L en augmentant la pression d'une façon isotherme d'une faible valeur à une valeur modérée. L'autre point critique du mélange est au minimum de l'enveloppe fluide –liquide qui existe à hautes pressions. Pour ce type IV nous citerons comme exemple les systèmes CO₂- squalane et CO₂eau.

Figure 2.5: Diagrammes de phases des mélanges binaires de type IV.

Type V:

Comme on le voit sur la figure (2.1.e) ce type est très similaire au type III. Seulement, il n'y a pas de région d'immiscibilité liquide à des températures plus basses que la LCST. Nous citerons comme exemple le système éthane – éthanol.

Finalement l'examen des diagrammes thermodynamiques montre leur grande complexité et l'influence souvent très importante de l'adjonction de composés

en faible concentration dans les mélanges, de la différence de la taille, de la forme, de la structure et de la polarité de leurs molécules [19].

2.4 Formalisme thermodynamique :

2.4.1 Critère d'équilibre chimique :

Le calcul des équilibres entre phases des systèmes à constituants multiples est basé sur le concept du potentiel chimique μ_i . Gibbs démontra qu'à l'équilibre, à P et T constantes le potentiel chimique pour chaque espèce est le même dans toutes les phases en présence [22].

Ainsi à l'équilibre :

$$\mu_{i}^{v} = \mu_{i}^{1}$$
 (i=1,2,...) (1)

Pour deux phases liquide (l) et gaz (v) d'un système donné à n constituants (pour les mêmes potentiels de référence) les conditions d'équilibre se réduisent à l'égalité des fugacités.

$$\mu_{i}^{v} - \mu_{i}^{1} = RT \ln \frac{f u_{i}^{l}}{f u_{i}^{v}} = 0 \qquad (i=1,2,..)$$
(2)

$$fu_i^l = fu_i^v$$
 (i=1,2,...) (3)

Le problème fondamental est de relier ces fugacités aux compositions de chacune des phases. Dans ce qui suit, nous négligeons les effets dus aux forces de surface, gravité, champs électriques ou magnétiques et membranes semi perméables.

Alors

$$fu_i = fu(T, P, x_i, y_i)$$
 (i=1,2,...) (4)

En explicitant les fugacités d'un constituant i dans chacune des phases Dans la phase vapeur :

$$fu_i^{\nu} = Py_i\phi_i^{\nu} \tag{5}$$

Dans la phase liquide :

$$f u_i^l = P^{sat} x_i \phi_i^l \tag{6}$$

Avec
$$x_i = \frac{n_i^l}{n_{tot}^l}$$
 (7)

Et
$$y_i = \frac{n_i^v}{n_{tot}^v}$$
 (8)

Où P est la pression totale, P^{sat} est la pression de saturation, x_i et y_i sont respectivement les fractions molaires du composé i dans la phase liquide et vapeur, ϕ_i^l le coefficient de fugacité dans la phase liquide et ϕ_i^v le coefficient de fugacité dans celle vapeur. Le calcul de l'équilibre se résout par la détermination du coefficient de fugacité [15].

2.4.2 Expressions des coefficients de fugacités:

Les coefficients de fugacité ϕ_i^l et ϕ_i^v sont calculés à partir de l'expression (5):

$$\ln \phi_i^l = \frac{1}{RT} \int_{V^l}^{\infty} \left[\left(\frac{\partial P}{\partial n_i} \right)_{T, V_T, n_j} - \left(\frac{RT}{V} \right)_T \right] dV_T - \ln Z^l$$
(9)

$$\ln \phi_i^v = \frac{1}{RT} \int_{V^v}^{\infty} \left[\left(\frac{\partial P}{\partial n_i} \right)_{T, V_T, n_j} - \left(\frac{RT}{V} \right)_T \right] dV_T - \ln Z^V$$
(10)

Où le facteur de compressibilité Z est donné par

$$Z^{l} = \frac{PV^{l}}{RT}$$
(11)

$$Z^{v} = \frac{PV^{v}}{RT}$$
(12)

Où V_T est le volume total, V^l et V^v sont respectivement le volume molaire de la phase liquide et le volume molaire de la phase vapeur.

2.5 Conclusion

La connaissance des lois d'équilibre entre phases, par une analyse thermodynamique du système ou tout simplement par une série d'expériences, est donc fondamentale pour savoir si une séparation est possible ou non. L'examen des courbes d'équilibre permet d'apprécier a priori si l'opération unitaire envisagée sera plus ou moins difficile à réaliser.

CHAPITRE 3

Modélisation thermodynamique des équilibres de phases

3.1 Introduction

La modélisation d'un système physique repose sur la connaissance d'un certain nombre de propriétés de corps purs et de mélanges.

Ces propriétés servent de base à la détermination des propriétés thermodynamiques, de transfert et des équilibres entre phases. Ainsi la qualité des résultats est directement liée aux données des corps purs et mélanges et aux modèles choisis pour représenter le comportement thermodynamique du système considéré. Le choix du modèle thermodynamique est principalement dicté par le souci de rigueur, de fiabilité et de validité dans le domaine opératoire considéré.

Deux types de méthodes existent pour calculer les équilibres entres phases [22]. Une première façon d'aborder le problème consiste à appliquer aux deux phases en présence des modèles différents: les fugacités en phase liquide sont calculées à partir d'un état de référence, qui est caractérisé par le corps pur dans les mêmes conditions d'état physique, de température et de pression, les lois des solutions idéales étant corrigées en utilisant un modèle d'enthalpie libre d'excès ou de coefficient d'activité (NRTL, UNIQUAC, UNIFAC,...). Les fugacités en phase vapeur sont quant à elles calculées par une équation d'état (Gaz parfait, SRK, PR,...). Ces méthodes sont utilisées pour représenter l'hétérogénéité du système traité et sont classiquement appelées **méthodes** "hétérogènes" ou connues par approche $\gamma - \phi$. Leur application couvre plutôt le domaine des basses pressions et il est important de noter qu'elles ne satisfont pas la continuité existant dans la zone critique entre l'état vapeur et l'état liquide. La seconde classe regroupe les méthodes dites "homogènes" ou souvent connues par approche $\phi - \phi$, qui appliquent le même modèle, généralement une équation d'état, aux deux phases en présence, permettant ainsi d'assurer une continuité au point critique. Les équations d'état avec leurs règles de mélange classiques (SRK, PR,...) font partie de cette deuxième catégorie. Cependant, le domaine d'application de ces modèles se limite aux systèmes apolaires ou peu polaires [23]. En intégrant dans les règles de mélange des équations d'état les modèles d'enthalpie d'excès, certains auteurs ont réussi à réunir ces deux approches. L'appellation classiquement attribuée à ce type de modèle est l'approche combinée.

3.2 Recherches bibliographiques

Plusieurs travaux sur la modélisation de l'équilibre de phases du système huile essentielle $-CO_2$ à l'état supercritique ont vus le jour depuis le développement du procédé d'extraction supercritique.

Les premiers travaux sur cette déterpénation d'huiles essentielles des agrumes se sont axés sur la mesure de solubilité des composés majoritaires des huiles comme le limonène (monoterpène $C_{10}H_{16}$) dont la teneur est comprise entre 65et 90%. Copella et Barton [43] ont modélisé les équilibres de phases pour le systèmes CO_2 – limonène et CO_2 –limonène –citral, en utilisant l'équation de Peng –Robinson. Leurs résultats sont en bon accord avec ceux de l'expérience. Pour une bonne représentation des équilibres, ils ont fait varier les coefficients d'interactions binaires en fonction de la température.

Brandani et coll [44] ont utilisé l'équation de Peng-Robinson avec la règle de mélange de Panagiotopoulos et Reid. Les deux paramètres d'interaction sont calculés à partir de données de solubilité du limonène et du citral dans le CO_2 . Dans leurs calculs d'équilibre sur le système ternaire, ils supposent que le paramètre d'interaction binaire $k_{lim-citr}$ est nul vu la similarité dans la structure moléculaire. Les résultats sont en bon accord avec l'expérimental.

Temelli et coll [45] ont étudié l'influence de la température et de la pression sur la sélectivité du CO_2 supercritique vis- à -vis des composés de l'huile d'orange puis entre le limonène et le linalol. Les résultats montrent une très grande sélectivité à 70°C et 97 bar, mais un très faible rendement d'extraction .Ils modélisent les équilibres de phase par la méthode des contributions de groupes de Stolk-Jurgense pour le calcul de la fugacité, les résultats sont en bon accord avec les valeurs expérimentales.

En ce qui concerne le 1,8-cinéole ($C_{10}H_{18}O$) monoterpène oxygéné des travaux ont été réalisés par Gomes De Azevedo et coll. [11] qui ont utilisés l'équation de Peng – Robinson. Les paramètres T_c et P_c ont été estimés par la méthode de Nokay et Lydersen respectivement, tandis que le facteur acentrique a été estimé par la méthode de Pitzer. Ils estiment que l'équation d'état reproduit quantitativement l'équilibre de phases observé.

3.3 Les équations d'état :

L'application d'une équation d'état pour le calcul des équilibres liquidevapeur fût introduite dès la fin du siècle dernier par Van Der Waals en 1873, depuis avec les développements de l'informatique, l'utilisation d'expressions analytiques de plus en plus performantes permettent la prédiction des propriétés thermodynamiques. Le choix d'une équation par rapport à une autre reste dicté par la recherche d'un compromis entre la simplicité de la forme mathématique, l'étendue du domaine d'application et la précision souhaitée [17].

En général une équation d'état est développée initialement pour les substances pures, elle s'écrit sous la forme F(P,V,T,x) = 0.

Ou x représente le vecteur composition (fraction molaire) ; et x=1 pour un corps pur. Toute équation d'état doit vérifier le critère suivant aux coordonnées critiques : Pour T=Tc , P=Pc et V=Vc

$$\left\{ \left(\frac{\partial P}{\partial V} \right)_{T=T_c} = 0et \left(\frac{\partial^2 P}{\partial V^2} \right)_{T=T_c} = 0 \right\}$$
(13)

Ceci est du au fait que l'isotherme critique possède une pente horizontale et un point d'inflexion au point critique [17].

3.3.1 Les différents modèles :

Les équations d'état sont des outils majeurs pour la description des propriétés thermodynamiques des fluides et pour la prédiction des équilibres de phase, les articles foisonnent dans la littérature et les revues sont nombreuses, la plupart sont applicables dans des conditions précises et pour des composés particuliers :

- Les équations empiriques, qui contiennent un grand nombre de paramètres spécifiques aux constituants et aux conditions de pression et de température dans lesquelles ils ont été déterminés. Elles sont très efficaces dans une gamme de conditions mais ne peuvent pas être utilisées en dehors.
- Elles peuvent être utilisées dans une large gamme de conditions

mais sont moins précises que les précédentes. Par ailleurs elles sont fort complexes à appliquer.

Les équations semi- empiriques, qui combinent les caractéristiques des deux précédentes. Les équations d'état cubiques, qui généralement sont semiempiriques, sont les équations d'état les plus répandues et sans doute les plus efficaces.

Dans le domaine des hautes pressions qui caractérisent notre étude, les équations cubiques sont les plus utilisées et les plus simples à appliquer [23].

En conséquence, nous nous intéresserons uniquement à cette formulation d'équations d'état et en particulier celle de Soave-Redlich –Kwong et de Peng-Robinson.

3.3.1.1 Equation d'état de Redlich – Kwong (1949) [24] :

L'expression de l'équation de Redlich -Kwong (RK) est :

$$P = \frac{RT}{V - b} - \frac{a}{\sqrt{T}V(V + b)}$$
(14)

Avec :

$$a = \frac{0,42748(RT_C)^2}{P_C}$$
(15)

Et b =
$$\frac{0.08664 RT_C}{P_C}$$
 (16)

L'équation (14) peut être écrite sous la forme polynomiale :

$$Z^{3}-Z^{2} + (A - B - B^{2}) Z - AB = 0$$
(17)

Avec

Z : Facteur de compressibilité

$$A = \frac{aP}{(RT)^2}$$
(18)

$$B = \frac{bP}{RT}$$
(19)

3.3.1.2 Equation d'état de Soave – Redlich – Kwong (SRK) (1972) [24]:

Soave proposa une modification à l'équation originale RK, car d'importants écarts ont été observés lors de la prédiction des propriétés thermodynamiques de la phase liquide.

L'expression de l'équation est :

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b)}$$
(20)

Avec :

$$a = a(T_r).a(T_c)$$
⁽²¹⁾

$$a(T_c) = 0,42748 \ \frac{(RT_c)^2}{P_c}$$
(23)

$$a(T_r) = [1+m(1-T_r^{0,5})]^2$$

b=0, 08664
$$\frac{RT_c}{P_c}$$
 (24)

Où m est considéré comme une fonction de ω (facteur acentrique)

$$m=0,479794+1,57588\,\omega-0,192078\,\omega^{2}+0,02461\,\omega^{3}$$
(25)

La forme cubique de l'équation SRK est donnée par l'équation suivante :

$$Z^{3} - Z^{2} + (A - B - B^{2}) Z - AB = 0$$
(26)

Avec A et B sont données par les équations (18) et (19) respectivement.

3.3.1.3 Equation d'état de Peng – Robinson (PR) (1976) : [16] et [8]

L'équation s'écrit :

$$P = \frac{RT}{V - b} - \frac{a}{V^2 + bV - b^2}$$
(27)

Avec
$$a = a(T_r).a(T_c)$$
 (28)

$$b = \frac{0,077796 \ RT_c}{P_c}$$
(29)

$$a(T_c) = 0.457235 \frac{(RT_c)^2}{P_c}$$
(30)

$$a (T_r) = [1 + m(1 - T_r^{0.5})]^2$$
(31)

 $m = 0,37646 + 1,54226 \,\omega - 0,26992 \,\omega^2 \tag{32}$

La forme cubique de l'équation (27) est la suivante :

$$Z^{3}-(1-B)Z^{2}+(A-2B-3B^{2})Z-(AB-B^{2}-B^{3})=0$$
(33)

Les équations de Peng-Robinson (PR) et de Soave-Redlich-Kwong (SRK) sont largement utilisées dans l'industrie. Leurs avantages résident dans le fait qu'elles nécessitent peu de données expérimentales (les coordonnées critiques et le facteur acentrique), un temps de simulation relativement court et surtout qu'elles conduisent à une bonne estimation des équilibres liquide-vapeur.

Par ailleurs, ces équations présentent d'importantes limitations, par exemple les densités liquides ne sont pas correctement évaluées, les paramètres ne sont pas adéquats notamment pour les fluides polaires.

De plus quelles que soient les modifications apportées, il apparaît impossible de représenter de manière satisfaisante la région critique.

3.3.1.4 Equation d'état de Patel – Teja (PT) [25]

Leur équation est exprimée comme suit :

$$P = \frac{RT}{V - b} - \frac{a}{V(V + b) + c(V - b)}$$
(34)

Les trois paramètres a, b et c sont donnés par les expressions :

$$a = \Omega_a \frac{(RTc)^2}{Pc} \alpha(Tr)$$
(35)

$$b = \Omega_b \, \frac{RTc}{Pc} \tag{36}$$

$$c = \Omega_c \, \frac{RTc}{Pc} \tag{37}$$

 Ω_a, Ω_b et Ω_c sont déterminés à partir des équations :

$$\Omega_{a} = 3\zeta_{c}^{2} + 3(1 - 2\zeta_{c})\Omega_{b} + \Omega_{b}^{2} - 1 - 3\zeta_{c}$$
(38)

$$\Omega_{b}^{3} + (2 - 3\zeta_{c})\Omega_{b}^{2} + 3\zeta_{c}^{2}\Omega_{b} - \zeta_{c}^{3} = 0$$
(39)

$$\Omega_c = 1 - 3\zeta_c$$

Et
$$\alpha(Tr) = \left[1 - H\left(1 - T_r^{0.5}\right)\right]^2$$
 (40)

Le paramètre a est une fonction de la température, b et c sont des constantes, H et ζc sont dépendant de la substance. Pour le CO₂ H=0,7077 et ζc =0,309 [25].

L'équation (34) peut s'écrire sous la forme :

$$Z^{3}+(C-1)Z^{2}+(A-B^{2}-2BC-B-C)Z+(B^{2}C+BC-AB)=0$$
(41)

Où A et B sont donnés par les équations (18) et (19).

Avec
$$C = \frac{cP}{RT}$$
 (42)

3.3.1.5 Equation d'état cubique à trois paramètres [26] :

Fuan – Nantsai et Dong –Syau –Jan établissent en 1990 une nouvelle équation d'état cubique à trois paramètres.

$$P = \frac{RT}{V-b} - \frac{a(T)}{V^2 + 2cV - b^2}$$
(43)

Lorsque b=2c l'équation se réduit à l'équation de Peng –Robinson.

L'équation précédente peut s'écrire sous la forme :

$$Z^{3}-(1+B-2C)Z^{2}+(A-B^{2}-2BC-2C)Z-(AB-B^{2}-B^{3})=0$$
(44)

a, b et c sont déterminés à partir des équations (35), (36) et (37) où Ω_b est la racine réelle, la plus petite de l'équation cubique suivante :

$$\Omega_{b}^{3} + (1 - 3\zeta_{c})\Omega_{b}^{2} + (1 - 3\zeta_{c} + 3\zeta_{c}^{2})\Omega_{b} - \zeta_{c}^{3} = 0$$
(45)

Et
$$\Omega_a = \Omega_b^2 + \Omega_b + \zeta c^3 / \Omega_b$$
 (46)

$$\Omega_c = \left(\Omega_b - 3\zeta_c + 1\right)/2 \tag{47}$$

Les valeurs de ξ_c pour les fluides purs sont généralisés en termes de facteur acentrique par :

$$\zeta_c = 0,32011 - 0,04539 \ \omega + 0,01631 \ \omega^2 \tag{48}$$

Pour a (T) l'équation (24) est utilisée. Le paramètre m n'est pas seulement fonction du facteur acentrique mais aussi de la température réduite.

 $m = m_0 + (4T_r - m_0 - 2)^2 / 50$ pour $T_r \le 1$ (49)

$$m=m_0+(2-m_0)^2/50$$
 pour $T_r > 1$ (50)

Et $m_0 = 0,375 + 1,546 \omega - 0,292 \omega^2$ (51)

3.3.2 Règles de mélange et coefficients de fugacité:

Les règles de mélange sont toutes les corrections que subissent les paramètres entrant dans la formulation de l'équation d'état qui définit le système,

tout en tenant compte de la manière dont ses constituants sont mélangés et de l'effet de chacun d'eux sur les autres constituants.

Aussi le coefficient de fugacité d'un constituant dans un mélange diffèrera d'une équation d'état à une autre et d'une règle de mélange à une autre.

L'équation d'état pour un mélange s'écrit F(P,V,T,N₁,N₂,...N_i,...a_m,b_m,...)=0

La détermination des coefficients a_m , b_m repose sur :

- 4 La connaissance des paramètres a_{ii} .
- L'adaptation d'une règle de mélange permettant le calcul des paramètres a_{ij} caractéristiques du mélange i-j à partir des paramètres a_{ii}.
- Le choix d'une règle de pondération qui relie les coefficients a_m=a_m(a_{ii},a_{ij},y_i,y_j) i=1 à n, j=1 à n d'un système à n constituants que des termes propres aux corps purs (a_{ii}), des termes a_{ij} représentatifs des interactions binaires.

3.3.2.1 Equation d'état de Soave – Redlich-Kwong : [24]

En adoptant les règles de mélange conventionnelles de Van der Waals :

$$\mathbf{a} = \sum_{i} \sum_{j} x_i x_j a_{ij} \tag{52}$$

Et
$$b = \sum_{i} x_i b_i$$
 (53)

On obtient l'expression de la règle de mélange suivante :

$$\ln \phi_i = \frac{b_i}{b} (Z - 1) - \ln(Z - B) - \frac{A}{B} (\frac{a_i}{a} + 1 - \frac{b_i}{b}) \ln(1 + \frac{B}{Z})$$
(54)

Avec

$$\mathbf{a}_{\mathbf{i}} = \left(\partial na / \partial n_{i}\right)_{n_{i\neq j}} \tag{55}$$

L'expression finale de ai dépend du terme aij .

$$\frac{a_i}{a} + 1 = \frac{2}{a} \left\{ \sum_k x_k (a_{ik} + \sum_{j=1} x_i x_j \left[n (\partial a_i / \partial n_i)_{j=i} \right] \right\}$$
$$+ \sum_{j \neq i} \sum_{m \geq i} x_j x_m \left[\left(\partial a_{jm} / \partial n_i \right)_{j\neq i} \right]_m \rangle j_m \neq i$$
(56)

Deux règles de mélange ont été utilisées avec les équations PR et SRK.

a - Règle de mélange à un seul paramètre binaire (conventionnelle) : [24]

$$a_{ij} = (a_i a_{ji})^{0.5} [1 - k_{ij}]$$
(57)

D'où

$$\frac{a_i}{a} + 1 = \frac{2}{a} \left[\sum_k x_k a_{ik} \right]$$
(58)

 k_{ij} est le coefficient d'interaction binaire entre les constituants i et j ajusté sur données de mélanges binaires (de ce travail ou de la littérature). Sa valeur doit correspondre à la valeur donnant l'écart minimal entre la propriété calculée (pression, fugacité, etc.) et la valeur expérimentale. Il faut de plus noter que $k_{ii}=k_{jj}=0$.

b-Règle de mélange de Panagiotopoulos et Reid : [21] et [27]

$$a_{ij} = (a_i a_j)^{0.5} [1 - k_{ij} + (k_{ij} - k_{ji}) x_i]$$
(59)

Et

$$\frac{a_i}{a} + 1 = \frac{1}{a} \sum_{k} x_k (a_{ik} + a_{ki}) - \sum_{i} \sum_{j} x_i^2 x_j (k_{ij} - k_{ji}) (a_i a_j)^{0.5} + x_k \sum_{k} x_k (k_{ki} - k_{ik}) (a_k a_i)^{0.5}$$
(60)

3.3.2.2 Equation d'état de Peng – Robinson PR:[24] et [25]

Toutes les règles de mélange citées pour l'équation SRK peuvent aussi bien s'appliquer à l'équation d'état de Peng –Robinson.

Le coefficient de fugacité est calculé à l'aide de la relation suivante :

$$\operatorname{Ln}\phi_{i} = \frac{b_{i}}{b}(Z-1) - \ln(Z-B)\frac{A}{2^{1.5}B}\left(\frac{a_{i}}{a} + 1 - \frac{b_{i}}{b}\right)\ln\left(\frac{Z+(1+2^{0.5})B}{Z+(1-2^{0.5})B}\right)$$
(61)

3.3.2.3 Equation d'état de Patel – Teja [24]

Patel et Teja ont utilisé la règle de mélange conventionnelle suivante basée sur la distribution aléatoire des molécules. Takishima et coll [26] l'utilisèrent pour corréler leurs données expérimentales mais sans succès, par contre avec le concept de Wilson une bonne corrélation a été obtenue.

Le modèle de Wilson qui considère l'effet de la composition locale des molécules s'exprime comme suit :

$$\mathbf{x}_{ji} = x_j \eta_{ji} / \sum_k x_k \eta_{ki}$$
(62)

Chapitre 3

$$\eta_{ji} = \exp\left[-\left(\lambda_{ji} - \lambda_{ij}\right)/RT\right]$$
(63)

Où x_{ji} est la fraction molaire locale de la molécule j autour de la molécule i et λ_{ji}

est l'énergie d'interaction entre les molécules j et i.

En appliquant les équations

$$a = \sum_{i} \sum_{j} x_i x_{ji} a_{ji}$$
(64)

$$O\hat{u} \quad a_{ji} = (a_i a_j)^{0.5} \tag{65}$$

Le paramètre b est donné par l'équation (53) et

$$\mathbf{c} = \sum_{i} x_i c_i \tag{66}$$

L'expression du coefficient de fugacité devient :

$$\operatorname{RTln}\phi_{i} = RT\ln\left(\frac{V}{V-b} + \frac{b_{i}}{V-b}\right) - RT\ln Z - \frac{a}{\delta}\left[\left(\frac{1}{V-a}\right)\left(\frac{\partial n\alpha}{\partial n_{i}}\right) - \left(\frac{1}{V-\beta}\right)\left(\frac{\partial n\beta}{\partial n_{i}}\right)\right] - \left[\frac{1}{\partial n}\left(\frac{\partial n^{2}a}{\partial n_{i}}\right) - \frac{a}{\delta^{2}}\left(\frac{\partial n\alpha}{\partial n_{i}}\right) - \frac{\partial n\beta}{\partial n_{i}}\right]\ln\left(\frac{V-\alpha}{V-\beta}\right)$$
(67)

Où

$$\alpha = -(b+c-\delta)/2 \tag{68}$$

$$\beta = -(b+c+\delta)/2 \tag{69}$$

$$\delta = \left[(b+c)^2 + 4bc \right]^{0.5}$$
(70)

$$\left(\partial n\alpha/\partial n_{i}\right) = -0.5\left[b_{i} + c_{i} - \left(\partial n\delta/\partial n_{i}\right)\right]$$
(71)

$$\left(\partial n\beta/\partial n_{i}\right) = -0.5\left[b_{i} + c_{i} + \left(\partial n\delta/\partial n_{i}\right)\right]$$
(72)

$$\left(\partial n \delta / \partial n_i\right) = 0.5 / \delta\left[\left(b + c\right)\left(b_i + c_i\right) + 2bc_i + 2b_i c\right]$$
(73)

$$1/n\left(\partial n^2 a/\partial n_i\right) = a^i + \sum_j x_j \left[\left(\eta_{ji} a_{ij}\right) + \left(\sum_k x_k \eta_{kj} - \eta_{ij} a^i\right) \right] / \left(\sum_k x_k \eta_{kj}\right)$$
(74)

$$\mathbf{a}^{\mathbf{i}} = \sum_{k} x_{ki} a_{kj} = \left(\sum_{k} x_{k} \eta_{kj} a_{kj}\right) / \left(\sum_{k} x_{k} \eta_{kj}\right)$$
(75)

3.3.2.4 Equation d'état cubique à trois paramètres : [28]

En adoptant les règles de mélange de Van der Waals le coefficient de fugacité s'écrit :

(77)

$$\operatorname{Ln}\phi_{i} = -\ln(Z-B) + \frac{b_{i}}{b}(Z-1) + \frac{A}{2sC}\left(\frac{c_{i}+rb_{i}}{s^{2}c}\right) - 2\frac{\sum_{j}x_{i}a_{ij}}{a}\ln\left(\frac{Z+(1+s)C}{Z+(1-s)C}\right) + \frac{A}{B}\left(\frac{c_{i}}{c} - \frac{b_{i}}{b}\right)\frac{B^{2} - CZ}{r + \frac{1}{r}}\left(Z^{2} + 2CZ - B^{2}\right)$$
(76)

Où r=b/c

$$s = (1 + r^2)^{0.5}$$
(78)

3.4 Calcul du facteur de compressibilité:

Une équation d'état cubique peut s'écrire donc sous forme de polynôme du troisième degré en Z (équations 26 et 33).

Une des méthodes de résolution des équations cubiques a été proposée en 1545 par Cardan. Le principe de la méthode est le suivant:

Méthode analytique de Cardan [24] :

Soit à résoudre l'équation du troisième degré suivante :

$$Z^{3} + kZ^{2} + mZ - n = 0$$
(79)

Si on remplace Z par (X+k/3) on obtient :

$$X^{3} + 3pX + 2q = 0 (80)$$

Avec

$$p = \frac{m}{3} - \left(\frac{k}{3}\right)^2 \tag{81}$$

$$q = \left(\frac{k}{3}\right)\left(p + \frac{m}{6}\right) - \frac{n}{2}$$
(82)

On pose :

$$h=p^3+q^2 \tag{83}$$

En fonction des valeurs de h l'équation (79) admet les racines suivantes :

1. h>0 L'équation admet une racine réelle

Si q>0 La racine est

$$Z^{L} = \frac{k}{3} + (h^{0.5} - b)^{1/3} + (-h^{0.5} - b)^{1/3}$$
(84)

Si q<0 La racine est

$$Z^{V} = \frac{k}{3} + \left(h^{0.5} - b\right)^{1/3} + \left(-h^{0.5} - b\right)^{1/3}$$
(85)

 Z^L et Z^V étant les facteurs de compressibilité de la phase liquide et vapeur respectivement.

2. h=0 L'équation admet une racine simple et une racine double

$$Z_1 = \frac{k}{3} + 2(-p)^{0.5}$$
(86)

$$Z_2 = Z_3 = \frac{k}{3} - (-p)^{0.5}$$
(87)

3. h<0 L'équation admet 03 racines réelles

$$Z_{j} = \frac{k}{3} + 2(-p)^{0.5} \cos\left[\frac{\phi}{3} + 120(j-1)\right] \qquad \text{où } j = 1,2,3.$$
(88)

$$\phi = Arc\cos\left(\frac{q}{p^{1.5}}\right) \tag{89}$$

Dans ce cas là, la plus petite racine correspond à la phase liquide, la plus grande correspond à la phase gazeuse.

3.5 Calcul des équilibres liquide-vapeur :

Un calcul d'équilibre liquide-vapeur peut se faire de différentes manières selon les conditions imposées au départ et les grandeurs que l'on souhaite calculer. Les différentes possibilités sont résumées dans le tableau 3.1.

Tableau 3.1: Types de calcul d'équilibre liquide-vapeur [30].

Cas	Equilibre	Données	Résultats
1	Flash isotherme	Р, Т	V/F, y, x
2	Point de bulle isobare	P, x =z	Т, у
3	Point de bulle isotherme	T, x =z	Р, у
4	Point de rosée isobare	P, y =z	P, x
5	Point de rosée isotherme	T, y =z	P, x

3.5.1 Flash isotherme:[15,17]

La courbe de bulle correspond à un taux de vaporisation égal à zéro, tandis que la courbe de rosée correspond à un taux de vaporisation égal à l'unité .Entre ces deux courbes coexistent les deux phases à une vaporisation partielle que l'on appelle: **flash isotherme**.

L'origine de ce nom provient du changement brusque observé quand un liquide sous pression passe à travers une vanne à une pression suffisamment basse, pour qu'une quantité se vaporise produisant un courant de deux phases liquide et vapeur en équilibre.

Le calcul flash consiste d'une part en la prédiction des compositions des phases, liquide et vapeur en équilibre et ceci pour un large domaine de températures et de pressions et dans le cas de mélanges très variés.

D'autre part le calcul flash prévoit une valeur appropriée du taux de vaporisation qui est défini comme suit: en partant d'une alimentation de nombre de moles F, à l'équilibre liquide –vapeur les F moles se divisent en V moles de fraction vapeur et L moles de fraction liquide.

Les expressions des équations qui décrivent le calcul flash sont obtenues en combinant les bilans de matières et les relations d'équilibre.

3.5.1.1 Equations de bilan de matière :

Bilan de matière global:

$$F=V+L$$
(90)

Bilan de matière sur le constituant i :

 $Fz_i = Vy_i + Lx_i \tag{91}$

En combinant les équations (90) et (91) on obtient :

$$g_i = (1 - V/F)x_i + V/Fy_i - z_i = 0$$
 $i = 1, 2, ... n$ (92)

Où F le débit molaire de l'alimentation, V le débit molaire de la phase vapeur, L le débit molaire de la phase liquide et z_i , x_i , y_i les compositions de l'alimentation, de la phase liquide et de la phase vapeur respectivement.

3.5.1.2 Equations d'équilibre :

La constante d'équilibre K_i est une grandeur qui représente l'aptitude d'un composé à se partager entre la phase liquide et la phase vapeur, elle peut être soit

déterminée par mesure expérimentale de la composition de chacune des deux phases à l'aide d'appareils conçus pour créer l'équilibre thermodynamique. Toutefois, ce type de données expérimentales nécessite un temps et un coût opératoire élevé.

Par conséquent, des méthodes de prédiction sont usuellement utilisées pour le calcul de $K_{\rm i}$.

L'expression de K_i s'écrit :

$$K_{i}(T, P, x, y) = \frac{y_{i}}{x_{i}} = \frac{\phi_{i}^{L}(T, P, x)}{\phi_{i}^{V}(T, P, y)}$$
(93)

Où $\phi_i^L et \phi_i^V$ sont les coefficients de fugacité pour la phase liquide et vapeur respectivement.

L'équation (93) relatif au constituant i peut s'écrire :

 $h_i = y_i - K_i x_i = 0$ i = 1, 2, ... n (94)

En combinant (92) et (94) on obtient :

$$x_{i} = \frac{z_{i}}{(K_{i} - 1)V / F + 1}$$
(95)

$$y_{i} = \frac{K_{i} z_{i}}{(K_{i} - 1)V / F + 1}$$
(96)

En adoptant le critère de convergence suivant :

$$d = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i = 0$$
(97)

On obtient ainsi :

$$\Psi(K, V/F) = \sum_{i=1}^{n} \frac{(K_i - 1)z_i}{(K_i - 1)V/F + 1} = 0$$
(98)

Ce système algébrique non linéaire comporte (2n+1) équations et (2n+3) variables inconnues : V/F, x_i et y_i. Le degré de liberté est donc de 2.

L'équation (98) sera résolue en V/F par des méthodes numériques itératives et ceci à cause de la non-linéarité du système qui provient du fait que les constantes d'équilibre ou coefficients de partage K_i sont fonction de la température, de la pression et de la composition dans les différentes phases.

(100)

Chapitre 3

3.6 Méthodes numériques de résolution :

Plusieurs méthodes ont été proposées pour le calcul sur ordinateur du flash isotherme, mais celle qui reste la plus répandue est la méthode Rachford –Rice couplée à la méthode de Newton-Raphson utilisée par Edmister[24].

3.6.1 Méthode de Rachford Rice (1952) [24]

L'avantage dans l'équation (98) est que sa dérivée par rapport à V/F est toujours négative, Ce qui assure la convergence des méthodes numériques à l'exception du cas où tous les coefficients d'équilibre sont égaux à un.

L'algorithme de résolution du calcul flash par la méthode de Rachford Rice est le suivant :

1- Initialisation des K_i (corrélation empirique proposée par Wilson [29].

$$K_{i} = \frac{P_{ci}}{P} \exp\left[5,37\left(1+\omega_{i}\right)\left(1-\frac{T_{ci}}{T}\right)\right]$$
(99)

avec V/F = 0.5

- 2- Résolution de l'équation (98) par rapport à V/F par une méthode numérique
- telle que : méthode de Newton –Raphson
- E méthode de Wegstein
- **3-** Calcul des x_i et y_i (i=1,2,...n)

$$x_{i} = \frac{z_{i}}{1 + V / F(K_{i} - 1)}$$
 (i=1,2,...n) (101)

$$y_{i} = \frac{z_{i}K_{i}}{1 + V/F(K_{i}-1)}$$
 (i=1,2,..n) (102)

4- Critère d'arrêt :

$$\sum_{i=1}^{n} (y_i - K_i x_i)^2 \le \text{Tolérance}$$
(103)

4 Si le test de convergence est vérifié aller à l'étape (6)

♣ Sinon, aller à l'étape (5).

5- Calcul K_i (T, P,x_i,y_i) par une équation d'état (SRK, PR, etc.) aller à l'étape (2)
6-Fin.

3.6.2 Méthode de Newton – Raphson :

Dans cette méthode, l'équation (98) se résout en V/F en prenant des valeurs de K_i constantes, ceci constitue la boucle interne de l'algorithme. Dans la boucle externe, la méthode de substitutions successives est la plus utilisée, une fois la valeur de $(V/F)^*$ validée { $V/F \in [0,1]$ }, elle est injectée dans les équations (101) et (102) afin de déterminer les valeurs de x_i et y_i et pour ensuite en déduire de nouveaux K_i d'après le modèle thermodynamique. Les valeurs de K_i initiales et finales sont alors comparées, si elles sont différentes la procédure est répétée .

Ainsi l'algorithme de Newton-Raphson est comme suit :

$$(V/F)^{n+1} = (V/F)^n - \frac{f((V/F)^n)}{f'((V/F)^n)}$$
(104)

n est le nombre d'itérations, f (V/F) et f'(V/F) sont données comme suit :

$$f(V/F) = \sum_{i} \frac{(K_i - 1)z_i}{(K_i - 1)V/F + 1} = 0$$
(105)

i :nombre de constituants .

$$f'(V/F) = -\sum_{i} \frac{(K_i - 1)^2 z_i}{\left[(K_i - 1)V/F + 1\right]^2}$$
(106)

Le choix du point de départ est crucial. Pour assurer la convergence on choisira un $(V/F)^0$ telle la condition de Fourrier soit vérifiée à savoir :

$$f''((V/F)^{0})f((V/F)^{0}) > 0$$
(107)

On peut ainsi générer une suite destinée $(V/F)_i$ où (i=1,2,..n) si elle converge, elle permettra d'évaluer la racine $(V/F)^*$ avec une approximation d'erreur égale à ε , ainsi le processus itératif est arrêté des que la condition suivante est satisfaite :

$$|(V/F)^{n} - (V/F)^{n-1}| < \varepsilon$$

$$(108)$$

3.6.3 Méthode de Von-Mises [30]

C'est une modification de la méthode de Newton-Raphson . Elle consiste à calculer $(V/F)^{n+1}$ à partir de l'équation:

$$(V/F)^{(n+1)} = (V/F)^{(n)} - \frac{f((V/F)^{(n)})}{f'((V/F)^{(n)})} \qquad \text{pour n=0,1,...nmax}$$
(109)

n est le nombre d'itérations ,f(V/F) et f'(V/F) sont données par les équations (105) et (106) respectivement.

Généralement, elle converge en un plus grand nombre d'itérations que la méthode de Newton-Raphson et requiert un meilleur estimé $(V/F)^{(0)}$ de $(V/F)^*$.

3.6.4 Méthode du promoteur de convergence de Wegstein :

La méthode de Wegstein [24,30] consiste à mettre une équation à résoudre f(x) = 0 sous la forme :

$$f(x)=g(x)-x=0$$
 (110)

$$Ou \quad x=g(x) \tag{111}$$

L'équation (111) peut être résolue par substitution directe, en calculant x_1 à partir de $g(x_0)$, x_2 de $g(x_1)$ jusqu'à :

$$x_{r+1} = g(x_r)$$
 (112)

La substitution directe est généralement lente et diverge souvent .La méthode du promoteur de convergence de Wegstein accélère cette procédure itérative comme suit:

- Calculer x₁et x₂ à partir de la première estimation x₀ par substitution directe de l'équation (112)
- **2.** Calculer $q=(x_2-x_1)/(x_1-x_0)$ (113)
- **3.** Redéfinir $x_2 = qx_1 + (1-q)x_0$ (114)

4. Calculer x_3 à partir de x_2 à l'aide de l'équation (112) et retourner à l'étape 2 pour calculer un nouveau q à partir de x_1,x_2 et x_3 et répéter ces étapes jusqu'à ce que $(x_{r+1}-x_r)$ satisfasse une certaine tolérance.

Donc les étapes se résument à :

4 Calculer
$$q = (x_{r+1} - x_r)/(x_r - x_{r-1})$$
 (115)

 $4 \text{ Redéfinir } x_{r+1} = qx_r + (1-q)x_{r-1}$ (116)

La méthode de Wegstein appliquée à l'équation (98) dans le cas d'un mélange binaire donne :

$$f(V/F) = \frac{(K_1 - 1)z_1}{(K_1 - 1)V/F + 1} + \frac{(K_2 - 1)z_2}{(K_2 - 1)V/F + 1} = 0$$
(117)

$$g(V/F) = \frac{-1}{(K_1 - 1)} - \frac{z_1[(K_2 - 1)V/F + 1]}{(K_2 - 1)z_2}$$
(118)

Chapitre 3

3.7 Estimation des propriétés physico-chimiques des corps purs

Le calcul des équilibres liquide-vapeur nécessite la connaissance des propriétés thermodynamiques des corps purs :

- E Température critique;
- Pression critique;
- Facteur acentrique.

3.7.1 Méthodes de contribution de groupes :

Jusqu'ici, les méthodes qui ont été les plus fructueuses et les plus utilisées pour prédire les valeurs des constantes critiques sont basées sur les contributions de groupements fonctionnels. Elles calculent les propriétés d'une molécule à partir de la somme de contributions pertinentes de chaque groupement fonctionnel intervenant dans la structure. Certaines de ces méthodes font intervenir la température d'ébullition normale prise du Handbook de Chimie physique [33].

A – Méthode de Lydersen, 1955: [33]

Il propose les relations suivantes :

$$T_{c} = \frac{T_{b}}{0.567 + \sum \Delta T - \left(\sum \Delta T\right)^{2}}$$
(119)

$$P_{c} = \frac{M}{(0,34 + \sum \Delta P)^{2}}$$
(120)

Tel que ΔT et ΔP sont calculés par contribution de groupes. Les valeurs des incréments des propriétés sont données en annexe A.

Et M: la masse moléculaire.

T_b: la température d'ébullition normale.

B- Méthode de Joback [33].

La modification de la méthode de Lydersen a conduit aux relations suivantes :

$$T_{c} = \frac{T_{b}}{0,584 + 0.965 \sum \Delta T - (\sum \Delta T)^{2}}$$
(121)

$$P_{c} = \frac{1}{\left(0,113 + 0,0032Na - \sum \Delta P\right)^{2}}$$
(122)

Avec:

T_b: la température d'ébullition normale.

Na : le nombre d'atomes de la molécule.

 ΔT et ΔP sont calculés par contribution de groupes. Les incréments des températures et des pressions sont donnés en annexe B.

C- Méthode d'Ambrose [33].

Cette méthode utilise les relations suivantes:

$$T_{c} = T_{b} \cdot \left(1 + \frac{1}{1,242 + \sum \Delta T} \right)$$
 (123)

$$P_{c} = M \cdot \left(1 + \frac{1}{0,339 + \sum \Delta P}\right)^{2}$$
(124)

Avec ΔT et ΔP valeurs donnés en annexe C.

D- Méthode de Fedors[33]

Cette méthode ne permet de calculer que la température critique, elle est considérée comme moins précise mais facile à mettre en œuvre, son expression est :

$$T_c = 535 \log\left(\sum \Delta T\right) \tag{125}$$

Les valeurs de ΔT sont données en annexe D.

E- Méthode de Constantinou , 1994-1995 [35, 36,37]

Cette méthode est la plus récente, et donnée par ses auteurs comme étant la plus précise à ce jour, car elle tient compte de l'isomérie des composés. Elle peut être utilisée suivant l'approximation du premier ordre qui ne tient pas compte de la stéréochimie de la molécule, soit suivant l'approximation du second ordre ,plus compliquée, qui prend en compte l'environnement de chaque groupe fonctionnel.

Elle utilise les relations suivantes:

/

$$\exp\left(\frac{T_{c}}{t_{c}^{0}}\right) = \sum_{i} N_{i} t_{c1}^{i} + \sum_{j} M_{j} t_{c2}^{j}$$
(126)

$$\frac{1}{\sqrt{P_c - p_c^1}} - p_c^2 = \sum_i N_i \cdot p_{c1}^i + \sum_j M_j \cdot p_{c2}^j$$
(127)

$$\exp\left(\frac{\omega}{a}\right)^{b} - c = \sum_{i} N_{i} \cdot \omega_{c1}^{i} + \sum_{j} M_{j} \cdot \omega_{c2}^{j}$$
(128)

Avec N et M : Nombre de fois où apparaît le groupe i ou j.

 $t_{c1} \mbox{ et } t_{c2}$: Influence du premier et second ordre sur la température critique.

 p_{c1} et p_{c2} : Influence du premier et second ordre sur la pression critique.

 $\omega_{c1}et\omega_{c2}$: Influence du premier et second ordre sur le facteur acentrique.

F- Méthode de Somayajulu [33]

Ce dernier calcule les groupements d'indices à partir des groupements de contributions de Lydersen et d'Ambrose et estime les coordonnées critiques par les relations :

$$T_{c} = T_{b} + \frac{T_{b}}{1,242 + 0,138.N_{T}}$$
(129)

$$G_{\rm P} = \left(\frac{M}{P_c}\right)^{1/2} = 0,339 + 0,226.\rm{N}_{\rm P}$$
(130)

Avec T_b : Température d'ébullition normale

 N_T : Indice de température de la molécule ($N_T = \sum n_T$)

M : Masse molaire (en g.mol⁻¹)

N_P: Indice de pression d'une molécule (N_P= $\sum n_p$)

Les valeurs de n_T et n_P sont données en annexe F.

G- Méthode de Lee Kesler [33,38].

Une des constantes très utilisées dans les relations thermodynamiques des fluides purs est le facteur acentrique de Pitzer [29], qui représente l'acentricité ou la non –sphéricité de la molécule. Il est supposé mesurer sa complexité en termes de géométrie et de polarité. Le facteur acentrique de Pitzer est défini par la pression de vapeur réduite à $T_r = 0.7$ suivant la relation :

$$\omega = -(\lg P_{VPr} + 1) \tag{131}$$

Pour obtenir la valeur de ω , la pression de vapeur réduite (P_{VPr}=P_{VP}/P_c) à

 $T_r=T/T_c = 0,7$ est donc nécessaire. Cependant, les relations de Lee Kesler proposent une méthode d'estimation de ω , à partir de P_c , T_c et T_b .

Les résultats de cette estimation vont donc dépendre des grandeurs calculées avec les méthodes précédentes.

Les relations sont les suivantes :

$$\omega = \frac{\alpha}{\beta} \tag{132}$$

Avec

$$\alpha = -\ln(P_c) - 5,972149 + \frac{6,09648}{\theta} + 1,28862.\ln(\theta) - 0,169347.\theta^6$$
(133)

$$\beta = 15,2518 - \frac{15,6875}{\theta} - 13,4721.\ln(\theta) + 0,43577.\theta^{6}$$
(134)

$$\theta = \frac{T_b}{T_c} \tag{135}$$

H- Méthode des 3/7 [33]

On peut aussi déterminer le facteur acentrique par la relation suivante, qui suppose que le logarithme népérien de la pression de saturation est une fonction linéaire de l'inverse de la température entre T_b et T_c :

$$\omega = \frac{3}{7} \frac{\theta}{1 - \theta} \log(P_c) - 1 \tag{136}$$

Avec $\theta = \frac{T_b}{T_c}$.

3.7.2 Détermination des caractéristiques des corps purs:

Les propriétés des mélanges sont déterminées au départ des propriétés thermodynamiques des substances pures. Cependant, les données expérimentales relatives aux composants d'huile essentielle sont très peu nombreuses et souvent inexistantes. En revanche les constantes du CO₂, ont déjà été mesurées et n'ont pas été difficiles à obtenir [39]:

$$T_c=304,21K$$

 $P_c=73,795$ bar
 $\omega = 0,225$

Les terpènes sont des produits naturels présents dans les végétaux, dont ils sont souvent les constituants odoriférants et dont on sait depuis très longtemps extraire sous forme **d'huiles essentielles**. Ceux-ci constituent l'une des bases des industries des parfums, des arômes, des colorants alimentaires.

En outre, certains de ces composés terpéniques possèdent des propriétés antiseptiques, anesthésiques, et des propriétés physiologiques puissantes et spécifiques: vitamines et hormones.

Tous les composés terpéniques se présentent comme des polymères de l'isoprène et suivant le nombre d'unités isopréniques.

On distingue les monoterpènes ($C_{10}H_{16}$), les sesquiterpènes($C_{15}H_{24}$), les diterpènes ($C_{20}H_{32}$), les triterpènes ($C_{30}H_{48}$) et les tétraterpènes.

Les programmes élaborés permettent l'estimation des paramètres critiques en cas d'absence de données par un sous- programme basé sur la méthode de Lydersen et de Joback, l'estimation par les autres méthodes présentées ci-dessus est également considérée, cependant ceci nécessite la connaissance de la structure moléculaire de chaque composé terpénique et de sa température d'ébullition.

4 1,8-cinéole ($C_{10}H_{18}O$) ou encore connu sous le nom d'eucalyptol est le produit terpénique majoritaire (environ 60%) de l'huile d'Eucalyptus reconnu pour ces vertus en pharmacologie.

Figure 3.1 : Structure moléculaire 1,8- Cinéole.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
$T_{c}(K)$	655,28	654,30	650,16	645,65	698,83	642,07
P _c (bars)	27,16	28,28	27,44		27,42	24,07
ω					0,3098	
ω(Lee)	0,3387	0,3616	0,3783			0,3888
ω(3/7)	0,3424	0,3653	0,3809			0,3816

Tableau 3.2: Caractéristiques critiques estimées pour le 1,8- cinéole.

Le camphre (C₁₀H₁₆O)

Figure 3.2: Structure moléculaire du camphre.

Tableau 3.3	: C	aractéristio	ues c	critique	es estimée	s pour	le cam	ohre.
I upicuu cic	•••	andeternstre		errer que	es estimee	o pour	ie cam	p v.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
$T_{c}(K)$	708,94	702,49	706,61	625,46	688,19	668,98
P _c (bars)	29,46	30,52	25,6		35,55	25,22
ω (Constantinou)					0,2622	
ω(Lee)	0,3465	0,4073	0,3062			0,5750
ω(3/7)	0,3342	0,3922	0,3001			0,5441

4 L'*α* -pinène (C₁₀H₁₆)

Figure 3.3 : Structure moléculaire de l' α -pinène.

Tableau 3.4: Caractéristiques critiques estimées pour le α -pinène.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
$T_{c}(K)$	633,74	629,84	627,10	557,57	649,58	615,99
P _c (bars)	27,27	28,90	23,79		29,14	26,02
ω(Constantinou)					0,3747	
ω(Lee)	0,2943	0,3425	0,2847			0,4014
<i>ω</i> (3/7)	0,2821	0,3299	0,2700			0,3836

 $\beta - pinène (C_{10}H_{16})$

<u>Figure 3.4</u>: Structure moléculaire du β -pinène.

<u>**Tableau 3.5:**</u> Caractéristiques critiques estimées pour le β -pinène.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
$T_{c}(K)$	652,18	646,70	658,16	552,01	648,01	634,86
P _c (bars)	27,25	28,84	26,11		35,83	26,51
ω (Constantinou)					0,2609	
ω(Lee)	0,2805	0,3370	0,2300			0,3863
<i>ω</i> (3/7)	0,2700	0,3244	0,2214			0,3696

4 Bornéol (C₁₀H₁₈O)

Figure 3.5: Structure moléculaire du Bornéol.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
$T_{c}(K)$	702,86	698,28	700,78	690,17	692,59	680,28
P _c (bars)	30,60	31,40	29,31		33,50	29,63
ω (Constantinou)					0,3068	
ω(Lee)	0,4103	0,4521	0,4067			0,5664
<i>ω</i> (3/7)	0,3960	0.4365	0,3915			0,5412

Tableau 3.6: Caractéristiques critiques estimées pour le Bornéol.

4 Acétate de Bornyl (C₁₂H₂₀O₂)

Figure 3.6 : Structure moléculaire de l'Acétate de Bornyl.

Tableau 3.7: Caractéristiques critiques estimées pour l'acétate de Bornyl.

	Lydersen	Joback	Ambrose	Fedors	Constantinou	Somayajulu
T _c (K)	688,93	688,17	676,72	689,45	677,2495	674,72
P _c (bars)	22,68	24,63	21,14		31,07	22,41
ω (Constantinou)					0,2709	
ω(Lee)	0,5258	0,5728	0,5892			0,6200
<i>ω</i> (3/7)	0,4957	0,5414	0,5609			0,6002

Pour le calcul de la température critique par ces différentes méthodes, l'erreur est très faible pour certaines substances mais elle peut devenir importante pour d'autres, la méthode d'Ambrose donne des erreurs un peu plus faibles que celle de Joback et Lydersen mais elle est plus difficile à utiliser. La méthode de Somayajulu est aussi précise que celle d'Ambrose mais aussi complexe. Les écarts moyens sont inférieurs à 1% [33].

D'une façon générale, les écarts entre pressions critiques calculées et expérimentales sont beaucoup plus importants que ceux observés dans le calcul de la température critique. Les écarts moyens sont de l'ordre de 5%.

Il est également important de signaler pour ce qui est de l'acentricité ou la non – sphéricité de la molécule les valeurs augmentent avec la masse molaire des hydrocarbures, ω augmente aussi avec la polarité [33]. Actuellement ce dernier est supposé mesurer la complexité d'une molécule en termes de géométrie et de polarité, mais de larges valeurs de ω (supérieurs à 0,4) ne sont guère significatives en ce qui concerne le sens original de cette propriété.

Pour conclure, des valeurs obtenues par la méthode de Joback pour le 1,8-cinéole, calculées par l'auteur lui-même sont trouvées dans la littérature [40]. La température critique, la pression critique et le facteur acentrique de Pitzer sont estimées à des valeurs égales à 650K ; 27,74 bars et 0,3559.

3.8 Optimisation du coefficient d'interaction binaire :

La connaissance des équilibres entre phases est importante pour la conception et la simulation de procédé de séparation. Lorsque les données font défaut, des modèles thermodynamiques peuvent les générer. Cependant, dès l'instant où les interactions sont non négligeables, les constituants en présence se comportent de façon non idéale et les modèles thermodynamiques nécessitent des paramètres empiriques d'interaction binaire k_{ij} corrélés à partir de données expérimentales existantes et souvent incomplètes. La conséquence de cette régression empirique est que la valeur prédictive de tels modèles est faible. C'est un inconvénient sérieux sachant l'énorme différence entre le nombre de constituants chimiques référencés dans les Chemical Abstract Series (plus de 15 millions)et le nombre de données d'équilibre de phase (à peine 30 000) disponibles dans les bases de données les plus complètes [23].

Deux méthodes ont été proposées pour la détermination du coefficient d'interaction binaire: La méthode de contribution de groupes d'Abdoul et la méthode d'Elliot et coll.

3.8.1 Méthode d'Abdoul [38,41]

Le principe de la méthode est d'estimer les énergies d'interaction E_{ij} qui sont reliées aux k_{ij} par :

$$E_{ij} = \left(\frac{\sqrt{a_i^*}}{b_i^*} - \frac{\sqrt{a_j^*}}{b_j^*}\right)^2 + 2k_{ij} \cdot \frac{\sqrt{a_i^*}}{b_i^*} \cdot \frac{\sqrt{a_j^*}}{b_j^*}$$
(137)

La variation des énergies d'interaction avec la température s'écrit:

$$E_{ij} = A_{ij}^{0} \left(\frac{298,15}{T}\right)^{\left(\frac{B_{IJ}^{0}}{A_{IJ}^{0}}\right)}$$
(138)

Avec T: Température en K

 $A_{ii}^0 et B_{ii}^0$: Paramètres à ajuster.

Cette méthode consiste à utiliser des données isothermes expérimentales d'ELV. On détermine donc, à chaque température expérimentale, pour un jeu de paramètres critiques des corps purs, le k_{ij} qui permet de retrouver au mieux les données expérimentales.

Puis à l'aide de l'équation (137), on détermine à chaque température la valeur correspondante de l'énergie d'interaction E_{ij} . On lisse ensuite à l'aide de l'équation (138) ces énergies d'interaction afin d'obtenir les coefficients $A_{ij}^0 et B_{ij}^0$.

Ces paramètres nous permettront alors d'effectuer des calculs d'ELV à toute température. Les paramètres critiques des corps purs retenus seront ceux qui nous permettront de lisser au mieux les énergies d'interaction de l'équation (138).

En pratique :

- 1. On commence par attribuer aux différents corps purs des constantes critiques
- Pour chaque température pour laquelle on dispose de données binaires isothermes d'ELV, on construit à l'aide d'un programme flash, le diagramme de phase isothermes (P-x-y), pour différentes valeurs de k_{ij}
- Pour chaque valeur de k_{ij}, variant avec un pas de 0,01 entre -0,2 et +0,2 on calcule la somme des carrés des écarts entre la composition des phases calculées et expérimentales.

- Le k_{ij} qui conduit au plus petit écart est conservé. On prendra soin pour chaque valeur du k_{ij} de tracer l'enveloppe de phases isotherme (P-x-y) afin de visualiser si le k_{ij} est vraiment optimum.
- **5.** On calcule alors les E_{ij} optima à l'aide de l'équation (137).
- On obtient ainsi finalement, pour chaque valeur de température expérimentale, une valeur optimale de E_{ij}.
- 7. Ces valeurs optimales de E_{ij} sont lissées à l'aide de l'équation (138) et permettent ainsi d'atteindre A_{ij}^0 et B_{ij}^0 . Un coefficient de corrélation est déterminé.
- Les valeurs des grandeurs critiques des corps purs choisies sont celles qui donnent le meilleur coefficient de corrélation en 7.
- **9.** Pour vérifier que les résultats sont cohérents, on recalcule à chaque température avec la valeur du E_{ij} calculé à partir de A_{ij}^0 et B_{ij}^0 les points expérimentaux. On peut donc visualiser si la corrélation est aussi bonne que la recherche du k_{ij} optimum voir meilleure ou si elle s'éloigne de la réalité.

3.8.2 Méthode d'Elliot [24,42]

Elliot et coll proposent une méthode de recherche du coefficient d'interaction binaire basée sur l'optimisation de la fonction objective suivante:

$$Q = \sum_{k=1}^{N} \left(\left(P_{cal} - P_{exp} \right) / P_{exp} \right)^{2}$$
(139)

Avec N : Nombre de points expérimentaux.

P_{cal} : Pression (bulle ou de rosée) calculée.

Pexp : Pression (bulle de rosée) expérimentale.

Les algorithmes pour le calcul des pressions de bulle et de rosée sont les suivants:

Algorithme pour le calcul de la pression de bulle :

- 1. Fixer T;
- 2. Initialisation de la pression ;
- Initialisation des coefficients d'équilibre K_i par la relation la corrélation de Wilson (99).

- 4. Calcul de la composition de la phase vapeur à partir des coefficients d'équilibre initiaux, $y_i=K_i x_i$;
- 5. Normalisation de la composition en phase vapeur ;

$$S = \sum_{i=1}^{n} y_i$$
, $y_i = y_i / S_1$;

 Calcul du coefficient d'équilibre par une équation d'état telle que P.R ou SRK.

$$\mathbf{K}_{i} = \frac{\phi_{i}^{l}(T, P, x)}{\phi_{i}^{v}(T, P; y)}$$

 Calcul de la composition de la phase vapeur à partir des coefficients d'équilibre calculés par l'équation choisie.

$$y_i = K_i x_i$$
, $S_2 = \sum_{i=1}^n y_i$

- 8. Si $|S_1-S_2| \ge \varepsilon$, alors aller à l'étape 5;
- **9**. Calcul de la nouvelle estimation de la pression, $P = P * S_2$
- **10**. Si $|S_2-1| \ge \xi$, alors aller à l'étape 3;
- **11**. Imprimer P, y;
- 12. Fin.

4 Algorithme pour le calcul de la pression de rosée

- 1. Fixer T;
- 2. Initialisation de la pression ;
- 3. Initialisation des coefficients d'équilibre par la relation (99);
- 4. Calcul de la composition de la phase liquide à partir des coefficients d'équilibre ainsi initialisé, $x_i=y_i/K_i$;
- 5. Normalisation de la phase liquide : $S_1 = \sum_i x_i$, $x_i = x_i/S_1$;
- 6. Calcul du coefficient d'équilibre par l'équation d'état:

$$\mathbf{K}_{i} = \frac{\phi_{i}^{l}(T, P, x)}{\phi_{i}^{v}(T, P; y)}$$

 Calcul de la composition de la phase liquide à partir des coefficients d'équilibre ainsi calculé:

$$x_i = y_i / K_i$$
, $S_2 = \sum_i x_i$;

8. Si $|S_1-S_2| \ge \varepsilon$, alors aller à l'étape 5;

9. Re-estimation de la pression, $P=P/S_2$;

- **10**. Si $|S_2-1| \ge \xi$, alors aller à l'étape 3;
- **11.** Imprimer P, x;
- 12. Fin.

Discussion

Le coefficient d'interaction binaire est déterminé par la méthode d'Elliot et coll [23] décrite plus haut, cette méthode nécessite la connaissance des pressions de bulle ou de rosée expérimentales du binaire considéré.

La valeur optimale du coefficient d'interaction binaire est celle qui correspond à un écart minimal entre la propriété calculée (pression de bulle ou de rosée) et la valeur expérimentale.

L'organigramme du programme d'optimisation de k_{ij} est donné dans l'annexe H.

Par manque de données expérimentales pour le système CO_2 -cinéole, la valeur du k_{ij} utilisée dans les calculs est celle trouvée dans la littérature [11].

k_{ij}=0,075

3.9 Conclusion

L'objectif de ce chapitre est d'une part d'évaluer tant qualitativement que quantitativement l'initiation à la modélisation thermodynamique des équilibres de phases des systèmes impliquant des composés terpéniques et le CO₂ supercritique et que ceux –ci peuvent êtres décrits correctement par une équation d'état de forme cubique.

Les modèles retenus pour l'étude de nos données sont: Soave-Redlich-Kwong et Peng-Robinson .Les règles de mélanges sont: conventionnelle et de Panagiotopoulos et Reid .

CHAPITRE 4 IDENTIFICATION PARAMETRIQUE DES MODELES
4.1 Introduction

L'étape suivante du travail consiste à déterminer par simulation, les propriétés thermodynamiques nous décrivant le comportement du système; La simulation a pour but de montrer la cohérence des résultats expérimentaux avec les phénomènes réels modélisés.

4.2 Structure du programme Flash

Le programme élaboré est basé sur le modèle commun où les deux phases sont représentées par la même équation d'état , les équations d'état privilégiées sont celles de Peng-Robinson et de Soave-Redlich-Kwong qui décrivent aussi bien la phase liquide que la phase vapeur .

La méthode numérique de résolution des bilans de matières et thermiques à partir des données de température, pression et de compositions à l'alimentation, est celle de Rachford –Rice couplée à la méthode de Newton –Raphson. Les travaux sont limités à un système binaire mais une extension à un système à plusieurs constituants est possible.

Ce programme est écrit en Fortran Power Station version 4.0.

L'organigramme présentant le processus itératif est donné en annexe G.

4.3 Résultats et analyse

4.3.1 Diagrammes d'équilibre

Les diagrammes d'équilibres illustrés dans les figures [4.1, 4.2 et 4.3] sont obtenus en posant les hypothèses suivantes:

- \blacksquare Alimentation : 80 % de CO₂ et 20 % de 1,8-cinéole.
- \blacksquare L'estimé initial pour la résolution de l'équation (105) est : (V/F)⁰=0,5.

Figure 4.1 : Equilibre liquide –vapeur du système CO₂-cinéole à 308,2 K

Figure4.2: Equilibre liquide –vapeur du système CO₂-cinéole à T=313K.

Figure 4.3 : Equilibre liquide –vapeur du système CO₂-cinéole à T=323,2 K.

4.3.2 Analyse

A partir de ces résultats, il est clair de signaler qu'à une température et une pression fixées, et suivant la composition de la charge, le système peut se trouver dans l'un des trois états suivants :

- ☑ Un état monophasique liquide.
- ☑ Un état diphasique (un ELV).
- ☑ Un état monophasique gazeux.

Ainsi, il apparaît, que suivant les conditions initiales notamment la masse introduite du soluté, le système est soit monophasique, soit diphasique [38].

Les diagrammes (P-x-y) du binaire CO_2 -cinéole font apparaître que le point critique du binaire se déplace vers les hautes pressions lorsque la température augmente permettant ainsi au domaine biphasique liquide-vapeur de s'élargir [26].

Ce qui serait bénéfique pour l'extraction est d'opérer à des températures proches de la température critique du CO_2 et ce afin de limiter les coûts d'investissement.

Il est également important de noter que les résultats obtenus avec le modèle de PR sont légèrement différents de ceux obtenus avec le modèle de SRK, et pour une équation d'état donnée quelle que soit la règle de mélange choisie le calcul des équilibres donne les mêmes résultats. Pour la phase liquide (figure 4.2) un écart a été observé entre l'enveloppe de phases expérimentale et l'enveloppe établie à partir des équations états. Ce résultat a été mis en évidence par A.Z Panagiotopoulos [27], ceci serait sans doute du à la sensibilité des équations d'état vis-à-vis de la phase liquide, la prédiction des propriétés thermodynamiques de cette dernière présente des écarts variant entre 5% et 7% pour les équations de PR et SRK respectivement et ceci pour des températures réduites inférieures à 0,65 [23].

Afin de mettre en relief les deux aspects expérimental et simulé la figure 4.4 illustre les écarts observés par rapport aux seules valeurs expérimentales disponibles dans la littérature [11].

Figure 4.4: Déviation dans les compositions des phases liquide-vapeur du binaire CO_2 – cinéole à la température d'équilibre T=313K

Discussion

L'écart observé serait du à l'utilisation du modèle commun pour tout le domaine de pression.

Le paramètre d'interaction binaire k_{ij} est lui-même d'une importance primordiale dans le calcul des équilibres liquide-vapeur, peu sensible à la nature du constituant, il varie avec la température ;cette variation est souvent négligée car elle est souvent modérée .

Il agit surtout sur la phase liquide alors que la pression critique agit essentiellement sur la phase vapeur [46].

Les valeurs du paramètre d'interaction sont le plus souvent déterminées par minimisation des écarts entre les données expérimentales de pression de bulle ou de rosée et les résultats du calcul. En l'absence de toute donnée expérimentale la seule valeur disponible dans la littérature a été utilisée.

La suite à donner serait d'établir les diagrammes illustrant la variation du taux de vaporisation en fonction de la pression.

Figure 4.5 : Taux de vaporisation en fonction de la pression à T=308,2 K

Figure 4.6: Taux de vaporisation en fonction de la pression à T=313 K

Figure 4.7 : Taux de vaporisation en fonction de la pression à T=323,2 K

Discussion

Les figures 4.5, 4.6 et 4.7 montrent la variation du taux de vaporisation en fonction de la pression. Des basses vers les hautes pressions, en passant par la pression critique du CO₂, le taux de vaporisation décroît rapidement, indiquant ainsi que le mélange tend vers une phase vapeur pour les basses pressions et qu'il tend vers une phase liquide pour les hautes pressions. Ces résultats ont été mis également en évidence par K.E Starling[47].

Figure 4.8: Variation du coefficient de fugacité du CO₂ en phase vapeur en fonction de la pression et de la température.

Discussion :

La figure 4.8 montre l'évolution du coefficient de fugacité en phase vapeur du CO_2 en fonction de la température et de la pression, ainsi l'évolution de l'équilibre liquide-vapeur, et l'on note qu'à une pression donnée, le coefficient de fugacité se rapproche de l'unité quand la température augmente.

4.4 Diagrammes d'équilibre avec des k_{ij} différents :

Dans cette partie du travail, nous nous proposons de faire varier le coefficient d'interaction binaire et d'étudier son influence sur l'équilibre liquide-vapeur du système 1,8-cinéole / CO_2 .

Figure 4.9: Equilibre liquide-vapeur du système CO_2 –cinéole à T=313K à partir de l'équation de PR; k_{ij} =0.

Figure 4.10: Equilibre liquide-vapeur du système CO_2 –cinéole àT=313K à partir de l'équation de PR;k_{ij} =0,065.

Figure 4.11: Equilibre liquide-vapeur du système CO_2 –cinéole à T=313K à partir de l'équation de PR; k_{ij} =-0,075.

Discussion

La méthode d'essais successifs sur les valeurs du paramètre d'interaction binaire, nous permet de noter que la valeur optimale du k_{ij} est bien 0,075. Le tableau suivant qui illustre les écarts entres les valeurs expérimentales et calculées justifie ce choix.

$$\Delta \mathbf{e} = \frac{\left(\sum \left| y^{cal} - y^{\exp} \right| + \sum \left| x^{cal} - x^{\exp} \right| \right)}{n} \tag{140}$$

Avec n : le nombre de points obtenus.

k _{ij}	0	0,075	0,065	-0,75
Δe	0,32	0,18	0,21	1,5

4.5 Conclusion

L'identification paramétrique des modèles est un outil précieux et se présente comme une 3^{ème} voie d'exploration de phénomènes réels, intermédiaire entre théorie et expérience.

Elle comporte un flash isotherme et d'un sous-programme intégré de calcul des propriétés physico-chimiques des corps purs à savoir T_c , P_c et ω .

Ce flash réalise des calculs d'équilibre thermodynamique pour des mélanges binaires avec la possibilité d'une extension aux mélanges les plus complexes à l'aide d'une équation d'état.

L'intérêt de l'identification paramétrique des modèles est d'aller bien au-delà d'une succession de modèles d'opérations unitaires mais d'aborder également les aspects extrêmement importants que sont l'évaluation économique et l'optimisation énergétique des procédés.

Les variations des propriétés thermodynamiques à savoir (fractions molaires, taux de vaporisation et coefficient de fugacité) en fonction de la pression ou de la température ou des deux en même temps reflète d'une façon satisfaisante le comportement de l'équilibre de phase du système binaire étudié.

Conclusion générale

La connaissance des données physico-chimiques s'avère d'une importance certaine en génie des procédés, notamment les équilibres entre phases, phénomènes nécessaires pour la conception de beaucoup de procédés de séparation.

L'intérêt de cette étude s'est porté sur l'étude d'un système binaire susceptible de représenter des composés clés pour l'extraction d'un mélange complexe qu'est une huile essentielle.

L'interprétation des équilibres liquide-vapeur par une modélisation mathématique permet de prévoir le comportement des systèmes en cas d'absence d'études expérimentales.

Ainsi l'utilisation du modèle commun basé sur l'équation d'état à savoir l'équation de Peng-Robinson ou l'équation de Soave –Redlich-Kwong semble bien décrire l'enveloppe de phases du binaire CO₂-cinéole à des températures différentes, pour une équation d'état donnée, quelle que soit la règle de mélange (conventionnelle ou de Panagiotopoulos et Reid) choisie le calcul de l'équilibre donne les mêmes résultats.

Toutefois à défaut de données expérimentales concernant le coefficient d'interaction binaire des écarts ont été observés en particulier pour la phase liquide ceci serait due à l'utilisation des règles de mélange classiques généralement préconisées aux composés non polaires ou à l'utilisation de la même équation d'état pour les deux phases.

Afin de réduire ces écarts d'autres méthodes sont plus adéquates mais demandent plus de données expérimentales notamment les règles de mélange basées sur la composition locale et la modification du covolume (b).

Dans le but d'enrichir la banque de données concernant les propriétés critiques de composés d'huile essentielle, une estimation des paramètres T_c , P_c et ω est toute fois nécessaire pour améliorer le modèle thermodynamique utilisé.

On peut donc dire que d'un point de vue thermodynamique l'utilisation de l'extraction par CO₂ supercritique pour la purification du 1,8-cinéole est envisageable.

L'identification des paramètres du modèle thermodynamique ne peut qu'apporter rapidité et simplicité dans la conception et contrôle d'équipements ou d'unités d'extraction supercritique. Ainsi, permettre une réelle capacité de prédiction et une détermination des conditions opératoires optimisant l'extraction.

BIBLIOGRAPHIE

[1] NOYORI, R. Supercritical Fluids, Chem. Rev., 99, **1995**.

[2] M.PERRUT, Les procédés de fractionnement avec fluides supercritiques, Ed ENSIC, **1998.**

[3] S.REY, Fractionnement du poly (oxyde d'éthylène) et du polystyrène avec le mélange supercritique universel CO₂/éthanol. Approche du comportement microscopique et thermodynamique de ces systèmes. Thèse de Doctorat, Bordeaux I **1999**.

[4] LIONG,WELLS,and FOSTER,J. Supercritical Fluids 4,91.CATCHPOLE and KING,Ind,Eng,Chem.Research,33,1991.

[5] M.PERRUT, L'extraction par fluide supercritique, L'Actualité Chimique, Avril, P165-169,**1988**.

[6] REID, R.C, PRAUSNITZ, J.M, POLING, B.E. The Properties of Gases and Liquids, 4^{èmè} ed. McGraw-Hill, NewYork, 1987.

[7] L. BRUSHI, G .TORZO, Physics letters, vol 98 A,n° 4-5 ,oct 1983.

[8] D.K DANDGE, J.P HELLER et K.V WILSON, Ind .Eng.Chem.Prod.Dev, 1985.

[9] G.S.GURDIAL, S.J.MACNAUGHTON, D.L.Tomasko and N.R.Foster, Influence of Chemical Modifiers on the Solubility of o-and m- Hydroxybenzoic Acid in Supercritical CO₂ Ind. Eng. Chem. Res. 32, 1488-1497, **1993.**

[10] M.PERRUT, Les applications des fluides supercritiques, 2eme colloque sur les fluides supercritiques, Paris 16/17 octobre **1991.**

[11] GOMEZ DE AZEVEDO,E.,H.A.MATOS,M.NUMES DA PONTE,P.C.SIMOES Phase Equilibria of System containing Limonene,Cineole and Supercritical Carbon dioxide.Proc.Int.Symp.on Supercritical Fluids ,Nice,Octobre 17-19.Société Française de Chimie ,1:135-142.

[12] Y. BOUMGHAR, .R.BELABBES, Communication aux journées d'études sur les plantes et leurs applications industrielles, Chambre Nationale de Commerce d'Alger, 29 et 30 Octobre **1988**.

[13] D.RICHON, Description et mesure des propriétés thermodynamiques et physicochimiques des fluides supercritiques, Colloque sur les fluides supercritiques caractéristiques et applications, Paris, Jeudi 24 Mai **1984.**

[14] S.DUBOC et coll, Les données thermodynamiques en extraction supercritique: utilité et méthodes de mesure, Actes du colloque de Pont –Mousson, INP de Lorraine.

[15] J.M.SMITH, H.C.VANNESS. Introduction To Chemical Engineering Thermodynamics. Mc Graw-Hill. 4^{ème} Edition **1987**.

[16] W.J.MOOR ; Chimie physique. Edition Dunod, deuxième édition 1965.

[17] J.VIDAL.Thermodynamique. Application au génie chimique et à l'industrie pétrolière .IFP. Edition Technip, **1966.**

[18] M.MCHUGH, V.J.KRUKONIS, Phase Diagrams for Supercritical Fluid-Solute Mixtures, Fluid Extraction Practice and Principles Butherworths, **1986**.

[19] D.RICHON, Equilibres Multiphasiques dans les Fluides Supercritiques, Fluides supercritiques et matériaux, Château du Thil Saint Boil .France, Ed Fcansell et J.P Petitet, 4-7 Juillet, **1995**.

[20] DE HEMPTINNE, J.C et E.BEHAR, Propriétés Thermodynamiques de Systèmes Contenant des Gaz Acides. Oils and Gas Science and Technology. Rev. IFP, vol 55, No.6, **2000**.

[21] O.BENDAOUD, Contribution à l'Etude de l'Equilibre Liquide-Vapeur du Mélange Binaire $CO_2 - C_2H_5OH$ au Voisinage du CO_2 Supercritique. Thèse de Magister, ENP, Dépt .Génie Chimique, **1997**.

[22] J. VIDAL, Thermodynamique : Méthodes Appliquées au Raffinage et au Génie Chimique, Tome1 et 2 éditions Technip **1974**.

[23] M.K, HADJ-KALI, Application de la Simulation Moléculaire pour le Calcul des Equilibres Liquide-Vapeur des Nitriles et pour la Prédiction des Azéotropes, Thèse de doctorat, INP de Toulouse **2004**.

[24] W.C EDMISTER, B.IKLEE, Applied Hydrocarbon Thermodynamics Vol 1, 2 édition GPC, **1984**.

[25] Sur support de cours: Modélisation des équilibres entre phases:Equilibre liquidevapeur, Master de Chimie première année, Université Blaise Pascal, 1er octobre **2004**.

[26] S.TAKISHIMA et coll, Phase Equilibria for CO_2 - C_2H_5OH - H_2O system, J. Chem. Eng. Japon, vol 19, n[°]1, **1986.**

[27] A.Z.PANAGIOTOPOULOS et R.CREID, High Pressure Phase Equilibria in Ternary Fluid Mixtures With Supercritical Component, Am.Chem.Society. ACS Division of Fuel Chemistry, vol 30 n[°]3, **1985**.

[28] FUAN-NANTSAI et DONG-SYAU, A Three Cubic Equation of State for Fluids and Fluid Mixtures Supercritical, Can.J.Chem Eng, vol 68, Juin **1990**.

[29] J.VIDAL.Thermodynamique: Application au génie chimique et à l'industrie pétrolière. IFP. Edition Technip. **1997**.

[30] A. GOURDIN, M.BOUMAHRAT, Méthodes Numériques Appliquées, 2^{eme} édition, O.P.U Alger **1991.**

[31] M.N.AMMAR, H.RENON, AIChE Journal, vol 33, n°6, **1987.**

[32] K.FOUTOUH,K.SHUKA, A comparative Study of Numerical Methods for Clculating Phase Equilibria in Fluid Mixtures From an Equation of State, Chem. Eng.Sci, vol 51, n°15, **1996.**

[33] B. LE NEINDRE. Techniques de l'Ingénieur [K 692], 1990.

[34] A. LAMOUDI. Etude de l'Equilibre de Phases des Systèmes CO_2 -Limonène, CO_2 -Citral au Voisinage du CO_2 Supercritique. Projet de Fin d'Etudes, ENP, Dépt. Génie Chimique, **1997**.

[35] L.CONSTANTINOU et R.GANI, New Group Contribution Method for Estimating Properties of Pure Compounds, Eng. Res. Center. Denmark, Octobre **1994.**

[36] J.MARRERO, R.GANI Group-Contribution Based Estimation of Pure Component Properties .Fluid Phase Equilibria 183-184.183-208, **2001**.

[37] L.CONSTANTINOU, R.GANI. J.P. O'CONNELL, Estimation of The Acentric Factor and the Liquid Molar Volume at 298 K using a New Group Contribution Method. Fluid Phase Equilibria 103.11-22,**1995.**

[38] J.CAZENAVE. Modélisation de l'Extraction du Mélange Binaire Limonène-Citral par du CO_2 Supercritique. DEA En Génie des Procédés .INP de Lorraine ,2 Octobre **1996.**

[39] M.S.PERRY, J.C.CHILTON, Chemical Engineering Handbook, Mc Graw Hill, N-Y, **1990**.

[40] Site: http://www. Vectra.pqi.eq.usp.br/contribcalc/

[41] W.ABDOUL, E.RAUZY, et A.PENELOUX, Fluid Phase Equilibria, 47, 115, 1991.

[42] J.M.PRAUSNITZ, T.F. ANDERSON, E.A. GRENS, C.A. ECKERT, R.HSIEH et J.P.O'CONNELL, Computer Calculation for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, NJ, **1980**.

[43] S.J. COPELLA et P.BARTON, Supercritical Fluids, edited by T.G.Squires,M.E Paulaitis,A.C.S Symposium Series 329 p202 , **1987**.

[44] V.BRANDANI, V.MUCCINATE, Fluide Phase Equilibria, 59, 135, 1990.

[45] F.TEMELLI, S.C.CHEN, R.J.BRADDOCH, Ind.Eng.Chem.Res, 29, 618, 1990

[46] G.HOTTIER, F.X.CORMERAIS, C.MAGNIN, Proceedings of the Int. Symposium on Supercritical Fluids, Nice, Ed. M. Perrut ,INPL.Nancy,Tome2,P.851, 17-19, Oct. **1989**.

[47] K.E. STARLING, M. A. KHAN, et S. WATANASIRI, Fundamental Thermodynamics of Supercritical extraction, Supercritical Fluid Technology, J.M.L Penninger. Elsevie, **1985**.

ANNEXES

Annexe A: Incréments pour le calcul des constantes critiques suivant la méthode de Lydersen [32]

Groupement	Δ_T	Δ_p	Δ_V	Groupement	Δ_T	Δ_p	Δ_V
Incréments pour les non-cycles				Incréments de l'oxygène			
CH3	0,020	0,227	55	- OH (alcools)	0,082	0,06	(18)
>CH ₂	0,020	0,227	55	– OH (phénols)	0,031	(- 0,02)	(3)
>CH-	0,012	0,210	51	- 0 - (non-cycle)	0,021	0,16	20
>C<	0,00	0,210	41	- 0 - (cycle)	(0,014)	(0,12)	(8)
CH2	0,015	0,198	45	>C-O (non-cycle)	0,040	0,29	60
—сн_	0,018	0,198	45	>C-O (cycle)	(0,033)	(0,2)	(50)
C<	0,0	0,198	36	—HC—O (aldéhyde)	0,048	0,33	73
-c-	0,0	0,198	36	— COOH (acide)	0,085	(0,4)	80
=сн	0,005	0,153	(36)	- COO (ester)	0,047	0,47	80
=c	0,005	0,153	(36)	 O (sauf les combinaisons ci-dessus) 	(0,02)	(0,12)	(11)
Incréments po	ur les cycles			Incréments de l'azote			
-CH2-	0,013	0,184	44,3	NH ₂	0,031	0,095	28
>CH	0,012	0,192	46	>NH (non-cycle)	0,031	0,135	(37)
>C<	(-0,007)	(0,154)	(31)	>NH (cycle)	(0,024)	(0,09)	(27)
=CH-	0,011	0,154	37	>N- (non-cycle)	0,014	0,17	(42)
=C<	0,011	0,154	36	>N — (cycle)	(0,007)	(0,13)	(32)
6	0.011	0.154	20	— CN	(0,060)	(0,36)	(80)
=c=	0,011	0,154	30	- NO ₂	(0,055)	(0,42)	(78)
Incrément commu	n à deux cy	cles		Incréments du soufre			
>CH	0,064			— SH	(0,015)	0,27	55
Incréments de	s halogènes			— S — (non-cycle)	0,015	0,27	55
—F	0,018	0,224	18	- S - (cycle)	(0,008)	(0,24)	(45)
-CI	0,017	0,224	18	=S	(0,003)	(0,24)	(47)
-Br	0,010	(0,50)	(70)	Dive	rs		
т	0.010	(0.02)	(05)	>Si<	0,03	(0,54)	
-1 0,012 (0,83	(0,83)	53) (95)	>B—	(0,03)	(0,54)		

Annexe B : Incréments pour le calcul des constantes critiques suivant la méthode de Joback [32]

Groupement	Δ ₇	Δ_p	Δ_V	$\Delta_{T_{\infty}}$	Δ_{T_r}
	Incré	ments de non-cycle			
-CH3	0,014 1	- 0,001 2	65	23,58	- 5,10
>CH ₂	0,018 9	0,0	56	22,88	11,27
>CH	0,016 4	0,002 0	41	21,74	12,64
>C<	0,006 7	0,004 3	27	18,25	46,43
-CH2	0,011 3	- 0,002 8	56	18,18	- 4,32
=CH	0,012 9	- 0,000 6	46	24,96	8,73
=C<	0,011 7	0,001 1	38	24,14	11,14
=C=	0,002 6	0,002 8	36	26,15	17,78
—СН	0,002 7	- 0,000 8	46	9,20	- 11,18
=c-	0,002 0	0,001 6	37	27,38	64,32
	Incré	ments pour un cycle			
_CH ₂ _	0,010 0	0,002 5	48	27,15	7,75
>CH-	0,012 2	0,000 4	38	21,78	19,88
>C<	0,004 2	0,006 1	27	21,32	60,15
-CH	0,008 2	0,001 1	41	26,73	8,13
C<	0,014 3	0,000 8	32	31,01	37,02
	Incrén	nents pour halogènes	1		
_F	0,011 1	- 0,005 7	27	- 0,03	- 15,78
CI	0,010 5	- 0,004 9	58	38,13	13,55
-Br	0,013 3	0,005 7	71	66,86	43,43
_I	0,006 8	- 0,003 4	97	93,84	41,69
	Incrén	nents pour l'oxygène			
-OH (alcool)	0,074 1	0,011 2	28	92,88	44,45
-OH (phénol)	0,024 0	0,018 4	- 25	76,34	82,83
-O- (non-cycle)	0,016 8	0,001 5	18	22,42	22,23
-O-(cycle)	0,009 8	0,004 8	13	31,22	23,05
>C-O (non-cycle)	0,038 0	0,003 1	62	76,75	61,20
>C=O (cycle)	0,028 4	0,002.8	55	94,97	75,97
O-CH- (aldéhyde)	0,037 9	0,003 0	82	72,24	36,90
-COOH (acide)	0,079 1	0,007 7	89	169,09	155,50
-COO- (ester)	0,048 1	0,000 5	82	81,10	53,60
—O (sauf ceux ci-dessus)	0,014 3	0,010 1	36	- 10,50	2,08
	Incré	ments pour l'azote			
-NH ₂	0,024 3	0,010 9	38	73,23	66,89
>NH (non-cycle)	0,029 5	0,007 7	25	50,17	52,66
>NH (cycle)	0,013 0	0,011 4	29	52,82	101,51
>N- (non-cycle)	0,016 9	0,007 4	9	11,74	48,84
-N= (non-cycle)	0,025 5	- 0,009 9		74,60	
-N- (cycle)	0,008 5	0,007 6	34	57,55	68,40
-NH				83,08	68,91
CN	0,049 6	- 0,010 1	91	125,66	59,89
-NO ₂	0,043 7	0,006 4	91	152,54	127,24
	Incré	ments pour le soufre			
_SH	0,003 1	0,008 4	63	63,56	20,09
-S- (non-cycle)	0.011 9	0,004 9	54	68,78	34,40
-S- (cycle)	0,001 9	0,005 1	38	52,10	79,93
		· · ·			,

Annexe C : Incréments pour le calcul des constantes critiques suivant la méthode d' Ambrose [32]

Groupements	Δ_T	Δ_p	Δ_V	Groupements	Δ_{T}	Δ_p	Δ_V
Atomes de carbone dans le groupement alcoyle			Incréments pour des composés cycliques répertoriés seulement quand leurs valeurs sont différentes des aliphatiques				
0,138 0,022 6 55,1							
Corrections pour le carbone d	ans le grou	pement alco	yle	- CH ₂	0,090	0,018 2	44,5
>CH - (chaque)	- 0,043	- 0,000 6	- 8	- CH - (cycles condensés)	0,030	0,018 2	44,5
>C< (chaque)	- 0,120	- 0,003 0	- 17	Double liaisons	- 0,030		- 15
Doubles liaisons (non aromatiques)	- 0,050	- 0,006 5	- 20	-0-	0,090		10
Triple liaison	- 0,200	- 0,017 0	- 40	- NH	0,090		
Nombre delta de Platt (1), multiplier par	-0,023	- 0,002 6		-S-	0,090		
Groupements fonction	nnels aliph	atiques		Composés aron	natiques (5)	
-0-	0,138	0,016 0	20	Benzène	0,448	0,092 4	
>CO	0,220	0,028 2	60	Pyridine	0,448	0,085 0	
- CHO	0,220	0,022 0	65	C ₄ H ₄ (condensés comme dans le naphtalène)	0,220	0,051 5	
-COOH	0,578	0,045 0	80	— F	0,080	0,018 3	
-00-0-00-	1,156	0,090 0	160	— CI	0,080	0,031 8	
-co-o-	0,330	0,047 0	80	-Br	0,080	0,060 0	
-NO2	0,370	0,042 0	78	_I	0,080	0,085 0	
-NH ₂	0,208	0,009 5	30	-OH	0,198	- 0,002 5	
-NH-	0,208	0,013 5	30				
>N —	0,088	0,017 0	30	Corrections pour des substi	tutions no	n halogénée	s
-CN	0,423	0,036 0	80	Première	0,010	0	
-S-	0,106	0,027 0	55	Chaque suivante	0,030	0,002 0	
-SH	0,090	0,027 0	55	Paires ortho contenantOH	- 0,080	- 0,005 0	
-SiH ₂	0,200	0,046 0	119	Paires ortho ne contenant pas – OH	- 0,40	- 0,005 0	
-O-Si(CH ₃) ₂	0,496						
—F	0,055	0,022 3	14	Composés aliphatiques	s fortement	t fluorés	
- CI	0,055	0,031 8	45	- CF ₃ , - CF ₂ -, > CF-	0,200	0,055 0	
-Br	0,055	0,050 0	67	- CF ₂ , >CF- (cycle)	0,140	0,042 0	
-I	0,055			>CF — (dans des cycles accolés)	0,30		
Correction pour l'halogène dans	s les comp	osés aliphati	ques	-H (monosubstitution)	- 0,050	- 0,035 0	
F est présent	0,126			Double liaison (non-cycle)	- 0,150	- 0,050 0	
F est absent, mais Cl, Br, I sont présents	0,055			Double liaison (cycle)	- 0,030		

Annexe D: : Incréments pour le calcul des constantes critiques suivant la méthode de Fedors [32]

Groupement fonctionnel	Δτ	Groupement fonctionnel	Δ_T
-CH3	1,79	-NH-	3,04
-CH2	1,34	— NH — (aromatique)	7,64
>CH (1)	0,45	>N—	0,89
>C<	- 0,22	>N— (aromatique)	4,74
—СH2	1,59	—N—	4,51
CH	1,40	-S-S-	9,83
>0=	0,89	-S-	4,91
—сн	1,79	_SH	5,36
=c—	2,46	_F	2,10
_C	1,03	—F (aromatique)	0,45
-COOH	10,72	—F (perfluoro)	0,54
-CO-O-OC- (anhydride)	7,95	-CI	4,20
-0-0-	5,32	—CI (disubstitué)	3,71
-O-OC-CO-O (oxalate)	6,25	—CI (trisubstitué)	3,17
-00-	5,36	— Br	5,58
-0-	1,56	_I	8,04
-0- (aromatique)	2,68	—I (aromatique)	10,77
-OH	5,63	Cycle à trois membres	0,45
— OH (aromatique)	9,65	Cycle à cinq membres	2,23
-CHO	5,49	Cycle à six membres	2,68
	8,49	Hétéroatome dans le cycle	0,45
—C—N (aromatique)	9,38	Substitution sur le carbone d'une double liaison (non aromatique)	0,58
-NH ₂	4,56	Orthosubstitution dans un cycle de benzène	1,16
-NH ₂ (aromatique)	9,20	Conjugaison, par double liaison	0,13
 Excepté pour des paires chacune. 	adjacent	es de >CH— ; ajouter alors 0,	76 pour

Annexe E : Incréments pour le calcul des constantes critiques suivant la méthode de Constantinou et Reid [32, 35,37]

Groupements du 1^{er} ordre

Groupement	t_{c1i}	p_{cli}	$t_{\delta 1 i}$	$\omega_{\mathrm{l}i}$
- CH ₃	1.6781	0.019904	0.8894	0.29602
$-CH_2$ -	3.4920	0.010558	0.9225	0.14691
= CH -	4.0330	0.001315	0.6033	-0.07063
С	4.8823	-0.010404	0.2878	-0.35125
$CH_2 = CH$	5.0146	0.025014	1.7827	0.40842
CH = CH	7.3691	0.017865	1.8433	0.25224
$CH_2 = C$	6.5081	0.022319	1.7117	0.22309
CH = C	8.9582	0.012590	1.7957	0.23492
C = C	11.3764	0.002044	1.8881	-0.21017
$CH_2 = C = CH$	9.9318	0.031270	3.1243	0.73865
ACH	3.7337	0.007542	0.9297	0.15188
AC	14.6409	0.002136	1.6254	0.02725
$ACCH_3$	8.2130	0.019360	1.9669	0.33409
$ACCH_2$	10.3239	0.012200	1.9478	0.14598
ACCH	10.4664	0.002769	1.7444	-0.08807
ОН	9.7292	0.005148	3.2152	1.52370
ACOH	25.9145	-0.007444	4.4014	0.73657
CH_3CO	13.2896	0.025073	3.5668	1.01522
CH_2CO	14.6273	0.017841	3.8967	0.63264
СНО	10.1986	0.014091	2.8526	0.96265
CH3COO	12.5965	0.029020	3.6360	1.13257
CH_2COO	13.8116	0.021836	3.3953	0.75574

0.76454	3.1459	0.013797	11.6057	HCOO
0.52646	2.2536	0.020440	6.4737	CH_3O
0.44184	1.6249	0.015135	6.0723	CH_2O
0.21808	1.1557	0.009857	5.0663	CH – O
0.50922	2.5892	0.009011	9.5059	FCH_2O
0.79963	3.1656	0.012558	12.1726	CH_2NH_2
****	2.5983	0.010694	10.2075	$CHNH_2$
0.95344	3.1376	0.012589	9.8544	CH 3NH
0.55018	2.6127	0.010390	10.4677	CH_2NH
0.38623	1.5780	-0.000462	7.2121	CHNH
0.38447	2.1647	0.015874	7.6924	CH_3N
0.07508	1.2171	0.004917	5.5172	CH_2N
0.79337	5.4736	0.001120	28.7570	$ACNH_2$
****	6.2800	0.029565	29.1528	C_5H_4N
****	5.9234	0.025653	27.9464	C_5H_3N
****	5.0525	0.036133	20.3781	CH_2CN
1.67037	5.8337	0.011507	23.7593	СООН
0.57021	2.9637	0.019789	11.0752	CH_2CL
****	2.6948	0.011360	10.8632	CHCL
****	2.2073	0.003086	11.3959	CCL
0.71592	3.9300	0.026808	16.3945	$CHCL_2$
>	3.5600	*	****	CCL_2
0.61662	4.5797	0.034935	18.5875	CCL_3
****	2.6293	0.013135	14.1565	ACCL
***	5.7619	0.020974	24.7369	CH_2NO_2
****	5.0767	0.012241	23.2050	$CHNO_2$

$ACNO_2$	34.5870	0.015050	6.0837	****	
CH_2SO_2	13.8058	0.013572	3.2914	****	
Ι	17.3947	0.002753	3.6650	0.23323	
Br	10.5371	-0.001771	2.6495	0.27778	
$CH \equiv C$	7.5433	0.014827	2.3678	0.61802	
$C \equiv C$	11.4501	0.004115	2.5645	****	
Cl - (C = C)	5.4334	0.016004	1.7824	****	
ACF	2.8977	0.013027	0.9442	0.26254	
$H\!CON(CH_2)_2$	****	****	7.2644	****	
CF_3	2.4778	0.044232	1.2880	0.50023	
CF_2	1.7399	0.012884	0.6115	****	
CF	3.5192	0.004673	1.1739	****	
C00	12.1084	0.011294	2.6446	****	
CCL_2F	9.8408	0.035446	2.8881	0.50260	
HCCLF	****	****	2.3086	****	
$CCLF_2$	4.8923	0.039004	1.9163	0.54685	
F	1.5974	0.014434	1.0081	0.43796	
$CONH_2$	65.1053	0.004266	10.3428	****	
$CONHCH_3$	****	****	****	****	
$CONHCH_2$	****	****	****	****	
$CON(CH_3)_2$	36.1403	0.040149	7.6904	****	
$CONCH_3CH_2$	****	****	****	****	
$CON(CH_2)_2$	****	****	6.7822	****	
$C_2H_5O_2$	17.9668	0.025435	5.5566	****	
$C_2H_4O_2$	****	****	5.4248	****	
CH_3S	14.3969	0.016048	3.6796	****	
			•	•	

CH_2S	17.7916	0.011105	3.6763	0.42753
CHS	****	****	2.6812	****
C_4H_3S	****	****	5.7093	****
C_4H_2S	****	****	5.8260	****

Groupements du 2nd ordre

Groupements	t_{c2j}	p_{c2j}	$t_{\delta 2j}$	ω_{2j}
$(CH_3)_2CH$	-0.5334	0.000488	-0.1157	0.01740
$(CH_3)_3C$	-0.5143	0.001410	-0.0489	0.01922
$CH(CH_3)CH(CH_3)$	1.0699	-0.001849	0.1798	-0.00475
$CH(CH_3)C(CH_3)_2$	1.9886	-0.005198	0.3189	-0.02883
$C(CH_3)_2 C(CH_3)_2$	5.8254	-0.013230	0.7273	-0.08632
3 membres du cycle	-2.3305	0.003714	0.4745	0.17563
4 membres du cycle	-1.2978	0.001171	0.3563	0.22216
5 membres du cycle	-0.6785	0.000424	0.1919	0.16284
6 membres du cycle	0.8479	0.002257	0.1957	-0.03065
7 membres du cycle	3.6714	-0.009799	0.3489	-0.02094
$CH_n = CH_m - CH_p = CH_k$	0.4402	0.004186	0.1589	0.01648
$CH_3 - CH_m = CH_n$	0.0167	-0.000183	0.0668	0.00619
$CH_2 - CH_m = CH_n$	-0.5231	0.003538	-0.1406	-0.0115
$CH - CH_m = CH_n$	-0.3850	0.005675	-0.0900	0.02778
$C - CH_m = CH_n$	-0.3850	0.005675	-0.0900	0.02778
Alicyclic side - chain	2.1160	-0.002546	0.0511	-0.11024
CH_3CH_3	2.0427	0.005175	0.6884	-0.1124
СНСНО	-1.5826	0.003659	-0.1074	****
ССНО	-1.5826	0.003659	-0.1074	****
CH_3COCH_2	0.2996	0.001474	0.0224	-0.20789
CH ₃ COCH	0.5018	-0.002303	0.0920	-0.16571

Annexe F : Incréments pour le calcul des constantes critiques suivant la méthode de Somayajulu [32]

Radicaux	n _T	np	n _v	Radicaux	n _T	np	n _v
- CH ₃	1,000	1,000	1,000	X et Y (ortho) (3)	- 0,100	- 0,100	0,000
>CH2	1,000	1,000	1,000	X et Y (méta) (4)	0,200	0,100	0,000
>CH	0,849	1,079	0,970	C-C-C-OH (gauche)	- 0,500	0,000	0,000
>C<	0,494	1,104	0,987	-0- (non-cycle)	0,870	0,710	0,363
C – C – C – C (gauche)	- 0,197	- 0,133	- 0,086	-O- (cycle)	0,800	0,710	0,363
-CH ₂ - (cycle)	0,640	0,805	0,809	>CO (non-cycle)	2,300	1,250	1,070
>CH- (cycle)	0,640	0,805	0,809	C-C-C-O	- 0,500	0,000	0,000
>C< (cycle)	0,420	0,805	0,809	>CO (cycle)	3,300	1,540	1,100
>CH- (cycle joint)	0,250	0,625	0,809	-CHO	2,800	1,250	1,070
=CH ₂	0,900	0,900	0,820	C-C-CHO	- 0,500	0,000	0,000
=CH-	0,800	0,800	0,780	-CHO (aromatique)	1,250	1,100	1,070
=C<	0,800	0,800	0,780	-COOH	4,000	2,000	1,360
-c-	0,400	0,600	0,400	C-C-COOH	0,400	0,000	0,000
Alcène trans	- 0,200	-0,15	0,000	-COO - (formates)	2,100	2,080	1,433
-CH- (cycle)	0,542	0,681	0,672	-COO- (autres)	2,400	2,080	1,433
=C<(cycle)	0,542	0,681	0,653	-COO- (aromatiques)	2,200	2,080	1,433
=C<(cycle joint)	0,250	0,460	0,635	-00-0-00-	8,200	3,035	2,503
=сн	1,180	0,690	0,653	-O (oxydes) (5)	1,000	0,660	0,290
-c-	0,680	0,540	0,635	-NH ₂	1,700	0,420	0,580
Substitution phényle (1)	- 1,000	- 1,000	0,000	-NH- (non-cycle)	1,500	0,420	0,580
Isopropyle	2,849	3,079	2,970	-NH- (cycle)	1,000	0,260	0,580
Isobutyle	3,849	4,079	3,970	>N- (non-cycle)	0,600	0,800	0,580
Sec-butyle	3,652	3,946	3,884	-NH ₂ (aromatique)	1,500	0,280	0,580
Tert-butyle	3,494	4,104	3,987	>NH (aromatique)	1,500	0,280	0,580
Isopentyle	4,652	4,946	4,884	>N— (aromatique)	1,500	0,500	0,580
Néopentyle	4,494	5,104	4,987	>N- (cycle)	0,050	0,260	0,580
Cyclobutyle	2,560	3,220	3,236	—N— (général)	0,542	0,355	0,580
Cyclopentyle	3,200	4,025	4,045	N(V)	- 0,400	0,040	0,580
Cyclohexyle	3,840	4,830	4,854	-CN (normal)	3,000	1,580	1,450
Phényle	3,252	4,086	4,032	—CN (aromatique) (6)	1,800	1,330	1,450
Naphtyle	4,836	6,368	6,682	-N02	2,700	2,000	1,420
Vinyle	1,700	1,700	1,600	-CONH ₂	4,000	1,670	1,650
Allyle	2,600	2,600	2,560	-ONH ₂	2,600	1,130	0,943
-OH (eau)	0,870	- 0,236	0,290	=N	1,250	1,260	0,900
–OH (méthanol)	4,000	0,284	0,290	HN (pas de liaison) (7)	2,000	- 0,135	0,000
—OH (éthanol)	4,670	0,360	0,290	-SH	0,650	1,200	1,000
-OH (propanol)	4,080	0,280	0,290	-S- (non-cycle)	0,760	1,200	1,000
–OH (butanol)	3,490	0,200	0,290	-S-(cycle)	0,460	1,130	0,570
-OH (pentanol)	2,900	0,120	0,290	S	0,260	1,200	1,000
-OH (hexanol)	2,310	0,040	0,290	S(IV)	0,400	1,200	1,000
-OH (heptanol)	1,720	- 0,040	0,290	S(VI)	0,800	0,800	1,000
-OH (octanol)	1,130	- 0,120	0,290	—F (aliphatique)	0,688	1,072	0,230
–OH (phénol)	1,530	- 0,100	- 0,014	—Cl (aliphatique)	0,570	1,409	0,820
-OH et X (ortho) (2)	- 0,340	- 0,100	0,000	— Br (aliphatique)	0,570	2,800	1,150

Annexe G : Organigramme du flash isotherme

SUITE

Annexe H: Organigramme pour l'optimisation du k_{ij.}

SUITE

SUITE

Annexe I : Résultats du calcul des équilibres liquide-vapeur .

P(atm)	RM	x(CO ₂)cal	x(cinéole)cal	y(CO ₂)cal	y(cinéole)cal	V/F
30	С	0,37567730	0,62432269	0,99964706	0,00035293	0,68393351
	Р	0,37567730	0,62432269	0,99964706	0,00035293	0,68393351
40	С	0,51690572	0,48309428	0,99894873	0,00105126	0,59826049
	Р	0,51690572	0,48309428	0,99894873	0,00105126	0,59826049
50	С	0,62792425	0,37207574	0,99609244	0,00390755	0,46378545
	Р	0,62792425	0,37207574	0,99609244	0,00390755	0,46378545
60	С	0,72962236	0,27037763	0,99028139	0,00971186	0,29612863
	Р	0,72962236	0,27037763	0,99028139	0,00971186	0,29612863
70	С	0,91569332	0,08430668	0,98281395	0,01718605	0,13355676
	Р	0,91569332	0,08430668	0,98281395	0,01718605	0,13355676
75	С	0,97709078	0,02290922	0,97538097	0,02461903	0,06024464
	Р	0,97709078	0,02290922	0,97538097	0,02461903	0,06024464
77	С	0,99131324	0,00868676	0,96553096	0,03446904	0,03290534
	Р	0,99131324	0,00868676	0,96553096	0,03446904	0,03290534

Tableau I.1 : Equilibre liquide-vapeur du système CO_2 -cinéole basé sur le modèle de

PR	à une température	d'équilibre	T=308,2 K.
----	-------------------	-------------	------------

Tableau I.2 : Equilibre liquide-vapeur du système CO₂-cinéole basé sur le modèle

de SRK	à une température	d'équilibre	T=308,2 K.
--------	-------------------	-------------	------------

P(atm)	RM	x (CO ₂)cal	x (cinéole)	y (CO ₂)cal	y(cinéole)cal	V/F
30	С	0,38605520	0,61394480	0,99978045	0,00021955	0,68053214
	Р	0,38605520	0,61394480	0,99978045	0,00021955	0,68053214
40	С	0,52492314	0,47507686	0,99901902	0,00098098	0,58473122
	Р	0,52492314	0,47507686	0,99901902	0,00098098	0,58473122
50	С	0,63730901	0,36269099	0,99739645	0,00260355	0,45368541
	Р	0,63730901	0,36269099	0,99739645	0,00260355	0,45368541
60	С	0,73115724	0,26884276	0,99488021	0,00511979	0,24789320
	Р	0,73115724	0,26884276	0,99488021	0,00511979	0,24789320
70	С	0,90165547	0,09834453	0,98750705	0,01249295	0,13007922
	Р	0,90165547	0,09834453	0,98750705	0,01249295	0,13007922
75	С	0,96823540	0,03176460	0,96622963	0,03377037	0,05428976
	Р	0,96823540	0.03176460	0,96622963	0,03377037	0,05428976
77	С	0,99006358	0,00993642	0,95487423	0,04512577	0,02652718
	Р	0,99006358	0,00993642	0,95487423	0,04512577	0,02652718

P(atm)	RM	x(CO ₂)cal	x(cinéole)cal	y(CO ₂)cal	y(cinéole)cal	V/F
70	С	0,78992561	0,21007439	0,99632632	0,00367368	0,23974734
	Р	0,78992561	0,21007439	0,99632632	0,00367368	0,23974734
74.30	С	0,85889456	0,14110544	0,99559675	0,00440325	0,17640549
	Р	0,85889456	0,14110544	0,99559675	0,00440325	0,17640549
78.18	С	0,93897023	0,06102977	0,99409883	0,00590117	0,12182465
	Р	0,93897023	0,06102977	0,99409883	0,00590117	0,12182465
80	С	0,95234474	0,04765526	0,99390988	0,00609012	0,09725443
	Р	0,95234474	0,04765526	0,99390988	0,00609012	0,09725443
80.40	С	0,96093584	0,03906416	0,99384030	0,00615970	0,09195088
	Р	0,96093584	0,03906416	0,99384030	0,00615970	0,09195088
81.15	С	0,97459591	0,02540409	0,99241618	0,00758382	0,08210379
	Р	0,97459591	0,02540409	0,99241618	0,00758382	0,08210379
82	С	0,98594744	0,01405256	0,99194556	0,00805444	0,07109997
	Р	0,98594744	0,01405256	0,99194556	0,00805444	0,07109997

Tableau I.3 : Equilibre liquide-vapeur du système CO_2 - cinéole basé sur le modèlede PR à une température d'équilibre T=313K avec k_{ij} =0,075.

Tableau I.4 : Equilibre liquide-vapeur du système CO_2 -cinéole basé sur le modèlede SRK à une température d'équilibre T=313K avec k_{ij} =0,075.

P(atm)	RM	x(CO ₂)cal	x(cinéole)cal	y(CO ₂)cal	y(cinéole)cal	V/F
70	С	0,79536892	0,20463108	0,99741263	0.00258737	0,21408568
	Р	0,79536892	0,20463108	0,99741263	0,00258737	0,21408568
74.30	С	0,86586214	0,13413786	0,99599281	0,00400719	0,16897523
	Р	0,86586214	0,13413786	0,99599281	0,00400719	0,16897523
78.18	С	0,93784122	0,06215878	0,99513184	0,00486816	0,13789585
	Р	0,93784122	0,06215878	0,99513184	0,00486816	0,13789585
80	С	0,95020840	0,04979160	0,99437314	0,00562686	0,10785682
	Р	0,95020840	0,04979160	0,99437314	0,00562686	0,10785682
80.40	С	0,95999421	0,04000579	0,99428617	0,00571383	0,09784595
	Р	0,95999421	0,04000579	0,99428617	0,00571383	0,09784595
81.15	С	0,97278231	0,02721769	0,99317810	0,00682190	0,08794551
	Р	0,97278231	0,02721769	0,99317810	0,00682190	0,08794551
82	С	0,98207895	0,01792105	0,99221841	0,00778159	0,04098585
	Р	0,98207895	0,01792105	0,99221841	0,00778159	0,04098585

P(atm)	RM	x(CO ₂)cal	x(cinéole)cal	y(CO ₂)cal	y(CO ₂)cal	V/F
30	С	0,29874182	0,70125818	0,9971802	0,0028198	0,73174671
	Р	0,29874182	0,70125818	0,9971802	0,0028198	0,73174671
40	С	0,37945858	0,62054142	0,99664859	0,00335141	0,68692100
	Р	0,37945858	0,62054142	0,99664859	0,00335141	0,68692100
50	С	0,46458243	0,53541756	0,99577274	0,00422726	0,62761079
	Р	0,46458243	0,53541756	0,99577274	0,00422726	0,62761079
60	С	0,55797570	0,44202429	0,99418228	0,00581772	0,54769424
	Р	0,55797570	0,44202429	0.99418228	0,00581772	0,54769424
70	С	0,64887274	0,35112725	0,99324841	0,00675159	0,43455365
	Р	0,64887274	0,35112725	0,99324841	0,00675159	0,43455365
80	С	0,72293312	0,27706687	0,98160268	0,01839732	0,30991684
	Р	0,72293312	0,27706687	0,98160268	0,01839732	0,30991684
90	C	0,87187823	0,12812177	0,97211874	0,02788126	0,18717838
	Р	0,87187823	0,12812177	0,97211874	0,02788126	0,18717838
100	С	0,94828305	0,05171695	0,96534718	0,03465282	0,07457757
	Р	0,94828305	0,05171695	0,96534718	0,03465282	0,07457757

Tableau I.5 : Equilibre liquide-vapeur du système CO_2 -cinéole basé sur le modèlede PR à une température d'équilibre T=323,2K.

Tableau I.6 : Equilibre liquide-vapeur du système CO2 -cinéole basé sur le modèlede SRK à une température d'équilibre T=323,2K.

P(atm)	RM	x(CO ₂)cal	x(cinéole)cal	y(CO ₂)cal	y(CO ₂)cal	V/F
30	С	0,28955234	0,71044766	0,99904564	0,00095436	0,72478950
	Р	0,28955234	0,71044766	0,99904564	0,00095436	0,72478950
40	С	0,38225861	0,61774139	0,99832140	0,00167860	0,66400214
	Р	0,38225861	0,61774139	0,99932140	0,00167860	0,66400214
50	С	0,48023452	0,51976548	0,99731974	0,00268026	0,62442538
	Р	0,48023452	0,51976548	0,99731974	0,00268026	0,62442538
60	С	0,56478921	0,43521079	0,99598854	0,00401146	0,53841051
	Р	0,56478921	0,43521079	0,99598854	0,00401146	0,53844051
70	С	0,64300145	0,35699855	0,99264001	0,00735999	0,40563314
	Р	0,64600145	0,35699855	0,99264001	0,00735999	0,40563314
80	С	0,73248528	0,26751472	0,98541298	0,01458702	0,26667841
	Р	0,73248528	0,26751472	0,98541298	0,01458702	0,26667841
90	С	0,88200458	0,11799542	0,97704061	0,02295939	0,17007410
	Р	0,88200458	0,11799542	0,97704061	0,02295939	0,17007410
100	С	0,95465231	0,04534769	0,96741317	0,03258683	0,04299174
	Р	0,95465231	0,04534769	0,96741317	0,03258683	0,04299174

P(atm)	$\mathbf{x}(\mathbf{CO}_{2})$	$v(CO_2)$
I (duil)	A(CO ₂)	y(eo ₂)
70	0,7775	0,9997
	,	,
74.30	0,8298	0,9992
78.18	0,8685	0,9965
80	0,9274	0,9804
80.40	0,9402	
81.15	0,9628	0,9766

Tableau I.7 : Données expérimentales de l'équilibre liquide-vapeur du mélange CO_2 -cinéole à la température T =313K.