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 ملخص

 

 من مختلفٌن نوعٌن من الحمل بواسطة الحرارة انتقال لظاهرة ورقمٌة نظرٌة دراسة ٌمثل العمل هذا

 الدراسة وتشمل، القناة على خارجً مغناطٌسً لمجال تأثٌر وجود مع عمودٌة قناة فً للامتزاج قابلة غٌر سوائل

 داخل الدم تدفق مثل، البٌولوجً و الصناعً: المجالٌن فً الطاقة و المٌكانٌكٌة السوائل منظومة فً تطبٌقات عدة

  .المفاصل فً الزلٌلً السائل وحركة الإنسان جسم

 نٌة دورا حركة ذات عالقة دقٌقة جسٌمات على تحتوي سوائل هً المٌكروقطبٌة السوائل و الموائعإن 

 للخصائص صحٌح فهم إلى التوصل لأجل .... كهروطٌسٌة و الفٌزٌائٌة خصائص عدة تأثٌر تحت معقدة مجهرٌه

 فً ٌأخذ رٌاضً نموذج صٌاغة على عملنا ،المٌكروقطبٌة الموائع لحركة المجهرٌة المٌكانٌكٌة و الفٌزٌائٌة

 أثره على حركة  كذالكو الموائع فً إحتباسها أو الطاقة إنتشار على أثره و المغناطٌسً المجال انتشار الحسبان

، المادة حفظ تصف المعادلات من مجموعة هو الدراسة و للحل المقترح النموذج. القناة داخل الدقٌقة الجزٌئات

، الحرٌرة، الثانٌة، متر )وحدات بدون المعاملات بعض بظهور سمح المقدم الحل .الطاقة حفظ و الحركة حفظ

، (GR )المختلط الحمل معامل، (Pr )برونت معامل، (K )المادة معامل: الحصر لا مثالال سبٌل على نذكر ،...(الخ

(. Ec )إٌكرت معامل ،(Ha )المغنطة معامل

 برنامج )آلٌا المبرمج الرٌاضً نموذج من علٌها الحصول تم التً الرقمٌة  التحلٌلٌة والنتائج فإن علٌهو

Matlab )على المغناطٌسً الحقل تأثٌر واضحا و جلٌا بدا ولقد، علٌها التعلٌق و استخدامها و استثمارها تم 

 هذه فإن ثم ومن. اللزجة و المٌكروقطبٌة الموائع داخل نفسها حول الجزٌئات دوران وسرعة الخطٌة السرعة

 .علمٌة مقالات فً منشورة سابقة دراسات و الحالً النموذج بٌن مقارنة دراسة و لمناقشة خضعت قد النتائج

 المٌكروقظبٌة، الحراري، الحمل تدفق الممغنطة، الهٌدرودٌنامٌك تأثٌر مبكروقطبً،  مائع:كلمات المفاتيح

 .المٌكرودورانً

 



 

 
 

Abstract 

 

This work is devoted to the theoretical, analytical, and numerical study of a free-

convective flow in a vertical channel, it’s consisting of two immiscible fluid regions, the first 

region is filled of a non-Newtonian fluid of micropolar type, and the second region is filled 

with Newtonian-viscous fluid. Both fluids are under effects of the temperature gradient and 

magnetic field.  

In a microscopic scale, non-Newtonian micropolar fluids contain suspended fine 

particles in complex rotating motion, complex microstructure under the influence of several 

physicochemical characteristics….. The behavior of micropolar fluid flow is influenced by its 

microstructure characteristics which these have an effect on the distribution of velocities 

field. (ie linear or axial and microrotation velocities).  

To achieve a good understanding about the complexity of this type of flow, a 

mathematical model was developed in considering the term of magnetic diffusivity and the 

term of thermal diffusivity in the energy balance equation. This allows the appearance of 

some dimensionless parameters such as the material parameter (K), the Prandtl number 

(Pr), the mixed convection parameter (GR), the magnetic parameter (Ha) and the Eckert 

number (Ec).  

Therefore, the numerical results obtained from the model were used to assume an 

apparent effect of the magnetic field on linear and spin velocities within micropolar and 

viscous fluids. Hence, those results obtained from the mathematical model are used in a 

comparative study between the current studied model in considering terms of the magnetic 

diffusivity and thermal diffusivity, and others works which didn’t consider those terms. 

Key words: Micropolar Fluid; Magnetohydrodynamic effect; Convective flow; 

Micropolarity; Microrotation. 

 

 

 

 

 



 

 
 

Résumé 

  

 Ce travail est consacré { l’étude théorique, analytique et numérique d’un écoulement 

convectif, mixte et magnétohydrodynamic dans un canal vertical composé de deux régions 

de fluides immiscibles, la première région est remplie d’un fluide non-Newtonien de type 

micropolaire et la seconde région du canal est remplie d’un fluide Newtonien visqueux. Le 

modèle physique à étudier – canal et les deux fluides – sont sous l’influence d’un gradient de 

température et d’un champ magnétique.  

  

 À l’échelle microscopique, les fluides non-Newtoniens de type micropolaire 

contiennent des particules fines en suspension et en mouvement rotatif et avec 

microstructure complexe sous l’influence de plusieurs caractéristiques physico-

chimiques…Le comportement de fluide micropolaire en écoulement convectif est influencé 

par ses caractéristiques de la microstructure qui ont un effet sur le champ de distribution 

des vitesses. (C.-à-d. vitesses linéaires ou axiales et la microrotation). L’écoulement naturel a 

lieu dans le canal vertical comme dans le cas de l’industrie mécanique, tels que : les colloïdes, 

fluides contenant des particules fines en suspension, cristaux liquides, fluides polymères à 

longue chaîne et fluides pétillants (brillant, coloré, etc.). 

 

 Aussi, l’objectif de cette étude est d’examiner le comportement des fluides 

micropolaires vis-à-vis au comportement des fluides Newtoniens en analysant les profils de 

la vitesse linéaire et la vitesse de microrotation ainsi que l’effet de taux de frottements aux 

parois du canal en fonction de certains paramètres appropriés résultant de la formulations 

mathématiques et cela dans les deux cas : sans ou avec champ magnétique.  

 

 Afin d’atteindre ces objectifs cités ultérieurement et aussi prédire le comportement de 

ce type d’écoulement complexe, un modèle mathématique a été développé qui prend en 

considération le terme de la diffusivité magnétique et le terme de diffusivité thermique de 

l’équation de bilan énergétique, cela a permis l’apparition de certains paramètres et 

nombres adimensionnels tels que le paramètre matériel (K), le nombre de Prandtl (Pr), le 

paramètre de convection mixte (GR : définit par le rapport du nombre de Grashof sur le 

nombre de Reynolds), le nombre de Hartmann (Ha) qui caractérise le flux linéaire, 

surfacique et/ou volumique du champ magnétique et le nombre d’Eckert (Ec).  

 

 Les résultats obtenus { partir du modèle mathématique final, ont permis d’une part 

d’analyser l’effet du champ magnétique sur la distribution du champ des vitesses linéaires et 

de la microrotation (spin) aux seins des fluides micropolaires et visqueux, d’autre part, ces 

résultats sont utilisés dans l’étude comparative entre des travaux déjà faites qui négligent les 

termes de la diffusivité thermique et la diffusivité magnétique dans l’équation de bilan 

énergétique et le modèle en cours qui prend en considération ces termes.  

  

Mots clés : Fluide Micropolaire, Effet magnétohydrodynamique, Ecoulement Convectif, 

Micropolarité, Microrotation. 
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Nomenclature 

Latin alphabet  

Symbol Designation Unit 

A Surface m2 

Ch  Constant of Hamaker --- 

B0  Magnetic field coefficient --- 

Cp  Specific heat at constant pressure kj/kg.K 

dp Diameter of particle meter(m) 

F Force m.kg.s-2 (N) 

FB Brownian force m.kg.s-2 

Fgr Gravitational force  m.kg.s-2 

Fin Force of inertia  m.kg.s-2 

Fvd Van-Der Waals force m.kg.s-2 

Fvs Viscous force m.kg.s-2 

h* Width ratio ---- 

J Elastic complication m / kg s2 ou 1/Pa 

j Micro-inertia density --- 

k Boltzmann constant  --- 

k Structural index --- 

k Thermal conductivity  W/m.K 

ki Thermal conductivities of both fluids W/m.K 

k* Thermal conductivities ratio  --- 

K Material parameter  --- 

kC Critical fluid consistency --- 

m Microscopic structure parameter --- 

n  Parameter characterizing the type of fluid --- 

P  Pressure kg.m-1.s-2 (Pa) 

T Temperature Kelvin(K) 

t1 Characteristic time Second (s) 

tm Characteristic period s 

S Coefficient which characterizes the degree of particle-particle --- 



 

 
 

interaction 

Ui Linear velocities of both fluids  m/s 

y Dimensionless variable  --- 

Greek alphabet 

β Coefficient of thermal dilation at constant pressure --- 

 Particle Viscosity kg.m-1.s-1 

η Similarity variable --- 

ρ Density Kg/m³ 

ρ* Densities ratio --- 

λ Thermal conductivity W/m.K 

γ Deformation  --- 

𝜇
0

 Initial viscosity    

𝜇
𝑚

 Average viscosity  

𝜇∗ Viscosities ratio --- 

Φm Maximum packing fraction --- 

τ Tangential shear stress kg.m-1.s-2 

σ0 Modulus of elasticity  

σ Swirling viscosity --- 

σ* Electrical conductivity of fluid  --- 

θ Dimensionless variable that characterizes the temperature --- 

𝜒 Constant linked   and the shear rate of viscosity at very low value --- 

 

Dimensionless numbers 

Ec Eckert number ---- 

Gr Grashof number ---- 

Ha Hartmann number ---- 

Nu Nusselt number  ---- 

Pr Prandtl number ---- 

Re Reynolds number ---- 

 

 



 

 
 

List of Acronyms and Abbreviation 

 

BEM Boundary Element Method 

CSCM Cubic Spline Collocation Method 

KBM Keller Box Method 

LGAM Lie Group Analysis Method 

MHD MagnetoHydroDynamic 

MF Micropolar Fluid 

MV Microrotation Velocity 

NSM Network Simulation Methodology 

LV Linear Velocity 

UHF Uniform Heat Flow 

UWT Uniform wall Temperature 

VF Viscous Fluid 
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General introduction 

 

Background Introduction  

The research works on immiscible flows of micropolar non-Newtonian fluids and 

Newtonian viscous fluids under the effect of magnetic field and temperature gradient are 

based on the theories of micro-continuum carried out by the physicist A. Cemal Eringen [1-

6]. Consequently, several axes of theoretical and experimental research have been created to 

explain certain thermomechanical phenomena in microscopic scale, for example: A. Ishak & 

all [7] have studied a uniform mixed convective flow and magnetohydrodynamic through a 

stopping point (stagnation point) on a vertical surface immersed in an incompressible 

micropolar fluid. This study shows us the existence of a reversed flow region (the velocity of 

flow changes direction). They also found that the studies of the convective flow of viscous 

and micropolar fluids without a magnetic field influence have failed to prove the existence of 

a transitional flow regime. Another types of research are carried out on free convective flows 

in the absence of the magnetic field such as the study by Z. Chahoui & all [8], examining the 

effects of microstructure and microrotation on the devices Of lubrication in the boundary 

layer, the effect of particle size (the particle size relative to the thickness of the lubricant 

film) and the shear torque have apparent effects on flow perturbation and Equivalent 

viscosity of the micropolar fluid.  

According to J. P. Kumar & all [9], the free convective flow under the established 

regime of the micropolar and viscous fluids in a vertical channel is studied, they observed 

that the parameter of mixed convection favors the linear velocity which is the cause Of an 

increase in the buoyancy force which represents an advantage for the lubrication systems, 

whereas the material parameter does not favor the linear speed, which is a disadvantage for 

the lubrication systems, they have also observed that the parameter of The mixed convection 

and the material parameter favor the speed of the microrotation. Youn J. Kim [10], have 

studied the instability of the convective flow of micropolar fluids through a vertical, porous 

and movable plate in a porous medium, he found that the suction speed of the micropolar 

fluid through the porous media decreases when the parameter Magnetic field (Ha) increases, 

while the latter increases as the number of Grashof increases. K. L. Hsiao [11-15], has 

studied the mixed flows and heat and mass transfer of viscoelastic fluids and nanofluids 

under the effect of the magnetic field, he found that the increase of the magnetic parameter 

decreases the rate of heat transfer and the profile of the Speed, while increasing number of 

Prandtl and Grashof number improves energy efficiency (heat transfer), he also observed 

that the increase in buoyancy force, also improves the heat transfer in the presence Of a 
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porous material from the flow of mixed convection of viscoelastic fluids. For nanofluids, the 

variation of the magnetic parameter decreases, on the one hand, the rate of increase of the 

flow velocity of the nanofluid in the boundary layer, on the other hand it causes the increase 

of heat transfer and this Is also noted for the Prandtl number while the upward variation of 

the Eckert number causes the heat transfer decrease. A. K. Piętal [16], has studied the 

possibility of applying the theory of micropolar fluids on flow models in microchannels and 

the calculation as a function of the geometric dimension of the flow field, he showed that for 

linear dimension of flow sufficiently The equations of the flow of the micropolar fluid take 

the form of the Navier-Stokes equations, and then the POISEUILLE flows in a microchannel 

are studied as a function of the diameter of the maximum section of the channel. He 

confirmed that the micropolar model is applicable for a small geometric dimension 

characteristic of the flow. The results indicate that this "limiting dimension" depends on the 

rheological properties of the fluid which can be expressed through dimensionless 

microstructure parameters defined herein. For the larger microchannels, the flow is silent, 

well described by the classical fluid model, and it pays to perform the calculations on the 

basis of classical dynamics, the Navier-Stokes equations, which are simpler than those of 

Dynamic equations fluids micropolar. The results obtained correspond to some 

experimental estimates obtained earlier. The lower limit of applicability of the theory of 

micropolar fluids to the modeling of microflows as mentioned above results from 

fundamental questions on how the small dimensions of the flow field the micropolar fluid 

model can be treated as A continuous environment. This problem has been studied in other 

articles in detail. On the basis of the results, we can conclude that the micropolar theory is 

applicable to the modeling of fluid flows in channels of width not less than 10 diameters of 

the fluid molecule. Using the method of Nachtsheim Swigert, Md. Z. Haque et al [17], have 

studied numerically the behavior of micropolar fluids in free convective flow MHD, with heat 

and mass transfer through a porous medium whose heat and mass flux Are constant. The 

main results obtained from this study are: the velocity of micropolar fluid flow and the local 

friction coefficient vary in proportion to the density of the light particles and the air. While 

microrotation varies proportionally with the high density of heavy particles and water 

(inversely proportional with micropolar fluids and air density of light particles). They also 

observed that the temperature of the micropolar fluid is higher for air than water. It is hoped 

that scientific investment is useful for plasma as well as in electrical engineering, extractions 

of geothermal energy, generators and control of parameters in the boundary layer in the 

field of aerodynamics. In 2013, B. Madhusudhana et al [18], have studied the free 

convective transfer of heat and mass MHD from the flow over a semi-infinite vertical plate, 
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mobile and permeable under the effect of heat absorption, Radiation, chemical reaction and 

sore. By the analytical solution of the governing differential equations of the flow, they noted 

that as the number of thermal Grashof increases, the velocity of fluid flow increases, so 

increasing the heat source and radiation Decrease in the temperature of the fluid and the 

speed of flow of the fluid. In addition, the local friction coefficient is increased due to the 

increase of the sore parameter. Similarly, the local friction coefficient and the Nusselt 

number are decreased due to the increase in radiation and heat source parameters. In 2008, 

Jian-Jun Shu et al [19], proposed a new fundamental solution for micropolar fluids, they 

wrote the Navier-Stokes and Oseen differential equations of the uniform flow in explicit 

form and unbounded two- Point two-dimensional micropolar, Stokes two-dimensional and 

three-dimensional micropolarities, the three-dimensional Oseenlet micropole, and the three-

dimensional Oseen micropolar pair, hence these fundamental solutions are not defined for 

the flows of Newtonian fluids due to the lack of microrotaction velocity field. As an 

application, the drag coefficients of a solid sphere or a circular cylinder are determined 

which results in a micropolar flow of low Reynolds number and are compared with those 

corresponding to the Newtonian flow. The drag coefficient in the micropolar fluid is greater 

than that of a Newtonian fluid. A. A. Siddiqui [20], has formulated the non-uniform flow due 

to a uniformly accelerated circular cylinder and rotates in a stationary, viscous, 

incompressible and micropolar fluid. This flow problem is examined numerically by 

adopting a special scheme including the Adams-Bashforth temporal Fourier series method 

and the Runge-Kutta finite special finite difference method. He observed in this experimental 

study that if the effects of micropolarity are intensified, the lift increases and the drag force 

is reduced. The same thing happens if the rotation of the cylinder increases. In addition, 

rotation not only dampens vortices and unfavorable pressure adjacent the cylinder region, 

but also dissolves the boundary layer separation. In addition, rotation reduces the 

micropolar spin boundary layer as well. M. Ashraf and A. R. Wehgal [21], have studied 

MHD flow and heat transfer of micropolar fluid over a deceived disk. Research suggests that 

the heat transfer rate at the disc surface increases with increasing values Of micropolar 

parameter. Also the magnetic field improves the shear stresses and the torque. The shear 

stress factor is lower for micropolar fluids than for Newtonian fluids, which can be beneficial 

in controlling the flow and heat of the polymer treatment. M. Zadravec et al. [22], have 

contributed in numerical simulation of the flow of micropolar fluid in a channel, describing 

the flow of rigid particles in suspension, undeformable and in its own rotation. By applying 

the Boundary Element Method (BEM) method, the results show that the ratio between the 

viscosity coefficient of turbulence and the coefficient of a viscosity of the spin gradient 
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control the microrotation in the microchannel. D. Gupta [23], have worked in the aim to 

obtain a mathematical model for various nonlinear flow problems of micropolar fluids and 

determining the numerical solution of these problems. He studied the effect of various 

parameters on the flow rate and the heat transfer characteristics of the micropolar fluid. 

Also, he had worked to find the parameters responsible for the reduction of friction, and 

studied the parameters which increase the rate of Transfer of heat. Xinhui Si et al. [24], 

Have studied the influence of viscous dissipation in the energy equation of the flow and heat 

transfer of incompressible micropolar fluid in a channel, which walls are expanding or 

contracting. They have focused on the influence of certain physical parameter values on 

velocity, microrotation, and heat transfer. They concluded that the value of the 

microrotation close to the suction wall is a decreasing function and the temperature is an 

increasing function. Due to the existence of injection on the walls, the profile of the 

microrrotation is antisymmetric and the minimum value of the temperature decreases. The 

maximum value of the flow velocity is an increasing function. The value of the microrotation 

and the temperature at the wall, both are decreasing functions. The value of microrotation at 

the wall is an increasing function. The speed of the microrotation is zero in the center of the 

channel because the directions of the speed of the microrotation are opposite. P. Muthu et 

al. [25], have studied the oscillatory flow of micropolar fluid in an annular region with 

constriction, provided by the variation of the radius of the outer tube, is studied. The 

nonlinear governing equations of the flux are solved using the perturbation method to 

determine the flow characteristics. The main contribution of this article is to see the 

micropolar nature of blood flow in a catheterized artery. They found that a mean zero flow, 

continuous flow analysis predicted a non-zero mean pressure drop. The variation in the size 

of the catheter has an effect on the shear of the wall. G. M. Abdel-Rahman [26], has studied 

the effect of magnetohydrodynamics on thin layers of unstable micropolar liquid through a 

porous medium. These thin films are considered for three different geometries. The 

governing differential equations are solved numerically using the Shooting Method. From 

the present study, Abdel-Rahman found that the rotation of the microparticles at the limit 

increases the speed with respect to the case where there is no rotation at the limit. 

 

Thesis contribution and outlines 

Consequently, we will limit our discussion on the transport phenomena 

(thermomechanics) involved in this type of flow as a function of the variation of certain 

physical parameters; our doctoral thesis has been divided into two parts.  
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First, we started with part one, which is presented by chapter one. This chapter 

represents a literature synthesis of current studies done on flows Newtonian fluids and non-

Newtonian-micropolar in presence or in absence of magnetic field effect, This study provides 

a rich area of scientific of physical, energetic researchers and companies, whether in nature 

flows (ex. blood, sediment transport...) or industrial processes (stirring and mixing 

suspension, liquid-liquid extraction, solid-liquid separation, fermentation, fluidization, etc. 

...) these are complex environments which are developing thermo-physical phenomena and 

interaction between a various suspended particles at micro/nano-scales. In order to have an 

approach between the various collected works and our study; we will analyze the work of 

researchers available in this area by giving some tables summarizing these studies. 

 

The second part consists of three chapters devoted to the theoretical study of non-

Newtonian micropolar fluids, their rheological behavior, and the laws and equations that 

govern the kinematics and dynamics of fluids of this type. The details in this part are as 

follows:  

 In chapter two, we are focused on the definition of micropolar fluids by giving 

examples of this type of non-Newtonian fluids, in the other hand present rheological 

behavior of micropolar fluids. Eringen [5], has formulated the micro-continuum 

micropolar theory, which has been used by many authors in a variety of physical 

conditions, M. M. Rahman [27]. Micropolar fluids are non-Newtonian fluids with the 

internal structures in which the coupling between the rotational speed of each 

particle and the macroscopic velocity field is considered. Examples: The flows 

colloids and suspension of fine particles. The long chain polymer liquid crystals, 

blood, sparkling fluids (bright, colorful, etc.), Y. A. Buyevich, [28]. The microfleece 

theory is adopted to examine the effects of microstructure and microrotation on 

lubrication devices in the thin layer of lubricant. The micropolarity will result in an 

increase of the equivalent viscosity which later leads to improved lubrication, Z. 

Chaohui, et al, [8]. 

 After, in chapter three, we have presented a case of convective heat transfer 

phenomenon which was at one time a type of theoretically negligible flow but 

actually its impact on the boundary layer is experimental proved. This thermal 

phenomenon is called combined free and forced convection, In the treatment of 

forced convection, generally the effects of free convection are ignored, this was a 

hypothesis and this is evident when there is an unstable temperature gradient and 

the flow is convective free, presumably, by hypothesis, forced convection is supposed 
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negligible. It is time to note that, this situations will be different when the effects of 

forced and free convection are comparable, in which case it is inappropriate to 

neglect both processes. It has indicated that free convection is negligible if (GrL/Re2L) 

and that forced convection is negligible if (Gr/Re2) << 1. Hence the mixed convection 

regime is generally one for which (Gr/Re2) ≈1. The effect of buoyancy on heat 

transfer in a forced flow is strongly influenced by the direction of the buoyancy force 

relative to that of the flow, Theodore L. Bergman, et al, [29]. So the effect of 

buoyancy is to alter the velocity and temperature fields in the forced convection flow, 

and this in turn alters the Nusselt number and friction coefficient. Consider the case 

of upward forced convection over a vertical surface, thus in vertical tube in both 

cases, external and internal flow. If the temperature wall is up then the fluid 

temperature (Tw>T), the resulting buoyancy force support the convection flow, 

especially in close to wall-region, W. M. Kays, et al, [30]. The free convection may be 

significant, however, when low-velocity fluids flow over heated (or cooled) surfaces. 

A measure of the influence of free convection is provided by the ratio, D. R. Pitts, 

[31]. 

 Then, in chapter four, we have presented in firsthand, the basic formulation of 

viscous fluid equations of mechanics, as well as the equations of the continuity, the 

continuum, and the energy. Moreover, we have added another type of equations 

which describe a micro-continuum and magnetic field effects. In result, we will find 

together that the classical form of Navier-Stokes equations cannot describe certain 

types of flows, such as micropolar fluid motions, Eringen, [3-4], Buyevich, [28]. 

This is applied in many fields, especially in engineering, which are clearly indicates 

the far-reaching applications of polar fluid-mechanics knowledge and their 

importance in various fields of engineering, whereas, it necessary to carry out a 

special fluid mechanics considerations for each of the areas listed below. The 

objective of the derivations in this section is to formulate the conservation laws for 

mass, momentum, energy, in such a way that they can be applied to all these cases of 

flow problems.  

 

Finally, the third part, consist of two chapters involved the physical model to be 

studied, the mathematical formulation and the analytical and numerical solutions of this 

model. These both chapters are as follow. 

 In chapter five, we have presented an analytical and numerical study of a 

convective flow model of MHD micropolar and viscous fluids in a vertical 
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channel, in this work we have considered two incompressible and immiscible 

fluids in different regions, first region is occupied by non-Newtonian 

micropolar fluid and the second region is occupied by Newtonian-viscous fluid. 

The channel is subjected to the influence of a transverse magnetic field and 

temperature gradient. To provide an understanding of the complexity of this 

type of flow, a mathematical model is considered take into account the 

magnetic diffusivity term in equation of the energy balance, the model is 

investigated and allows appearance to certain dimensionless parameters such 

as a material parameter (K), Prandtl number (Pr), a mixed convection 

parameter defined by the Grashof number and Reynolds number (GR) ratio, a 

magnetic parameter called a Hartmann number (Ha) and Eckert number (Ec), 

as well as dimensionless ratios such us the widths ratio of fluids (H); the 

thermal conductivity ratio (k*); the thermal expansion coefficients ratio (β*); 

the viscosities ratio (μ*) and the ratio of the densities (ρ*). The final results of 

the mathematical model are used to deduce the effect of the magnetic field on 

the variation of the linear velocities (axial), the microrotation velocity field and 

temperatures field -transfer heat - so these results are subject to a 

comparative discussion in the conclusion between our numerical model study 

taking into account the term of the magnetic diffusivity with another models 

studied analytically with or without magnetic effect. 

 In chapter six, we found two means of figures, curves obtained from analytical 

solution using Microsoft Excel for the model without magnetic field effect. 

Thus a numerical solution is done for the model with a magnetic field effect by 

computing "Matlab". The obtained figures show us dimensionless linear 

velocities and dimensionless microrotation velocity into both regions of a 

channel. So the structure of the flow is represented by dimensionless velocities 

 𝑢1, 𝑢2  𝑒𝑡 𝑁. 
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Chapter 1: Literature review 

 

1.1. Introduction 

This chapter represents a literature synthesis of current studies done on flows 

Newtonian fluids and non-Newtonian-micropolar in presence or in absence of magnetic field 

effect, This study provides a rich area of scientific of physical, energetic researchers and 

companies, whether in nature flows (ex. blood, sediment transport...) or industrial processes 

(stirring and mixing suspension, liquid-liquid extraction, solid-liquid separation, 

fermentation, fluidization, etc. ...) these are complex environments which are developing 

thermo-physical phenomena and interaction between a various suspended particles at 

micro/nano-scales. In order to have an approach between the various collected works and 

our study, we will analyze the work of researchers available in this area by giving some 

tables summarizing these studies. 

 

1.2. Convective flows without magnetic field effect 

1.2.1. With porous medium 

In 2004, the researcher’s team: Zhang Chaohui and all, have studied the effects of 

microstructure and micro-rotation lubrication devices in the boundary layer lubrication. 

They analyzed the lubricating properties where the film thickness approaches to nano scale, 

to design reliable lubrication systems. They noted that the movement is affected by the 

viscous share, the effect of shear couples and direct connection to the microstructure 

velocity field. As result the micro-polarity increase in equivalent viscosity which later leads 

to better lubrication. They have concluded that the theory of micro-polarity is used to 

investigate execution of lubrication fluids in thin layers (boundary layer). The effects of 

microstructure and micro-rotation are combined into the viscosity modification of the 

formula (the formula Hamrock and Dowson), the main property distinguished of lubrication 

with micropolar fluids is the effect of particle size (the dimensions of the particle with 

respect to the thickness of the lubricant thin layer), they said that the thinner fluid film is the 

more anomaly to the lubrication phenomenon (non-polar case) [8]. 

In 2005, Chun-I Chen have studied a linear and non-linear stability analysis for 

characterization of micropolar film flowing down the inner surface of a rotating infinite 

vertical cylinder is given. A generalized non-linear kinematic model is derived to represent 

the physical system and is solved by the long wave perturbation method in the following 
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procedure. First, the normal mode method is used to characterize the linear behaviors. Then, 

an elaborated non-linear film flow model is solved by using the method of multiple scales to 

characterize flow behaviors at various states of sub-critical stability, sub-critical instability, 

supercritical stability, and supercritical explosion. The modeling results indicate that by 

increasing the rotation speed, X, and the radius of cylinder, R, the film flow will generally 

stabilize the flow system [32].  

In 2009, M. M. Rahman, have studied a free-forced convective laminar in two-

dimensional flow and heat transfer of micropolar fluids past a vertical radiate isothermal 

permeable surface with viscous dissipation and Joule heating is investigated numerically. 

The local similarity solutions for the flow, microrotation (angular velocity) and heat transfer 

characteristics are illustrated graphically for various material parameters. The effects of the 

pertinent parameters on the local skin friction coefficient, plate couple stress and the rate of 

heat transfer are also calculated. It was shown that micropolar fluids presented lower 

viscous drag and heat transfer values than those of the Newtonian fluids. The effect of 

radiation on the rate of heat transfer in a weakly concentrated micropolar fluid is higher 

than a strongly concentrated micropolar fluid. Results also show that full radiation has 

significant effect on the rate of heat transfer compared to the linear radiation [27]. 

1.2.2. Without porous medium 

In 1998, M. A. Hossain, and M. K. Chowdhury have studied a steady two-

dimensional mixed convection flow of viscous incompressible micropolar fluid past an 

isothermal horizontal heated plate with uniform free stream and variable spin-gradient 

viscosity is considered. With appropriate transformations the boundary layer equations are 

transformed into non-similar equations appropriate for three distinct regimes, namely, the 

forced convection regime, the free convection regime and the mixed convection regime. 

Solutions of the governing equations for these regimes are obtained by an implicit finite 

difference scheme developed for the present problem. Results are obtained for the pertinent 

parameters, such as the buoyancy parameter, ~ in the range of 0 to 10 and the vortex 

viscosity parameters, A = 0.0, 1.0, 3.0, 5.0 and 10.0 for fluid with Prandtl number Pr - 0.7 and 

are presented in terms of local shear-stress and the local rate of heat transfer. Effects of 

these parameters are also shown graphically on the velocity, temperature and the couple 

stress distributions. From the present analysis, it is observed that both the momentum 

boundary layer and the thermal boundary layer increase due to an increase in the vortex 

viscosity of the fluid [33]. 
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In 1988, S. P. Singh, et al, are studied numerically a physical model similar as 

the human joints. They introduced a continuously varying porosity mode for lower 

plate instead of usual uniform mono or multi-layered models, taking within a 

micropolar fluid film is taken as a lubricant, by suitable choice of non-dimensional 

porosity variation parameter, they analyzed the variation of pressure and load capacity 

with reference. As result as, trends of variations are fairly in agreement with those 

recorded in earlier investigations. They conclude that the decrease in L=β0/l (the initial 

film thickness of fluid/the width of cartilage), provoke an increase of the effective 

viscosity, but the axial pressure decrease, in the other hand, when the porosity in the 

interface, cartilage-fluid, increases the pressure decreases, which causes the increase in 

velocity in the porous media, while in the case of non-porous cartilage pressure is 

maximum [34]. 

 

In 2006, Y. Y. Lok , et al, are studies the unsteady mixed convection boundary-layer 

flow of a micropolar fluid near the region of the stagnation point on a double infinite vertical 

flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of 

the free stream velocity and by sudden increase or sudden decrease in the surface 

temperature from the uniform ambient temperature. The problem is reduced to a system of 

non-dimensional partial differential equations, which is solved numerically using the Keller-

Box Method (KBM). This method may present well-behaved solutions for the transient 

(small time) solution and those of the steady-state flow (large time) solution. It was found 

that there is a smooth transition from the small-time solution (initial unsteady-state flow) to 

the large-time solution (final steady-state flow). Furthermore, it is shown that for both, 

assisting and opposing cases, and fixed value of the Prandtl number, the reduced steady-

state skin friction and the steady-state heat transfer from the wall (or Nusselt number) 

decrease with the increase of the material parameter. On the other hand, it is shown that 

with the increase of the Prandtl number and a fixed value of the material parameter, the 

reduced steady-state skin friction decreases when the flow is assisting and it increases when 

the flow is opposing [35]. 

In the work done in 2008, C. Y. Cheng, has analyzed the boundary-layer of natural 

convection heat transfer near a vertical truncated cone with power-law variation in surface 

temperature in a micropolar fluid. In this, a transformed boundary layer governing 

equations are solved by the Cubic Spline Collocation Method (CSCM). Results for local 
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Nusselt numbers are presented as functions of vortex viscosity parameter, the surface 

temperature exponent, and the Prandtl number. The heat transfer rates of the truncated 

cones with higher surface temperature exponents are higher than those with lower surface 

temperature exponents. Moreover, the heat transfer rate from a vertical truncated cone in 

Newtonian fluids is higher than that in micropolar fluids. Cheng has concluded that the 

Increase in the parameter of the swirling viscosity micropolar fluid has a tendency to retard 

the flow and reduces the heat transfer rate. Moreover, the temperature increase of lateral 

surface of the cone promotes the increase of the buoyant force and thus leads to increase the 

heat transfer rate, [36]. 

In 2009, J. P. Kumar, et al, have studied fully-developed laminar free-convection 

flow in a vertical channel, and the analytical solution is given, the channel consist of  two 

immiscible fluid regions, one region is filled with micropolar fluid and the other region is 

filled with viscous fluid. Using the boundary and interface conditions proposed by previous 

investigators, analytical expressions for linear velocity, micro-rotation velocity and 

temperature have been obtained. Numerical results are presented graphically for the 

distribution of velocity, micro-rotation velocity and temperature fields for varying physical 

parameters such as the ratio of Grashof number to Reynolds number, viscosity ratio, width 

ratio, conductivity ratio and micropolar fluid material parameter. It is found that the effect of 

the micropolar fluid material parameter suppress the velocity whereas it enhances the 

micro-rotation velocity. The effect of the ratio of Grashof number to Reynolds number is 

found to enhance both thelinear velocity and the micro-rotation velocity. The effects of the 

width ratio and the conductivity ratio are found to enhance the temperature distribution. 

[9]. 

In 2016, J. Raza, et al, have studied numerically in order to investigate a multiple 

solutions of micropolar fluid in a channel with changing walls. Mathematical modeling of 

laws of conservation of mass, momentum, angular momentum and energy is performed and 

governing partial differential equations are converted into self-similar ordinary differential 

equations by applying suitable similarity transformation and then solved numerically by 

shooting method. A new branch of solutions is found and presented in graphically and 

numerically for the various values of parameters, which this method has never been 

reported, [37].    

In 2009, Md. A. Ikbal, et al, have did a theoretical investigation of atherosclerotic 

arteries deals with mathematical models that represent non-Newtonian flow of blood 
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through a stenosed artery in the presence of a transverse magnetic field. They conclude that 

the magnetic field causes substantial reduction of the flow rate. The form of magnetic field 

gradient plays an important role and substantially determines the flow field, [38].  

In 2009, V. P. Srivastava et al, have studied a problem of blood flow in a narrow 

catheterized artery, using two-phase macroscopic model of blood (i.e., red cells suspended in 

plasma). It is found that the effective viscosity and the frictional resistance increase with 

hematocrit. Flow characteristics assume lower magnitudes in catheterized artery as 

compared to uncatheterized artery for any given set of parameters. Numerical results reveal 

that the effective viscosity and the increased frictional resistance assume their minimal 

magnitude and consequently the volumetric flow rate assumes its maximal magnitude 

during the artery catheterization at the catheter size approximately fifty percent of the 

artery size [39]. 

In 2007, F. Shahzad, et al, have studied the time-independent equations for the two 

dimensional incompressible micropolar fluid. They have used the Lie Group Analysis Method 

(LGAM) to reduce the governing complex differential equations of a micropolar fluid flow to 

ordinary differential equations which have solved analytically. Finally the boundary value 

problem has been discussed, and the graphical results are in good agreement with the 

numerical solution. The group of researchers has concluded that the magnetic parameter 

holds the angular velocity. But the velocity components decrease in reference of magnetic 

parameter. They also conclude that the behavior of magnetic parameter is opposite on the 

angular velocity than on linear velocities [40].  

 

1.3. Convective flows with magnetic field effect 

1.3.1. With porous medium 

In 2001, Y. J. Kim has studied two-dimensional laminar flow of a viscous 

incompressible electrically conducting fluid in the vicinity of a semi-infinite vertical 

porous moving plate in the presence of a transverse magnetic field, the plate moves 

with constant velocity in same direction with fluid flow, and the free stream velocity 

follows the exponentially increasing small perturbation law. A uniform magnetic field 

acts perpendicular to the porous surface which absorbs the fluid with a suction velocity 

varying with time. The effects of material parameters on the velocity and temperature 

fields across the boundary layer are investigated. Numerical results show that for a 

constant plate moving velocity with a given magnetic and permeability parameters, and 
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Prandtl and Grashof numbers, the effect of increasing values of suction velocity 

parameter results in a slight increasing surface skin friction for lower values of plate 

moving velocity. It is also observed that for several values of Prandtl number, the 

surface heat transfer decreases by increasing the magnitude of suction velocity [10]. 

In 2010, a paper entitled fully developed electrically conducting micropolar fluid flow 

and heat transfer along a semi-infinite vertical porous moving plate is studied by R. Sharma 

et al, including the effect of viscous heating and in the presence of a transverse magnetic 

field in the flow direction. They have conclude that the velocity increases with the increase 

of plate velocity or Darcy number but it decreases as each of magnetic parameter value, 

Forchhimer number and the micropolar parameter increases. The temperature decrease as 

heat absorption coefficient increases, but it increases as each of plate velocity, Forchhimer 

number and the micropolar parameter increases. The skin friction coefficient decreases as 

exponential index n* increases, while it increases with the increase of the magnetic 

parameter. The Nusselt number is increased due to the magnetic parameter and exponential 

index n*. The magnetic field can be used effectively for controlling the rate of heat transfer as 

required in MHD applications like MHD generators, nuclear reactor, where it is required to 

control the enormous temperature [41]. 

In 2013, a problem under title, A magnetohydrodynamic (MHD) flow of a viscous fluid 

on a nonlinear porous shrinking sheet is studied by F. Md Ali et al. They have used the 

Shooting Method (SM), this method is used to solve numerically the boundary layer partial 

differential equations. They are found that dual solutions only exist for positive values of the 

controlling parameter, it can conclude that the controlling parameter accelerated the 

boundary layer separation; however, the magnetic parameter delayed the boundary layer 

separation [42]. 

In 2015, Z. Abbas, et al, have studied the analysis of a second-grade fluid in a semi-

porous channel in the presence of a chemical reaction is carried out to study the effects of 

mass transfer and magnetohydrodynamics. The upper wall of the channel is porous, while 

the lower wall is impermeable. The basic governing flow equations are transformed into a 

set of nonlinear ordinary differential equations by means of a similarity transformation. An 

approximate analytical solution of nonlinear differential equations is constructed by using 

the homotopy analysis method. The features of the flow and concentration fields are 

analyzed for various problem parameters. Numerical values of the skin friction coefficient 

and the rate of mass transfer at the wall are found. In this study, they have concluded that 
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the mass transfer analysis on the laminar flow of an MHD second-grade fluid in the presence 

of a chemical reaction is discussed. A set of nonlinear ordinary differential equations is 

solved by the homotopy analysis method to obtain an approximate analytical solution. The 

physical effects of various involved parameters on the flow and concentration fields are 

analyzed. The following observations are made in this study: with an increase in the 

Reynolds number Re, the shear stress increases; the fluid velocity at the center of the 

channel decreases with an increase in M; the concentration increases with increasing K and 

decreases with increasing Re; finally, the rate of mass transfer at the wall decreases as the 

values of Sc and γincrease [43]. 

In 2008, the application of Lie group analysis method is investigated by S. M. M. EL-

Kabeir et al, for solving the problem of heat transfer in an unsteady, three-dimensional, 

laminar, boundary layer flow of a viscous, incompressible and electrically conducting fluid 

over inclined permeable surface embedded in porous medium in the presence of a uniform 

magnetic field and heat generation/absorption effects. They have concluded that the unsteady 

three-dimensional laminar boundary-layer flow of a viscous, incompressible and electrically 

conducting fluid over an inclined permeable surface embedded in porous medium in the 

presence of a uniform magnetic field and heat generation/absorption effects are treated. 

Using Lie group method, we have presented the transformation groups for the problem, 

apart from the scaling group; the system admits a group of translations, as well, concerning 

thegroup of scaling and the associated self-similar solutions. Moreover, due to the generality 

of our procedure and the lackof unnecessary assumptions, we have obtained the general 

form of the functions involved in the boundary conditions. Finally, the application of three-

independent-variable partial differential equations transformed to two-independent 

variable system by using one subgroup of the general group. The resulting system of 

governing equations is solved numerically using perturbation technique for various values 

of physical parameters [44].  

In 2012, N. T. M. Eldabe, et al, have studied the problem of free convection heat with 

mass transfer for MHD non-Newtonian Eyring–Powell flow through a porous medium, over 

an infinite vertical plate is studied taking into account the effects of both viscous dissipation 

and heat source. They have concluded that as the non-Newtonian and magnetic parameters 

increase, the value of the velocity decreases. This conclusion meets the logic of the magnetic 

field exerting a retarding force on the free convection flow [45].  
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A problem of a theoretical study of unsteady magnetohydrodynamic viscous 

Hartmann–Couette laminar flow and heat transfer in a Darcian porous medium intercalated 

between parallel plates, under a constant pressure gradient is presented. Viscous 

dissipation, Joule heating, Hall current and ionslip current effects are included as is lateral 

mass flux at both plates is investigated by O. A. Bèg et al. (2009). They have used a 

computational technique known as Network Simulation Methodology (NSM) to examine 

graphically the velocity distributions (u*,w*) and temperature distribution (T*) at the 

channel centre (y* = 0) over time (t*) for the effects of multiple dimensionless numbers as 

Darcy (Da), Hartmann (Ha), etc…, with Prandtl number prescribed at 7.0 (electrically 

conducting water), Eckert number held constant at 0.25 (heat convection from the plates to 

the fluid) and Reynolds number (Re) fixed at 5.0 (for Re < 10, Darcian model is generally 

valid). They observed that increasing Darcy number causes an increase in temperature, T*; 

values are however significantly reduced for the higher Hartmann number case (Ha = 10). 

For the case of low transpiration (it corresponds to weak suction at the upper plate and 

weak injection at the lower plate), both primary velocity (u*) and secondary velocity (w*) 

are increased with a rise in Darcy number (owing to a simultaneous decrease in Darcian 

porous drag); temperature T* is also increased considerably with increasing Da. However, 

temperature, T* is strongly increased with a rise in pressure gradient parameter, dP*/dx*, as 

is primary velocity (u*); however, secondary velocity (w*) is reduced [46].  

A problem of two dimensional unsteady laminar boundary-layer flow of a viscous, 

incompressible, electrically conducting and heat-absorbing fluid along a semi-infinite 

vertical permeable moving plate with a uniform transverse magnetic field in presence of 

radiation, chemical reaction, soret effect and thermal diffusion effects, is investigated by B. 

Madhusudhana Rao et al. they have observed that when the Thermal Grashof number and 

Mass Grashof number increased, the fluid velocity increased. The presence of heat source 

effects and radiation effects caused the reductions in the fluid temperature which resulted in 

decreasing in the fluid velocity. Also, when Schmidt number was increased, the 

concentration was decreased, this resulted in decreasing in the fluid velocity [47].  

A numerical study is carried out for the axisymmetric steady laminar incompressible 

flow of an electrically conducting micropolar fluid between two infinite parallel porous disks 

with the constant uniform injection through the surface of the disks. This problem was 

treated by ASHRAF and WEHGAL. They observed that the heat transfer rate at the surfaces 

of the disks increases with the increases in the Reynolds number, the magnetic parameter, 
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and the Prandtl number. The shear stresses decrease with the increase in the injection while 

increase with the increase in the applied magnetic field. The shear stress factor is lower for 

micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal 

control in the polymeric processing [48]. 

1.3.2. Without porous medium 

In 2008, A. Ishak, et al, had studied a steady MHD mixed convection stagnation 

point flow towards a vertical surface Immersed in a incompressible micropolar fluid. The 

external velocity impinge normal to the wall and the wall temperature is assumed to vary 

linearly with the distance from the stagnation point. The governing partial differential 

equations are transformed into a system of ordinary differential equations, which is then 

solved numerically by a finite-difference method. The features of the flow and heat transfer 

characteristics for different values of the governing parameters are analyzed and 

discussed. Both assisting and opposing flows are considered. It is found that dual solutions 

exist for the assisting flow, be sides that usually reported in the literature for the opposing 

flow [7].  

In 2015, Y. Liu et al, have studied an alternating current (AC) Magnetohydrodynamic 

(MHD) electro-osmotic flow of incompressible Maxwell fluids between micro-parallel plates. 

They are investigated by using the separation variables method.  Fluids were driven under 

the Lorentz force produced by the interaction of a vertical magnetic field and two horizontal 

electrical fields. The solution involves analytically solving the linearized Poisson–Boltzmann 

equation, the Navies–Stokes equation and the constitutive equation of Maxwell fluids. They 

are conclude that at low values of Hartmann number (Ha) the magnitude of velocity 

decreases with Ha when the transverse electric field disappeared (S=0) due to the opposing 

magnetic force. However, the magnitude velocity increases with Ha when the transverse 

electric field appears (S = 10) and the aiding magnetic force exceeds the opposing magnetic 

force. At high values of Hartmann number Ha, the magnitude of steady velocity decreases 

with Ha because Ha beyond a critical value, the retarding force is dominant over the driving 

force [49].  

In 2015, a problem of magnetohydrodynamic flow of Jeffrey fluid through a circular 

micro-channel is treated by Chonghua et al, they have used the variable separation method, 

the analytical solutions to both DC-operated MHD and AC-operated MHD micro-pumps are 

found. The flow is assumed to be laminar, unidirectional, one dimensional and driven by the 

Lorentz force. The Lorentz force can be taken as hydrostatic pressure gradient in the 
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momentum equation of the MHD micro-channel flow model. The effects of Hartmann 

number Ha, dimensionless relaxation time λ1 and retardation time λ2 on the velocity and 

volumetric flow rate are investigated. The velocity and volumetric flow rate grow and then 

reduce with Hartmann number Ha. There is a critical value of the Ha for MHD velocity and an 

optimum Ha for maximum volumetric flow rate. In addition, a comparison with previous 

works is also provided to confirm the validity of the present results [50]. 

In 1996, A. A. Mohammadein et al, have studied the effects of magnetic field with 

vectored surface mass transfer and induced buoyancy stream-wise pressure gradients on 

heat transfer to a horizontal plate placed in a micropolar fluid, they have used boundary 

layer equations for the mixed convection flow over a semi-infinite horizontal plate with 

vectored mass transfer in a transverse magnetic field. The mathematical model obtained is 

solved numerically in aim to obtain the mass transfer, the buoyancy, and material 

parameters for different values of the magnetic parameter. A discussion is provided for the 

effects of the transverse magnetic field on micropolar fluid behavior. The results indicate 

that micropolar fluids display a reduction in drag as well as heat transfer rate when 

compared with the Newtonian fluids. The transverse magnetic field is observed to reduce 

the overall heat transfer to the surface [51]. 

In 2016, Z. Y. Huang, et al, have studied numerically the characteristics of laminar 

MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks 

equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve 

system with uniform external magnetic field. The MHD effect is represented by the 

interaction number which associates with the conductivity of the MHD fluid as well as the 

external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky 

force. The transient numerical results of pressure head, average velocity, wall shear stress, 

velocity profiles, and shear stress profiles are provided. The additional MHD effect hinders 

fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious 

attenuation of oscillation, strengthened line packing and weakened Richardson annular 

effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements 

the gap of knowledge of rapid-transient MHD flow and technically provides beneficial 

information for MHD pipeline system designers to better devise MHD systems. As a result 

phenomena made by MHD effects, a high initial pressure gradient is required to drive the 

MHD fluid in order to achieve a specific Reynolds number. Another conclusion is that a 

homogeneous initial velocity profile of Newtonian fluid, which can be induced by magnetic 
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field, tends to induce large line packing because it has better ability to resist velocity reversal 

near the pipe wall. Some extreme cases where very large strength of external magnetic field 

or conductivity of MHD fluid is required are also studied. Line packing keeps intensifying 

and finally takes the place of wave oscillation while Richardson annular effect gets weak and 

finally is thoroughly eliminated. The MHD effects to homogenize velocity profile and to 

attenuate the wave front are increasingly intensive when the interaction number is larger so 

that the velocity profiles can stay uniformity as far as possible during transient process. So in 

an extreme case of laminar MHD fluid hammer, no wave oscillation or Richardson annular 

effect but line packing and relatively homogenous velocity profile exist [52]. 

In 2016, Ruchika Dhanai, et al, have studied a various applications of nanofluids, by 

the numerical investigation of multiple solutions in MHD boundary layer flow and heat 

transfer of power-law nanofluid past a permeable nonlinear shrinking sheet with heat 

source/sink. They concluded that the rate of heat transfer at the surface decreases for 

increasing value of Eckert number but heat transfer rate increases with increasing of Prandtl 

number [53]. 

In 2012, M. Turkyilmazoglu, has investigated the problem of magnetohydrodynamic 

slip flow of an electrically conducting, non-Newtonian fluid past a shrinking sheet is of 

concern of the present paper. The physical pure exponential type solutions are targeted to 

investigate whether they are unique or multiple under the influence of slip flow conditions. 

He has observe that the physical parameters as magnetic parameter, has an effect as well as 

unique or multiple slip flow solutions. In the presence of a magnetic field has also substantial 

effects on velocity and temperature fields, [54]. 

In 2015, Hari R. Kataria et al, have studied theoretically the boundary layer flow of 

an incompressible micropolar fluid under uniform magnetic field and motion takes place 

due to the buoyancy force between vertical walls. They concluded that the velocity of the 

fluid decreases with increasing Prandtl number. The velocity amplitude as well as the 

boundary layer thickness decreases when magnetic parameter increased. Magnitude of the 

micro-rotation has an increasing tendency with the material parameter and vortex viscosity 

decreases with increase in Prandtl number. The steady state time of fluid velocity as well as 

microrotation is more for symmetric cases compared to asymmetric cases. The velocity and 

micro-rotation fluid profiles decrease at any point of fluid regime with magnetic parameter. 

The velocity decreases and micro rotation profile of fluid increases at any point of fluid 
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regime with vortex viscosity parameter. The steady state time of velocity profile and micro-

rotation have a decreasing tendency with material parameter [55]. 

In 2015, M. M. Rashidi, et al, have studied and analyzed the convective flow of a third 

grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field, they 

have also studied in detail the entropy generation. They have used, in solving the governing 

equations analytically by means, the Optimal Homotopy Analysis Method (OHAM), they have 

concluded that the effect of various parameters on the velocity and temperature, such as the 

magnetic parameter and Prandtl number are investigated. In addition, the dependence of the 

entropy generation number on the magnetic parameter, Prandtl, Reynolds, Hartmann 

numbers and the dimensionless temperature difference is investigated. From the obtained 

results it can note the following: Brownian motion plays an important role to improve 

thermal conductivity of the fluid. The thermal boundary-layer thickness gets decreased with 

increasing magnitude of the Prandtl number. Effect of the magnetic field on the fluid flow 

and temperature distribution is important. By increasing the magnitude of the magnetic 

parameter, the entropy generation function increases [56].  

In 2015, Neela Rani, et al, have studied the onset of instability in a layer of dielectric 

micropolar fluid under the simultaneous action of – an AC – electric field and temperature 

gradient has been investigated. In summary, they concluded that the role of electric field is 

to destabilize the convection in the fluid layer in the case of stability motions only for 

negative values of electric Rayleigh number. They have also noted that the role of 

micropolarity is to stabilize the convection in fluid layer in stability as well as in over-

stability motions. As well as the role of Prandtl number is again to stabilize the fluid layer in 

the case of over-stability only. In case of stability, in end they observed that the expression of 

thermal Rayleigh number is independent of Prandtl number and hence Prandtl number has 

no role to play [57]. 

In 2016, Madhu, and Kishan have studied numerically the Magnetohydrodynamic 

mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a 

non-Newtonian power-law nanofluid towards a stretching surface in the presence of 

thermal radiation. They have concluded that the effect of magnetic field parameter reduces 

the velocity profiles, but the presence of the thermophoresis parameter increase the 

velocity, temperature and concentration profiles for both newtonian and non-Newtonian 

fluids. The Brownian motion number increases the temperature profiles and decreases the 

concentration profiles. The velocity and concentration profiles are increases with the 
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increase of radiation parameter for both Newtonian and non-Newtonian fluids. They have 

observed that the mixed convection parameter and velocity ratio parameter are to increase 

the velocity profiles and reduces the temperature and concentration profiles. Also, the skin 

friction co-efficient f(0) increases with the increase of thermophoresis parameter and it 

decreases with the increase of Brownian motion parameter and the power law index [58]. 

In 2011, B. S. Babu, et al, have proposed a physical model to study. The model is as 

flows, a vertical channel divided into two regions one region is filled with Micropolar fluid 

and the other region is filled with viscous fluid. The channel is subjected to the transverse 

magnetic field. The coupled governing equations are solved numerically by using the regular 

Galerkin Finite Element Methode (GFEM). The results are compared with those computed by 

Kumar et al. It is found that the increase in the magnetic field reduces the micro-rotation 

(N) and velocity. Then, the increase in Eckert number provokes a decrease in the linear, and 

microrotation velocities [59]. 

In 2015, Cha’o-Kuang Chen, et al, have studied numerically the heat transfer 

performance and entropy generation characteristics of a mixed convection 

magnetohydrodynamic flow of Al2O3–water nanofluid in a vertical asymmetrically-heated 

parallel-plate channel subject to viscous dissipation effects. In performing the analysis, the 

effects of the Lorentz force and Joule heating are modeled using the transverse momentum 

balance equation and energy balance equation, respectively. Moreover, the Hartmann 

number is assigned a value of Hm = 0 (no magnetic field) or Hm = 2 (weak magnetic field). 

The results show tha the presence of the magnetic field increases the local Nusselt number 

at the hot wall. Moreover, the enhancement in the heat transfer performance increases with 

an increasing nanoparticle concentration. Also, the local Nusselt number at the cold wall also 

increases with an increasing nanoparticle concentration. However, for a constant particle 

concentration, the Nusselt number reduces given the application of a magnetic field. Finally, 

the average entropy generation number also reduces when a magnetic field is applied [60]. 

In both investigated problems, first study is on two dimensional stagnation point flow 

of an electrically conducting micropolar fluid impinging normally on a heated surface in the 

presence of a uniform transverse magnetic field. The second one is on 

magnetohydrodynamics (MHD) flow and heat transfer characteristics of a viscous 

incompressible electrically conducting micropolar fluid in a channel with stretching walls. 

M. ASHRAF, M. M. ASHRAF, N. JAMEEL, and K. ALI [61-62], had observed, in the first, that 

the study shows that the velocity and thermal boundary layers become thinner as the 
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magnetic parameter is increased. The micropolar fluids display more reduction in shear 

stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is 

beneficial in the flow and thermal control of polymeric processing. Moreover, the second 

study may be involved beneficially in the flow and thermal control of polymeric processing. 

In 2010, M. Kumari, et al, have studied the transient boundary layer flow and heat 

transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid 

in a stagnation region of a two-dimensional body in the presence of an applied magnetic field 

have been studied when the motion is induced impulsively from rest. The nonlinear partial 

differential equations governing the flow and heat transfer have been solved by the 

Homotopy Analysis Method (HAM), and by an implicit finite-difference scheme. For some 

cases, analytical or approximate solutions have also been obtained. The special interest is 

the effects of the power-law index, magnetic parameter and the generalized Prandtl number 

on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition 

from the transient state to steady state. The shear stress and heat transfer rate at the surface 

are found to be significantly influenced by the power-law index N except for large time and 

they show opposite behavior for steady and unsteady flows. The magnetic field has strongly 

shear stress effect on the surface, but the heat transfer rate effect on the surface is 

comparatively weak except for a large time. On the other hand, the generalized Prandtl 

number exerts a strong influence on the surface heat transfer. Therefore, the skin friction 

coefficient decreases rapidly in a small interval from 0.0 – 0.1, [63]. 

In 2013, R. Ellahi, in his paper, has examined the magnetohydrodynamic (MHD) flow 

of non-Newtonian nanofluid in a pipe in using analytical solution. The temperature of the 

pipe is assumed to be higher than the temperature of the fluid. In particular two 

temperature dependent viscosity models have been considered. It is observed that the MHD 

parameter decreases the fluid motion and the velocity profile is larger than that of 

temperature profile even in the presence of variable viscosities. They observed a strong 

dependence of the velocity and temperature on viscosity indexes [64]. 

In 2016, K. Tzirakis et al, have steadied the problem of blood flow dynamics which 

have an integral role in the formation and evolution of cardiovascular diseases. Simulation of 

blood flow has been widely used in recent decades for better understanding the 

symptomatic spectrum of various diseases, in order to improve already existing or develop 

new therapeutic techniques. The mathematical model describing blood Rheology is an 

important component of computational hemodynamics. Blood as a multiphase system can 
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yield significant non-Newtonian effects thus the Newtonian assumption, usually adopted in 

the literature, is not always valid. To this end, they have conclude that the convergence rate, 

however, of the Newtoniteration was not significantly affected preserving the computational 

efficiency of the method. The ability of the method to accurately resolve 2D and 3D 

benchmark problems was demonstrated. The method is subsequently utilized to assess the 

effects of magnetic fields on biomagnetic fluid flow. To this end, the magnetization force 

generated by an externally applied magnetic field is added in the RHS of the momentum 

equations, resulting in considerable flow deviation, even for moderate field intensity. 

Magneto-viscous effects are also taken into account through the generated additive viscosity 

of the fluid and were found to be important. Applications of interest can be foreseen by 

exploiting magnetic fields for blood flow control, such as reduction of blood loss during 

surgery and targeted drug delivery [65].  

A problem of free convection MHD flow of micropolar and viscous fluids in a vertical 

channel with dissipative effects was investigated by B. S. Babu et al. to solve the governing 

differential equations, they had used the Finite Element Method (FEM), the obtained results 

were compared with those given by J. P. Kumar and N. Kumar [9],[21]. Babu et al. 

conclude that the increase in the magnetic field reduces the micro rotation (N) and velocity 

and enhances the temperature. Increase in the Eckert number (Ec), decreases the velocity, 

temperature and micro rotation. The Nusselt number and shear stress values are also 

analyzed [66]. 
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1.4. Problematic 

 

The approach of many study papers presented by many researcher teams in different 

ways of scientific research areas of fluid flows such as, biological or industrial flows, in 

porous or without porous media and in absence or in presence of magnetic field, J. P. Kumar 

et al, C. Y. Cheng, J. Raza et al, [9,36,37], and many others researchers are worked on some 

different models in many ways, analytically and numerically, in aim to understand the 

behavior of non-Newtonian micropolar fluids flow in micro-scale, furthermore, to detect 

which dimensionless parameter, number or coefficients have a positive or a negative effect 

on microstructure, microinertia, and material parameter,…..etc, at each point into a fluid. In 

literature, I was involved by some studies which are focused on the research area of non-

Newtonian micropolar fluids as well as it has been of great interest because the Navier–

Stokes equations for Newtonian fluids cannot successfully describe the characteristics of 

fluid with suspended particles. There exist more than a few approaches to study the 

mechanics of fluids with a substructure. Some of these studies are paying attention on free 

convective flows of immiscible micropolar fluids in channel, for example, in 2009, J. P. 

Kumar et al. [9], have proposed a model of free-convective flow in vertical channel, the flow 

is considered fully-developed, the channel was divided into two immiscible regions, one of 

them is filled with Micropolar fluid and the other is filled with viscous fluid, in first way, the 

coupled governing equations were solved analytically using the boundary and interface 

conditions proposed by previous investigators. In second way, in 2011, B. S. Babu et al, 

[66], have used the same physical model with the same boundary conditions, moreover, the 

channel was subjected to transverse magnetic field with dissipative effects, and the coupled 

governing equations are solved numerically by using a regular Galerkin Finite Element 

Method (GFEM). In 2012, N. Kumar et al. [21], have used the same model as the researcher 

team refer in [66], involve more change into channel, as well as, a porous medium was 

immerged in immiscible fluids. So, J. P. Kumar and D. Gupta had solved analytically the 

coupled governing equations. In observing studies referenced in [9] & [21], we think that 

both ways of solutions are simplified terms of the thermal diffusivity and magnetic 

diffusivity in the energy conservation equation. We think that coupled Navier-Stokes 

equations had missed energy in both analytical solution. Also, in viewing the GFEM method 

used to find the solution of differential equations of fluid flow, We observed that our 

mathematical model can be studied numerically using the similarity method.  
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Chapter 2: Non-Newtonian micropolar fluids and Rheology 

2.1. Introduction 

In this chapter we presented in first hand definition of micropolar fluids by giving 

examples of this type of non-Newtonian fluids, in the other hand present rheological 

behavior of M.F. Eringen formulated the micro-continuum theory micropolar, which has 

been used by many authors in a variety of physical conditions,  . Micropolar fluids are non-

Newtonian fluids with the internal structures in which the coupling between the rotational 

speed of each particle and the macroscopic velocity field is considered, M. M. Rahman [27]. 

Examples: The flows colloids and suspension of fine particles. The long chain polymer, 

crystal liquids, blood, and sparkling fluids (bright, colorful, etc…) Y. A. Buyevich [28]. The 

micropolar fluids theory is adopted to examine the effects of microstructure and 

microrotation on lubrication devices in the thin layer of lubricant. The micropolarity will 

result in an increase of the equivalent viscosity which later leads to improved lubrication, Z. 

Chaohui, et al, [8]. 

2.2. Micropolar fluids 

2.2.1. A flow of fine suspended particles 

One gives some examples of the existence of this type of non-Newtonian fluids.  

A. Fluids of suspended polymer particles  

These fluids are considered as non-Newtonian solutions of low concentration of 

polymer, for example, latex particles molecules dissolved in water (Figure 2.7). Nicodemo et 

al, had observed that the addition of latex particles in a fluid sheared simply didn’t have 

influence on the viscosity curve, [28]. 

B. Colloids  

Colloidal fluids are fluids which contain similar fine particles contains glue or gelatin 

and which does not crystallize, wherein the Brownian forces and particle-particle 

interactions play an important role [28]. 

The internal forces can be divided into hydrodynamic forces that are responsible for 

migration, alignment or orientation of particles in the case of non-spherical particles and 

collapsed structure when it comes to rainfall and aggregates, these forces result in relative 

movements of suspended particles, Einstein confirmed were the only forces in the analyzes 

of the viscosity of a dilute suspension ball in a Newtonian fluid. [28]. 

Non-hydrodynamic internal forces consist Brownian forces responsible for internal 

movement and distribution of the particles they have the strength of physical and chemical 
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interactions that can affect the internal structure of colloidal particles in suspension. 

Brownian motion allows for low-range attractive forces to promote the flocculation of 

construction and training of low gel network. Not to say that the external forces such as due 

to an electric field can drastically modify the rheological properties of suspensions [28]. The 

table.2.1 summarizes the main forces acting the colloidal particles with some basic 

mathematical formulas to calculate the magnitude: 

Table .2.1: The forces focus on colloid suspensions (Adapted by Russel et al). [28].  

Force the magnitude Definition 

Brownian 𝐹𝐵 =
𝑘𝑇

𝑑𝑝
                        (2.1) 

k: Boltzmann's constant 

T: temperature [K] 

dp: particle diameter 

Van Der Waals 𝐹𝑉𝑑 =
𝐴

𝑑𝑝
                      (2.2) A: constant Hamaker 

Viscous 𝐹𝑉𝑠 = ηdp
2 U = ηdpγ  (2.3) η: viscosity on particle 

Inertia 𝐹𝐼𝑛 = dp
2ρ

p
U2            (2.4) U: relative speed of particle 

Gravitational 𝐹𝑔𝑟 = dp
2 △ ρg            (2.5) △ ρ: difference between fluid density 

and particle 

C. Bloods 

The flows of the blood are considered fluids deformable vesicle suspension of non-

Newtonian character, its behavior in motion is as a shear thinning fluid and its viscosity 

decreases when the shear rate (velocity gradient) increases noted in referencies [1-6], see 

the example given   by N. Midoux and D. Quemada, [67-68]. (figure2.1).  

 

                                    

Figure 2.1: Viscosity versus shear rate for the blood, [38].  
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D. Synovial fluid or human joint liquid 

 About a rheological behavior studies of synovial fluid, we can sited for examples 

the study of Ogston and Stanier, they have brought out the visco-elastic character 

behavior while Dowson and Mow noted that the human joints liquid have the same 

rheological behavior as a lubricant, Jones agree too, Dintenfass found that synovial fluid 

is non-Newtonian due to the presence of molecules of byaluronique acid (long chain 

polymer), and its viscosity decreases with the increase of shear rate, this view was 

experimentally supported by Bloch and Dintenfass, Maroudas and Dowson. S. P. Singh, 

et al, [34]. 

 

E. Liquid Crystals 

There exist a large number of organic compounds that exhibit simultaneously 

solid and liquid behavior, at the same time they flow like fluids. These substances are 

called liquid crystals. Liquid crystals are constituted of rod-like, disk-like, or arbitrary-

shaped molecules in a fluent environment. There are many different types of liquid 

crystals. Liquid crystals, that possess rod-like molecules, are divided into two classes: 

nematic and smectic (Figure.2.2) [1].  

- In nematic liquid crystals, the mass centers of the molecules are distributed randomly 

in three dimensions.  

- In smectics, they are arranged in equidistant planes. 

 

 

Figure 1.2: Nematic and smectic liquid crystals [1]. 

 

When the rod-like elements of nematics are organized into adjacent planes, slightly 

rotated forming a helical structure is called cholesteric or chiralnematic phase (Figure.2.3). 

Cholesterics exhibit birefringence and optical activity. It can cite an other types of liquid 

crystals, the polymeric  which molecules consist of rigid bars attached to each other by 
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flexible chains or by a single long flexible fiber with attached bars as side chains (Figure2.4), 

polymeric liquid crystals can be in nematic, chiralnematic, or smectic orders [1].  

 

  

Figure 2.3: Cholesteric phase [1]. Figure 2.4: Liquid crystalline polymers; (a) main chain, 

(b) side chain [1]. 

 

A different class of liquid crystals has biologically important molecules, such as, 

phospholipids, called Amphiphilic molecules, which are either water seeking or water 

repelling (Figure2.5).  

 

 

Figure 2.5: Amphiphilic molecules: (a) soap molecules; (b) micelle; (c) vesicle; (d) phospholipid molecule [1]. 
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2.2.2. Some rheological models of micropolar fluids 

In the literature, there are several models that explain the rheological behavior of 

non-Newtonian micropolar fluids because their rheological behavior is independent of time 

and included in the category of pseudo-plastic (shear thinning) fluids [28].        

A. Carreau and modified Carreau models 

One can distinguish this type of fluids; low concentration polymer melt model is 

proposed (Table 2.2), for high concentrations of solids, or low viscosity matrices, 

interactions particle per particle can become significant, as for polystyrene melts filled with 

black coal, Titanium dioxide and calcium carbonate. Poslinski and others proposed a Carreau 

model changed [28]. 

 

Table 2.2: Rheological laws of micropolar fluid shear-thinning not present a critical stress. N. Midoux, D. 
Quemada and H. A. Barnes [67-68] & [74].   

Model Rheological laws 
Parameters 

n < 1 

Ostwald 

De Waele 
𝜏 = 𝑘. 𝛾 𝑛                                                    (2.6) 

n,  k: parameter and consistency index, 

respectively. 

Ostwald 

De Waele  
𝜇 = 𝑚. 𝛾 𝑛−1                                      (2.7) 

m : is parameter, mischaracterized 

behavior at low shear rates. 

 

 

Carreau 

 

𝜏 =  𝜇∞ + (𝜇0 − 𝜇∞) 1 + (𝜆. 𝛾 )2 
𝑛−1

2  . 𝛾     

(2.8) 

 

 

𝜇0, 𝜇∞, 𝜆  

 n : structure index  

Cross 𝜏 =  𝜇∞ +
𝜇0−𝜇∞

1+ 𝛾 .𝑡1 𝑝
 . 𝛾                            (2.9) 

 : presents the viscosity at very high 

shear rate. 

Ellis 𝜏 =  
𝜇0

1+ 
𝜏

𝜏1/2
 

𝛼−1 . 𝛾                                (2.10) 

𝜇0 , 𝜏1/2, 𝛼 

𝜏1/2 : Presents half of the applied shear 

stress. 

 

𝜇 =
𝜎0

𝛾 
+

𝜇0

 1+ t1γ  2 
 1−n 

2 
                                                                                             (2.11)           
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With, σ0 = G0 × γ
0

 &  G0 is the modulus of elasticity, with: σ0 <  σ  & γ
0
 ≥  γ  , μ

0
 zero-

viscosity, and the characteristic time (t1) are described by Maron Pierce, giving the following 

expressions [28]. 

t1 = t1m
μ0

μm

                                                                                                                                      (2.12) 

μ0

μm

=  1 −
ϕ

ϕm
 
−2

                                                                                                                         (2.13) 

With: μ
m

& t1m  are respectively the viscosity and the characteristic period of the 

polymer matrix, ϕm : is the maximum fraction of packaging = 0.80 ; 
μ0

μm
=

2

5
. 

Poslinski and al, obtained a good agreement between the proposed model and the 

experimental data, they found that the rheological behavior of the suspended particles is 

very similar to the behavior of non-saturated polymer particles (low polymer concentration) 

and suspended spherical particles of Glass. (Figure 2.6) [28]. 

 

Figure 2.6:  the shear viscosity of the spherical particles of suspended glass for different percentages of 
volume, dispersed in a thermoplastic polymer at 150 ° C, [28]. 

B. Human blood models 

In Pathological narrowing the flow of human blood in the stenosis of a blood vessel or 

artery is provided under the micropolar fluid model following, Md. Ikbal [38]. 

τ = −m    
1

2
(γ : γ ) 

n−1

 γ                                                                                                                       (2.14) 

With: 
1

2
 γ : γ  = 2   

∂v

∂r
 

2

+  
v

r
 

2

+  
∂u

∂z
 

2

 +  
∂u

∂r
+

∂v

∂z
 

2

                                                                (2.15) 

τ : Shear-stress tensor; γ  : Tensor of shear rate; 
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 m & 𝑛 : are respectively, consistency index and the index parameter of fluid behavior; 

z and r are the polar coordinates; u and v are respectively the velocity components along the 

axis (oz) and the pole (r).  

There is a particular pattern of blood flow through a catheterization narrow artery; this 

model is given by the formula of following effective viscosity, V. P. Srivastava et al, [39]. 

μ
e

=
(1−C)μs

1−ε4+β 1−ε2 +(1−ε2)2/log ε
                                                                                                       (2.16) 

With: μ
s
 : is an empirical relationship to the viscosity of a suspension; ε =

a1

a
 , where 

a; a1 are the limit values taken by the radius r of a hollow cylinder; β =
8C(1−C)μs

Sa2 ; S is the 

coefficient which characterizes the degree of particle by particle interaction. C: the particle 

density in the volume fraction of blood. 

2.2.3. Shear-thinning or Pseudoplastic fluid 

Generally, this type of fluids do not exhibit critical stress of flow or very low critical 

stress, for exemple: cements, adhesives, fluids containing suspended particles of detergent, 

and some paints, suspended particles of latex (polymer) in water, aqueous solution of 

polyacrylamide (figure.2.6 and 2.7). According to the experiments on this type of fluids, the 

gradient of apparent viscosity decreases while the shear rate increases [67-69]. 

 

  

Figure 2.7 : profile of curves obtained from 
aqueous solution of polyacrylamide and latex 

(polymer) in water [38].  

Figure 2.8: the viscosity depending of shear rate of 
the aqueous solution of polyacrylamide and latex 

(polymer) in water [38]. 
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2.3. General characteristics of micropolar fluid 

The micropolar fluid is characterized by the Brownian movement, the rotary motion 

(spin), the vortex viscosity, the viscosity of spin gradient, the density of micro-inertia of 

suspended solid particles, C. Y. Cheng [36].  

2.3.1. Micro-rotation (vortex) 

 The theorem that defined the proper rotation of the particles, denounced that when 

the fluid particles rotate around their own axis, the fluid flow is called rotational movement, 

the properties of this type of flow is important and different properties to potential flow (i-

rotational). The rotation of a particle is described by its mean angular velocity given by 

differential called formulas angular variations given by the following formulas, R. P. 

Chhabra and E. Krause [69],[84]. 

 
dα =

∂v

∂x
dt

dβ =
∂u

∂y
dt
                                                                                                                                                  (2.17) 

Generalizing the relation (2.17) in other form in three dimensions of the space we 

obtain the vector of rotation, [68-69], or vector swirling is according to: 

ω   = ξi + ηj + Nk  =
1

2
 ∇   × v                       (2.18)  

With: ∇   =
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘  ; v  = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘    

The component of the angular velocity of moving particle in rotation in different 

planes: (yoz), (xoz) & (xoy), are ξ, η and N, respectively given by: 

𝜉 =
1

2
 
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
                (2.19) 

𝜂 =
1

2
 
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
                 (2.20) 

𝑁 =
1

2
 
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
                 (2.21) 

2.3.2. Viscosity of the vortex   

It is usually given by a coefficient σ* characterizes the viscosity at the microscale to 

the border separating the fluid layer and the wall of the fine solid particles in suspension 

(related to fluid-solid contact area) in σ* balance equations is bound by the dynamic 
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viscosity μ in the momentum equation, the relationship between σ*, μ, and γ is called the 

viscosity of spin gradient. It given by the following formula, [68-69]. 

γ = (μ + 0,5. 𝜎∗)𝑗                                                                                                                                    (2.22) 

With: 𝑗: the density of micro-inertia.  

           𝜎∗: Viscosity of the vortex (spin).  

2.4. Main parameters affecting the viscosity 

The main parameters that have an apparent effect on the viscosity are: The 

temperature for liquids and semi-solids, expressed by the Arrhenius law; Pressure; The 

chemical nature of the fluid; The concentration of the solution in case of material; The 

weather; The shear stress on site both first parameters. [69], we given you in table2.3, some 

types of viscosities. 

A. Temperature and pressure Effects 

Practically, the temperature of incompressible fluid rise causes the expansion of 

volume (increase of intermolecular distances). The same result, when the pressure becomes 

very high, more than 40 bars, the viscosity () increases, less than 40 bars, the variation of 

viscosity is neglected, but for incompressible fluids, the threshold pressure is counted in 

start of 20 bars [69]. 

 

Table 2.3: Relations of different viscosity coefficients [69]. 

Coefficient formula Character  

Dynamic viscosity 
(absolute) 𝛍 

μ =
τ

D
                           (2.23) ----- 

Cinematic Viscosity,     =  
μ

ρ
                          (2.24)  : Dynamic viscosity of the 

dispersion. 

Relative viscosity, r  μr =
μ

μs
                        (2.25) s : Dynamic viscosity of the solvent. 

Specific viscosity, 
sp

  
sp

=
(−s)

s
                (2.26) ----- 

intrinsic viscosity, 
i  

i
= limC→0

0


sp

C
      (2.27) C: Presents the concentration of 

dispersed phase. 
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2.5. Conclusion 

From this theoretical analysis, we can conclude that there is an important link 

between the microscopic structure and fluid flow behavior. So, it’s possible to have certain 

desired characteristics of a product by manipulating the structure using a range of additives. 

Vice versa, harnessing rheological measurements to obtain insights at the microstructure 

scale, on the current basis, it is constructed materials in a convenient form in the industry 

(for example: personal care drugs, paintings, etc ....). 
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Chapter 3: Mixed Convective and MHD effect of Newtonian and non-Newtonian 

micropolar fluid flows 

3.1. Introduction 

In this chapter, in the first part, we have presented a case of convective heat transfer 

phenomenon which was at one time a type of theoretically negligible flow but actually its 

impact on the boundary layer is proved experimentally. This thermal phenomenon is called 

combined free and forced convection, In the treatment of forced convection, generally the 

effects of free convection are ignored, this was a hypothesis and this is evident when there is 

an unstable temperature gradient and the flow is convective free, presumably, by 

hypothesis, forced convection is supposed negligible. It is time to note that, this situations 

will be different when the effects of forced and free convection are comparable, in which 

case it is inappropriate to neglect both processes. It has indicated that free convection is 

negligible if (GrL/Re2L) and that forced convection is negligible if (Gr/Re2) << 1. Hence the 

mixed convection regime is generally one for which (Gr/Re2) ≈1. The effect of buoyancy on 

heat transfer in a forced flow is strongly influenced by the direction of the buoyancy force 

relative to that of the flow, Theodore L. Bergman, et al, [29]. So the effect of buoyancy is to 

alter the velocity and temperature fields in the forced convection flow, and this in turn alters 

the Nusselt number and friction coefficient. Consider the case of upward forced convection 

over a vertical surface, thus in vertical tube in both cases, external and internal flow. If the 

temperature wall is up then the fluid temperature (Tw>T), the resulting buoyancy force 

support the convection flow, especially in close to wall-region, W. M. Kays, et al, [30]. The 

free convection may be significant, however, when low-velocity fluids flow over heated (or 

cooled) surfaces. A measure of the influence of free convection is provided by the ratio in 

relation (3.1) gives by D. R. Pitts, [31]. 

in the second part, we present the writing of basic formulation of mechanical 

equations of viscous fluids, so, it is easy to formulate the mass conservation, momentum, and 

energy equations, in second hand we will add another type of equations or terms which 

describe a micro-continuum and magnetic field effect, we will find together that the classical 

form of the Navier-Stokes equations does not describe certain types of flows, such as moving 

micropolar fluids. Fluid mechanics considerations are applied in many fields, especially in 

engineering. Below a list is provided which clearly indicates the far-reaching applications of 

fluid-mechanics knowledge and their importance in various fields of engineering, whereas it 

necessary to carry out special fluid mechanics considerations for each of the areas listed 



 

40 
 

below. The objective of the derivations in this section is to formulate the conservation laws 

for mass, momentum, energy, in such a way that they can be applied to all the flow problems. 

The aim in this step is to derive local formulations of the conservation equations and to 

introduce field quantities into the mathematical representations of the conservation 

equations is sought for solutions of fluid flow problems. This requires one to express 

temporal changes of substantial quantities as temporal changes of field quantities. Also, our 

discussion will consider some of the simple relations of fluid dynamics and boundary layer 

analysis that are important for a basic understanding of convection heat transfer. 

3.2. Mixed convection regime  

Gr

Re 2
=

𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦  𝑓𝑜𝑟𝑐𝑒

𝐼𝑛𝑒𝑟𝑡𝑖𝑎  𝑓𝑜𝑟𝑐𝑒
                       (3.1) 

The regimes of convection are: 

Free convection: Gr >> Re
2
; Forced convection: Gr << Re

2
, and Mixed free and forced 

convection: Gr ≈ Re
2
. 

 

3.3. Free and forced combined convection in tube 

A summary of combined free-forced convection effects in tubes has been given by 

Metais and Eckert, as indicated in figure 3.1, which presents regimes for mixed convective 

flow in vertical tubes. Two different combinations are indicated in figure indicated above.  

 

Figure 3.1: Regimes of free, forced, and mixed convection for a flow through vertical tubes [76]. 
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Aiding flow means that the forced-free-convection currents are in the same direction, 

while the flow is opposing, it means that they are in the opposite direction. The abbreviation 

UWT means Uniform Wall Temperature, and the abbreviation UHF indicates data for 

Uniform Heat Flux, J. P. Holman & M. F. Marinet et al. [76-77]. It is fairly easy to anticipate 

the qualitative results of the figure 3.1.  

A large Reynolds number implies a large forced-flow velocity, and hence less 

influence of free-convection currents. Large values of Grashof and Prandtl product more 

mixed convection, this would expect free-convection effects to prevail. The figure 3.2 shows 

us regimes for combined convection in horizontal tubes. On this figure, J. P. Holman, [76], 

the Graetz number is defined as follows. 

 𝐺𝑧 = 𝑅𝑒. 𝑃𝑟
𝑑

𝐿
                     (3.2) 

The correlations on figures 3.1 and 3.2 are applicable for the follow range. 

10−2 < 𝑅𝑒. 𝑃𝑟
𝑑

𝐿
< 1                    (3.3) 

 

Figure 3. 2: Regimes of free, forced, and mixed convection for flow through horizontal tubes, [76]. 

The correlations presented in the figures are for constant wall temperature, all 

properties are evaluated at the film temperature. Involves for the region of laminar flow and 

mixed convection, Brown and Gauvin (Figure3.2) developed a improved correlation, [76], 

it’s as following. 
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𝑁𝑢 = 1.75  
𝜇𝑏

𝜇𝑤
 

0.14

 𝐺𝑧 + 0.012(𝐺𝑧. 𝐺𝑟
1

3 )
4

3  
1

3 

               (3.4) 

Than, μb is evaluated at the bulk temperature. This relation is preferred over that 

shown in Fig. 3.2. The problem of combined free and forced convection from horizontal 

cylinders is treated in detail by Fandand Keswani, [76]. 

3.4. Criteria for the free or forced convection 

In general notion, a majority of combined-convection analysis of heat-transfer mode is 

governed by the fluid velocity, for a forced-convection situation involving a fluid velocity of 

30 m/s, for example, probably is to overshadow most free-convection effects encountered in 

ordinary gravitational fields because the free-convection flow velocities are small comparing 

with 30 m/s. In another way, a forced flow situation at very low velocities (∼0 3 m/s) might 

be influenced appreciably by flows due by free-convection. An order of magnitude analysis 

of the free-convection boundary layer equations will indicate a general criterion for 

determining whether free-convection effects dominate. The criterion is that once, [76]. 

 

𝐺𝑟
𝑅𝑒2 > 10                    (3.5) 

 

3.5. External mixed convection  

We can distinguish two types of external convective flows, flow over a vertical plate 

and flow over a horizontal plate. The flow in mixed convection near a vertical plate, results 

from a combination of natural and forced convection. It considered that the wall is porous 

and is crossed by a uniform suction velocity flow (v0: velocity, counted positively for 

suction). Suction prevents the thermal and velocity boundary layers from growing and, as a 

consequence, they are spatially uniform. 
𝑑𝛿

𝑑𝑥
=

𝑑𝛿𝑇

𝑑𝑥
=  0, M. F. Marinet, et al, [77].  

Conclude that: 

– The temperature and velocity distribution; the friction coefficient. 𝐶𝑓  = 𝜏𝑤/𝜌𝑣0
2  . 

Divide the assistance of natural and forced convection to C f. 
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Example of theoretical model of vertical plate heated with constant flux 

The two equations above about the isothermal plane wall can be used with high-

quality of accuracy of constant heat flux problem provided that 𝑁𝑢𝐿  and Ra, are based on the 

difference of height midpoint temperature of plate. Therefore, ∆T and properties are based 

on  ∆𝑇𝐿/2  =  𝑇𝑆  (𝐿/2)  − 𝑇∞ . Then 𝑕  =  𝑞𝑆
" /∆𝑇𝐿/2, and A solution and error test is required. 

[62]. This problem is solved using Pohlhausen’s similarity parameter and steam function in 

two dimensions (x,y), this is as follows. 

𝜂 =
𝑦

𝑥
 
𝐺𝑟𝑥

4
 

1

4
                     (3.6) 

𝜓 𝑥, 𝑦 = 𝑓(𝜂)  4𝑣  
𝐺𝑟𝑥

4
 

1

4
                    (3.7) 

Using: 
𝜕𝜓

𝜕𝑦
= 𝑢 ;  

𝜕𝜓

𝜕𝑥
= −𝑣 ; 𝑡𝑕𝑒𝑛: 𝜃 =

𝑇−𝑇∞

𝑇𝑠−𝑇∞
.                

Using terms above in continuity and energy equations of Navier-Stokes, we will obtain 

the following dimensionless mathematical model.  

𝑓 ′′′ + 3𝑓𝑓 ′′ − 2(𝑓′)2 + 𝜃 = 0                              (3.8) 

𝜃′′ + 3𝑃𝑟𝑓𝜃′ = 0                                (3.9) 

It is simpler to consider them as simultaneous equations coupled through the function 

f. η: is the variable of similarity. Although, the dimensionless temperature θ, each solution 

must be for a particular Prandtl number, since Pr appears as a parameter. The boundary 

conditions are: 

At η = 0: f= 0, f' = 0, θ = 1                (3.10) 

As η→∞: f →0, θ → 0                (3.11) 

The solution of this dimensionless differential equations is given as curves for wide 

range of Prandtl numbers, see figures 3.3 & 3.4 
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Figure 3. 3: Laminar, free velocity temperature profiles 

[76]. 
Figure 3. 4: Laminar, free convective temperature profiles 

[76]. 

3.6. Internal Natural mixed convection 

In free configurations, external natural convection flows developing freely under the 

influence of the various forces carried hinto play. In many situations, however, confinement 

effects are present because the space offered to flows and heat transfer has limited 

dimensions, so that distances between walls are of the order of the length scale of the flow or 

are even smaller. These confined situations correspond to natural convection in open ducts 

(chimneys) or in closed cavities. Main applications are in the domain of housing, in 

particular solar energy, and also in the domain of nuclear safety (in the case of pump failure) 

or concern the cooling of electrical or electronic components, [77]. 

 

3.7. More recent correlations 

Newer correlation is carried on to be equations in the area of natural convection. It 

may be found in more extensive heat transfer texts, only a few of the more frequently 

encountered geometries/empirical equations are introduced, especially, those for the 

vertical plane wall and the horizontal cylinder with constant surface temperatures, 

Rohsenow and Martynenko [78-79]. 
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3.7.1. Infinite Horizontal Circular Cylinder with constant temperature Surface 

Churchill and Chu are given a correlation that is generally used and covers a wide 

range of Rayleigh numbers, it’s as follows [79]. 

𝑁𝑢𝐷 =  0.60 +
0.387𝑅𝑎𝐷

1/6

 1+(0.559/𝑃𝑟)9/16  
8/27 

2

              (3.12) 

Which is valid for 10-5 < RaD < 1012 and properties are estimated at Tf. For gases β = 1/Tf. 

3.7.2. Vertical plate with constant temperature surface  

For constant T,, Churchill and Chu recommend the following correlation which is 

valid over the entire range of RaL, with properties evaluated at Tf , [79]. 

𝑁𝑢𝐿 =  0.825 +
0.387𝑅𝑎𝐷

1/6

 1+(0.492/𝑃𝑟)9/16  
8/27 

2

              (3.13) 

Precision results are somewhat improved for laminar flow, with Tf, by using 

𝑁𝑢𝐿 = 0.825 +
0.670𝑅𝑎𝐷

1/4

 1+(0.492/𝑃𝑟)9/16  
4/9               (3.14) 

In which, properties are evaluated at Tf and RaL ≤ 109. 

3.8. Governing equations of classical fluid mechanics 

Four differential equations of continuity and three equations of momentum, called 

again, Navier-Stokes equations, contain five remaining unknowns P, ρ, Uj, so that an 

incomplete system of partial differential equations still exists. With the aid of the thermal 

energy equation and the thermodynamic state equation, valid for the considered fluid, it is 

possible to obtain a complete system of partial differential equations that permits general 

solutions for flow problems, when initial and boundary conditions are present by Holman, 

Schetz, Kothandaraman & LIENHARD [76], [80-82]. 

3.8.1. Newtonian viscous fluid flow 

Let us consider that the flow of fluids is Newtonian, where the influence of the viscous 

forces and the gravitational force has a significant impact. These viscous forces are described 

in terms of a shear stress (τ) between the fluid layers. Assuming that this constraint is 

proportional to the normal velocity gradient, [76],[77], [79], [84]. 
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A. The continuity equation 

In considerations of fluid mechanics, (closed fluid system) can always be found, i.e. a 

system whose total mass,  𝑚𝑖𝑖=1−𝑛 = M =  constant. This is easily seen for a fluid mass, 

which is stored in a container. For all other fluid flow considerations, control volumes can 

always be defined within which the system’s total mass can be stated as constant. So, the 

general vector form of the mass conservation (continuity equation) is as fellows. 

𝐷𝑀

𝐷𝑡
=

𝜕𝑀

𝜕𝑡
+  𝑉.    𝑔𝑟𝑎𝑑            𝑀 = 0                        (3.15) 

With  𝑉  = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘    and   𝑔𝑟𝑎𝑑           =
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘  . 

The differential form of continuity equation holds for steady or unsteady flow. In 

Cartesian coordinates, with: V is the volume, ρ is the density of fluid, considered constant, it 

is reduces and (3.15) take the following form. 

∇   . 𝑉  = 0                          (3.16) 

B. Momentum equation 

The derivations of the momentum equations of fluid mechanics are usually given for 

the three coordinate directions j = 1, 2, 3. They express Newton’s second law and are easiest 

formulated in their Lagrange forms. For a fluid element, it is stated that the time derivative 

of the momentum in the j direction is equal to the sum of the external forces acting in this 

direction on the fluid element, plus the molecular-dependent input of momentum per unit 

time. The forces can be stated as mass forces, caused by gravitation forces and 

electromagnetic forces, as well as surface forces caused by pressure. Here, fluid elements act 

like rigid bodies. They do not change their state of motion, i.e. their momentum, if no mass or 

surfaces forces act on the fluid elements and no molecular-dependent momentum input is 

present. However, when forces are present, or when molecular momentum input occurs, a 

considered fluid element changes. Fluids, as they are treated in classical books, i.e. liquids 

(incompressible fluids), furthermore, For the pressure force, in considering axes for, j = 1, 2, 

3. We can write:  

𝜌  
𝜕𝑈𝑗

𝜕𝑡
+ 𝑈𝑖

𝜕𝑈𝑗

𝜕𝑥𝑖
 = −

𝜕𝑃

𝜕𝑥𝑗
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌. 𝑔            (3.17) 
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For Newtonian fluids. 

𝜏𝑖𝑗 = −𝜇  
𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
 +

2

3
𝛿𝑖𝑗

𝜕𝑈𝑘

𝜕𝑥𝑘
             (3.18) 

𝛿𝑖𝑗
𝜕𝑈𝑘

𝜕𝑥𝑘
 : present the spatial variation of velocity components. As in this equation the 

element volume of the fluid, appearing in all terms, was eliminated, the equations of 

momentum are given by (3.17) per unit volume, the momentum equations in the three 

coordinate directions (Cartesian coordinates), and result: 

𝜌  
𝜕𝑈1

𝜕𝑡
+ 𝑈1

𝜕𝑈1

𝜕𝑥1
+ 𝑈2

𝜕𝑈1

𝜕𝑥2
+ 𝑈3

𝜕𝑈1

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥1
−

𝜕𝜏11

𝜕𝑥1
−

𝜕𝜏21

𝜕𝑥2
−

𝜕𝜏31

𝜕𝑥3
                    (3.19) 

𝜌  
𝜕𝑈2

𝜕𝑡
+ 𝑈1

𝜕𝑈2

𝜕𝑥1
+ 𝑈2

𝜕𝑈2

𝜕𝑥2
+ 𝑈3

𝜕𝑈3

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥2
−

𝜕𝜏12

𝜕𝑥1
−

𝜕𝜏22

𝜕𝑥2
−

𝜕𝜏32

𝜕𝑥3
                    (3.20) 

𝜌  
𝜕𝑈3

𝜕𝑡
+ 𝑈1

𝜕𝑈3

𝜕𝑥1
+ 𝑈2

𝜕𝑈3

𝜕𝑥2
+ 𝑈3

𝜕𝑈3

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥1
−

𝜕𝜏13

𝜕𝑥1
−

𝜕𝜏23

𝜕𝑥2
−

𝜕𝜏33

𝜕𝑥3
                    (3.21) 

So, τij ≠ 0, for fluids in general but for ideal in terms of fluid mechanics, the molecular 

momentum transport turns out to be τij = 0. Hence the following forms of the momentum 

equations can be written as follow: 

For viscous fluids. 

𝜌  
𝜕𝑈𝑗

𝜕𝑡
+ 𝑈𝑖

𝜕𝑈𝑗

𝜕𝑥𝑖
 = −

𝜕𝑃

𝜕𝑥𝑗
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌. 𝑔              (3.22) 

For ideal fluids. 

𝜌  
𝜕𝑈𝑗

𝜕𝑡𝑖
+ 𝑈𝑖

𝜕𝑈𝑗

𝜕𝑥𝑖
 = −

𝜕𝑃

𝜕𝑥𝑗
+ 𝜌. 𝑔               (3.23) 

This system of equations comprises four equations for the four unknowns P, U1, U2, 

U3. In principle, it can be solved for all flow problems to be investigated if suitable initial and 

boundary conditions are given. For thermodynamically ideal liquids, i.e. ρ = constant, a 

complete system of partial differential equations exists through the continuity equation and 

the momentum equations, which can be used for solutions of flow problems. 

The Navier-Stokes equations of momentum in Cartesian coordinates in taking 

account that: ρ and μ,are constant, then 𝜏𝑖𝑗 = −𝜇
𝜕𝑈𝑗

𝜕𝑥𝑖
. 
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𝜌  
𝜕𝑈1

𝜕𝑡
+ 𝑈1

𝜕𝑈1

𝜕𝑥1
+ 𝑈2

𝜕𝑈1

𝜕𝑥2
+ 𝑈3

𝜕𝑈1

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥1
+ 𝜇  

𝜕2𝑈1

𝜕𝑥1
2 +

𝜕2𝑈1

𝜕𝑥2
2 +

𝜕2𝑈1

𝜕𝑥3
2                              (3.24) 

𝜌  
𝜕𝑈2

𝜕𝑡
+ 𝑈1

𝜕𝑈2

𝜕𝑥1
+ 𝑈2

𝜕𝑈2

𝜕𝑥2
+ 𝑈3

𝜕𝑈3

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥2
+ 𝜇  

𝜕2𝑈2

𝜕𝑥1
2 +

𝜕2𝑈2

𝜕𝑥2
2 +

𝜕2𝑈2

𝜕𝑥3
2                             (3.25) 

𝜌  
𝜕𝑈3

𝜕𝑡
+ 𝑈1

𝜕𝑈3

𝜕𝑥1
+ 𝑈2

𝜕𝑈3

𝜕𝑥2
+ 𝑈3

𝜕𝑈3

𝜕𝑥3
 = −

𝜕𝑃

𝜕𝑥3
+ 𝜇  

𝜕2𝑈3

𝜕𝑥1
2 +

𝜕2𝑈3

𝜕𝑥2
2 +

𝜕2𝑈3

𝜕𝑥3
2                              (3.26) 

3.8.2. Thermal Energy Equation 

For the temporal change of the total energy of a fluid element, one obtains with 

𝛿𝑚 = constant,  i.e. 
𝑑 𝛿𝑚 

𝑑𝑡
= 0, see references [76],[77], [79], [84]: 

𝑑

𝑑𝑡
 𝛿𝑚𝑅  

1

2
𝑈1

2 + 𝑒 + 𝐺  = 𝛿𝑚𝑅
𝐷

𝐷𝑡
 

1

2
𝑈1

2 + 𝑒 + 𝐺                          (3.27) 

The equation (3.27) presents the total energy change with time of a fluid element 

which has to be considered concerning the derivation of the total energy equation. The 

change in the total energy of the fluid element can emanate from the heat conduction, which 

yields the following inputs minus the output of heat. There are different forms of the thermal 

energy equation can be derived from equation (3.27), generally, the thermal energy equation 

can be written for thermodynamically simple fluids. 

𝜌
𝐷𝑒

𝐷𝑡
= −

𝜕𝑞 𝑖

𝜕𝑥𝑖
− 𝑃

𝜕𝑈𝑖

𝜕𝑥𝑖
− 𝜏𝑖𝑗

𝜕𝑈𝑗

𝜕𝑥𝑖
                                         (3.27) 

For a thermodynamically ideal liquid, with  
𝜕𝑈𝑖

𝜕𝑥𝑖
= 0 and 𝐶𝜐 =  𝐶𝑝, the equation (3.27), 

becomes:  
 

𝜌𝐶𝑝
𝐷𝑇

𝐷𝑡
= 𝜆

𝜕2𝑇

𝜕𝑥𝑖
2 − 𝜏𝑖𝑗

𝜕𝑈𝑗

𝜕𝑥𝑖
                             (3.28) 

 

3.8.3. Heat transfer in fluid flows 

The differential equations carried out in (3.19)-( 3.21), that should be satisfied in the 

flow field about body while there is heat transfer between fluid and material body, The 

Navier-Stokes equations structured by the continuity, momentum and energy equations are 

developed in laminar boundary layer case of a general viscous fluid in the cartesian 

coordinate system taking in consideration Cp = Cv, ρ = constant, they could be shown in 

others forms us equations (3.15), (3.24)-( 3.27), as follows, see reference [84]. 
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- Mass conservation balance. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                              (3.29) 

- Movement conservation balance.   

𝜕𝑢

𝜕𝑥
 +  𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝑑𝑝

𝑑𝑥
 +

𝜇

𝜌
 𝜈

𝜕2𝑢

𝜕𝑦2 + 𝑤
𝜕2𝑢

𝜕𝑧2                                (3.30) 

𝑢
𝜕𝑣

𝜕𝑥
 +  𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝑑𝑝

𝑑𝑦
 +

𝜇

𝜌
 𝑢

𝜕2𝑣

𝜕𝑥2 + 𝑤
𝜕2𝑣

𝜕𝑧2                                 (3.31) 

𝑢
𝜕𝑤

𝜕𝑥
 +  𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝑑𝑝

𝑑𝑧
 +

𝜇

𝜌
 𝜈

𝜕2𝑤

𝜕𝑥2
+ 𝑤

𝜕2𝑤

𝜕𝑦2
                               (3.32) 

- Equation of thermal energy balance. 

𝜌  
𝜕𝑒

𝜕𝑡
+ 𝑈𝑖

𝜕𝑒

𝜕𝑥𝑖
 = −

𝜕𝑞 𝑖

𝜕𝑥𝑖
− 𝑃

𝜕𝑈𝑖

𝜕𝑥𝑖
− 𝜏𝑖𝑗

𝜕𝑈𝑗

𝜕𝑥𝑖
                           (3.33) 

We not that ρ: is the density of the fluid, e: its inner energy, t: the time, Ui: the fluid 

velocity, 𝑞 i  the heat flux, P: the pressure and 𝜏𝑖𝑗 : the molecular-dependent momentum 

transport. This equation can now be employed for a thermodynamically ideal fluid, i.e. for ρ 

= constant and thus for  
𝜕𝑈𝑖

𝜕𝑥𝑖
 = 0, and also for 

𝑞 𝑖 = −𝜆
𝜕𝑇

𝜕𝑥𝑖
; and 𝜏𝑖𝑗  = −𝜇  

𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
                           (3.34) 

A heat transfer computations, can be written in another simple form, in taken into 

consideration that: 𝑐𝑣 = 𝑐𝑝 =  𝑐, and ρ = constant: 

𝜌. 𝐶  
𝜕𝑇

𝜕𝑡
+ 𝑈𝑖

𝜕𝑇

𝜕𝑥𝑖
 = 𝜆

𝜕2𝑇

𝜕𝑥𝑖
+ 𝜇  

𝜕𝑈𝑗

𝜕𝑥𝑖
 

2

                           (3.35) 

In the cartesian coordinate system (3.35) will take the following form. 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
 =

𝜈

𝑃𝑟

𝜕2𝑇

𝜕𝑥
+ 𝜂  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑥
 

2

                           (3.36) 

 
𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
 =

𝜈

𝑃𝑟

𝜕2𝑇

𝜕𝑦
+ 𝜂  

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
 

2

                           (3.37) 

 
𝜕𝑇

𝜕𝑡
+ 𝑤

𝜕𝑇

𝜕𝑧
 =

𝜈

𝑃𝑟

𝜕2𝑇

𝜕𝑧
+ 𝜂  

𝜕𝑢

𝜕𝑧
+

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
 

2

                           (3.38) 
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With: 𝛼 =
𝜆

𝜌.𝐶
; 𝑃𝑟 =

𝜐

𝛼
⇒

𝜆

𝜌.𝐶
=

𝜈

𝑃𝑟
 𝑎𝑛𝑑 𝜂 =

𝜇

𝜌.𝐶
; 𝛼: present a thermal diffusion 

coefficient; 𝜂: is the viscous diffusion coefficient, 𝑃𝑟  is dimensionless number named Prandtl 

number.  

3.9. Micropolar fluid mechanics 

The aim of this part of theoretical study is to present the mechanics of micropolar 

continua (also known as Cosserat Continua), see reference, V. A. Eremeyev et all [85]. In 

focus of scientists since the end of the nineteenth century. A first review of the theory with 

independent force and moment (couple) actions was given in 1909 by the Cosserat brothers 

in their centurial French book “Théorie des corps déformable’’. While this moment, it was 

published in this field tens of books and thousands of articles. Continuum theory is focused 

on the fact that the continuum translations and rotations can be defined independently.  

In other words, force and moment actions in the continuum can be introduced 

independently as in dynamics of rigid body or structural mechanics. In a micropolar 

medium, each material particle has six freedom degrees; they are three translational and 

three rotational freedom degrees. These characteristic features of the Cosserat continuum 

model give a possibility to describe more complex media, for example, micro-

inhomogeneous materials, foams, cellular solids, lattices, masonries, particle assemblies, 

magnetic rheological fluids, liquid crystals, etc. Starting with the symbol papers by Eringen 

and others, the micropolar continuum is applied to the model of fluids. This branch of the 

hydrodynamics is called the micropolar or asymmetric hydrodynamics.  

The micropolar hydrodynamics is applied to describe the behavior of magnetic 

liquids, polymer suspensions, liquid crystals, and other types of fluids with microstructure. 

Within the Cosserat continuum theory, many problems were successfully solved. They 

demonstrate qualitative and quantitative difference between the solutions by micropolar 

and classic elasticity models. One of the principal difficulties of any micropolar theory is to 

establish its constitutive equations. This question was not discussed in the Cosserats’ 

original monograph, and it was a reason why the ideas of micropolar continuum were not 

recognized by many researchers.  

But even if for a material the constitutional equations are formulated we are faced 

with a new hard problem: the identification of the material parameters.  
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3.9.1. Micropolar continuum kinematics 

This part presents a summary of general relations of the kinematics of micropolar 

continuum. The description of a particle motion of a micropolar continuum (medium) is 

based on the assumption that each particle of the micropolar body has six degrees of 

freedom; this hypothesis is similar to the description of a rigid body in classical mechanics. 

Three freedom degrees are translational as in classic elasticity, and three other degrees are 

rotational.  

 

In the actual configuration x at instant t, the position of a particle of micropolar 

continuum is given by the position vector VP; OPj (j = 1, 2, 3) is an orthogonal Trihedron 

define a particle orientation (Fig. 3.5), which present vectors called the directors. The two 

vector field’s VP and OPj are respectively the particle translational and rotational motions. In 

the aim to describe the medium relative deformation, we use some fixed position of the body 

that may be taken at t = 0 or another fixed instant; we call this position the reference 

configuration Cr. for this case the state of particle is defined by the position vector R, 

whereas its orientation by directors Dj. we note that as the reference configuration can be 

chosen not only the real state but also any one. The motion of a micropolar continuum is 

described by, see [85].  

𝑉𝑝 = 𝑉𝑝(𝑅, 𝑡); OPj = OPj (𝑅, 𝑡)                           (3.39) 

In the process of deformation the trihedron OPj  stays orthonormal, OPj  . Om  = 𝛿km . 

The change of directors is described by an orthogonal tensor is as follows. 

𝐻 = OPj⨂Dj                                (3.40) 

H is the microrotation tensor, and then VP describes the particle position of the 

continuum at time t, whereas H defines its orientation. The orientation of Dj and 𝑂𝑃𝑗  can be 

selected the same, so H is proper orthogonal. Hence, the micropolar continuum deformation 

is described by relations as follows. 

𝑉𝑝 = 𝑉𝑝(𝑅, 𝑡); 𝐻 = 𝐻 𝑅, 𝑡                             (3.41) 

A linear velocity is given by the following relation. 

𝑉 = 𝑉𝑝                               (3.42) 
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Figure.3.5: Positive stresses of orthogonal Tetrahedron shape [85]. 

 

The angular velocity vector, called vector of microgyration, is given by the following 

relation. 

𝜔 = −
1

2
(𝐻𝑇 . 𝐻 )𝑋                               (3.43) 

Where the dot (.) denotes the inner product, (. . .) T is the transposed form of vector H. 

The symbol (...)× stands for the vector invariant of a second-order tensor. In particular, for a 

dyad 𝑎 ⊗ 𝑏, it has  𝑎 ⊗ 𝑏 𝑋 = 𝑎 × 𝑏, where X is the vector (cross) product relation (3.43), 

means that 𝜔 is the axial vector associated with the skew-symmetric tensor 𝐻𝑇 . 𝐻 .  

 

Figure.3.6: Negative stresses, of orthogonal Tetrahedron shape [85]. 
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3.9.2. Equations of the movement 

The dynamic equations of micropolar continuum in the local form are done us in 

transforming Euler’s laws of motion as in the proof of Cauchy; see the work given by Victor 

A. Eremeyev and all, [85]. The form of equations are as flows: 

𝜌
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣𝑻 + 𝜌𝒇                              (3.44) 

𝐽
𝑑𝜔

𝑑𝑡
= 𝑑𝑖𝑣𝑀 − 𝑇𝑥 + 𝜌𝑚                             (3.45) 

In cartesian coordinates, equations (3.44) and (3.45) take the following form. 

 

Figure 3.7: Couple stresses of orthogonal tetrahedron shape, [85]. 

𝜌
𝑑v𝐬

𝑑𝑡
=

𝜕𝑡𝑠𝑗

𝜕𝑥𝑗
+ 𝜌𝑓𝑠                               (3.46) 

𝐽
𝑑𝜔𝑠

𝑑𝑡
=

𝜕𝑚𝑠𝑗

𝜕𝑥𝑗
+ 𝑡𝑚𝑛 𝜀𝑚𝑛𝑠 + 𝜌𝑚𝑠                             (3.47) 

𝜀𝑚𝑛𝑠 = − 𝑖𝑚 × 𝑖𝑛 . is                              (3.48) 

Where: T is the Cauchy stress tensor, M is the couple stress tensor, m is the volume 

couples,  𝑡𝑠𝑗  and 𝑚𝑠𝑗  are matrices represent the components of the stress tensor and of the 

couple stress tensor in Cartesian basis 𝑖𝑗 . j is the rotation inertia. 

When the medium does not possesses couple’s properties that are rotation 

interaction of particles is negligible, we obtain the following equation: 

𝑇× =  0                               (3.49) 
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Its solution is the symmetric stress tensor, that is  𝑇 = 𝑇𝑇 . therefore when couple 

stresses and the distributed external couples in the moment balance equation of momentum 

are absent, It depends on the symmetry of the Cauchy stress tensor which is a property of 

continuous classical mechanics. 

For the classical continuum, that is when couple stresses and the external couples are 

absent, (3.49) holds automatically as a consequence of the constitutive equations. for this 

reason, the balance equation of moment of momentum take part in less important role in the 

Cauchy continuum.  

In order to solve the model indicated by equations (3.44) & (3.45), that describes any 

phenomenon of flow of micropolar fluids must obey to setup a boundary-value problem for a 

micropolar body, we should supplement the motion equations with boundary and initial 

conditions, see reference [85], have put in our hands rules for this. 

 

3.10. Electromagnetic, production and effects on materials in flow 

In microscopic scale, the presence of electrical and magnetic fields has an effect on 

the response characteristics of many materials. As well, an electro-Rheology is the name 

given to the mechanics branch that is concerned with the material flow of that is primarily 

affected by the electrical field action. Usually, electro-rheological materials are dielectrics or 

semi-conductors in a non-conducting fluid, though recently Ferroelectrics have also been 

used. Starting at a microscopic level or within the context of continuum mechanics in a 

homogenized sense, the electro-rheological fluids are modeled. Thus we should restrict 

ourselves to continuum models, otherwise, even in the case of continuous-field mechanics 

(continuum mechanics); there are several methods of modeling electro-rheological fluids, D. 

A. Siginer, et al. & H. K. Moffat [75-86]. 

Moreover,  we think that not only earth and sun generate and safe a magnetic field, 

this state normally is accompaniment to any cosmic body that is both – wholly or  fluid in 

part – flows and rotates. So, it appears to be a sort of universal validity about this statement 

which applies quite irrespective of the length-scales considered. Such us, the planet in 

macroscopic-scale. For example, Jupiter shares with the Earth the property of strong 

rotation. Within, they have a fluid interior composed of an alloy of liquid metallic hydrogen 

and helium. Furthermore, this character happening naturally, occurring-magnetic fields, see 

reference, H. K. Moffat, [86]. 
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3.10.1. Kinematics and balance laws  

In this part it is sufficient to say that by the same analogy as in paragraph 3.8, the writing 

of general relations of the kinematics of micropolar continuum keep in the same laws. 

Furthermore, the approach in kinematics are similar in order to lay down the laws governing this 

type of flows taking into account the generation of the electrically-force and Magnetic field due to 

the proper electrical conductivity of fluids. 

3.10.2. Equations of the movement  

The kinematical definitions are keeping our more then, the minimum of the basic 

equation documentations while ensuring that the treatment be self-contained. A complete 

and proper frame-work for the reading of electro-rheological fluids would involve the laws 

of electromagnetism in addition to the usual laws of thermo-mechanics. To express the 

equations of electro-magnetic, it exists many ways; we shall use the Minkowskian 

formulation. For any details of discussion of basic laws of field dependant materials within 

the background of continuum mechanics can be found in reference [86]. 

- The conservation of mass (continuity equation) is as follows. 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑉 = 0                              (3.50) 

- The balance of linear momentum the following form. 

𝑑𝑖𝑣𝑇𝑇 + 𝜌𝑓 + 𝑓𝑒 = 𝜌
𝑑𝑉

𝑑𝑡
                             (3.51) 

 𝑓 𝑎𝑛𝑑 𝑓𝑒  Are respectively, the external mechanical body and the electromagnetic 

force density. Where 𝑓𝑒  is given by the following formula. 

 𝑓𝑒 = 𝑞𝑒𝐸 +
1

𝐶
𝐽𝑐 × 𝐵 +

1

𝐶

𝜕𝑃

𝜕𝑡
× 𝐵 +

1

𝐶
𝑑𝑖𝑣  𝑃 × 𝐵 ⨂𝑉 +  𝑔𝑟𝑎𝑑𝐵 𝑇𝑀 +  𝑔𝑟𝑎𝑑𝐸 𝑃                (3.52) 

 𝑞𝑒 , 𝐸, 𝑐, 𝐽𝑐 , 𝐵 𝑎𝑛𝑑 𝑃. Are respectively, the electric charge density; the electric field; the 

capacity of current ;the conduction current; the magnetic flux and the electric polarization. 

Then M is defined as follows. 

𝑀 = Mp +
1

C
V × P                              (3.53) 

M is the magnetic polarization. Thus, the angular momentum balance is given by the 

following formula. 
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𝑑𝑖𝑣 𝑥 × 𝑇 + 𝑥 × 𝜌𝑓 + 𝑙𝑒 = 𝑥 × 𝜌
𝑑𝑉

𝑑𝑡
                         (3.54) 

Where: 𝑙𝑒  is the electromagnetic angular momentum density given by the following equation. 

𝑙𝑒 = 𝑥 × 𝑓𝑒 + 𝑃 × ℱ + 𝑀 × 𝐵                          (3.55) 

Where: ℱ was the electromotive force intensity given by the following formula. 

ℱ = E +
1

C
V × M   ²                           (3.56) 

The energy balance equation is given by the following form. 

  𝜌
𝜕

𝜕𝑡
 𝑒 +

1

2
 𝑉 2 + 𝑑𝑖𝑣 𝑞 = 𝑑𝑖𝑣 𝑇𝑉 + 𝜌𝑓. 𝑉 + 𝜌. 𝑟 + 𝑤𝑒                         (3.57) 

Where: 𝑒, 𝑞, 𝑟 𝑎𝑛𝑑 𝑤𝑒 . are respectively, the specific internal energy; the heat flux 

vector; the radiant heating and the energy production density which is given by. 

𝑤𝑒 = 𝑓𝑒 . 𝑉 + 𝜌ℱ.
𝑑

𝑑𝑡
 
𝑃

𝜌
 − 𝑀.

𝑑𝐵

𝑑𝑡
+ 𝐽. ℱ                         (3.58) 

And 𝐽: takes the following form expression. 

𝐽 = 𝐽𝑐 − 𝑞𝑒𝑉                             (3.59) 

3.11. Conclusion 

From these theoretical studies, we can conclude that: 

- In the first part which consists of the mixed convection due by heat transfer is 

associated with flows in a wide spectrum various domains of biological or industrial flows. 

From this theoretical study we understand that this type of flow cooperate with an 

important part in the energy transfer problems and for environment, so, free-forced 

convection under external or internal effects as thermal inertia, force due to magnetic field, 

present a large domain of studies that we should work on.  

- from the second part which present a simply theoretical study. We have observed 

that general laws of continuous media mechanics can be sufficiently used to develop and 

study general models that can describe the rheological characteristics of electro-conducting 

fluids and the behavior of certain types of fluids possessing criteria in flow of electrical 

conductor. Of course, such a model could be further simplified by taking into account initial 

conditions and boundaries.  
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Chapter 4: Modeling and solving the immiscible non-Newtonian-micropolar and 

Newtonian-viscous fluids flow in vertical channel 

 

4.1. Introduction 

In this chapter we present an analytical and numerical study of a convective flow 

model of MHD micropolar and viscous fluids in a vertical channel, in this work we have 

considered two incompressible and immiscible fluids in different regions, first region is 

occupied by non-Newtonian micropolar fluid and the second region is occupied by 

Newtonian-viscous fluid. The channel is subjected to the influence of a transverse magnetic 

field and temperature gradient. To provide a right understanding of complexity of this type 

of flow, a mathematical model proposed considering thermal diffusivity and magnetic 

diffusivity terms in the equation of the energy balance. The model is investigated and allows 

appearance to certain dimensionless parameters such as a material parameter (K), Prandtl 

number (Pr), a mixed convection parameter defined by the Grashof number and Reynolds 

number (GR) ratio, a magnetic parameter called a Hartmann number (Ha) and Eckert 

number (Ec), as well as dimensionless ratios such us the widths ratio of fluids (H); the 

thermal conductivity ratio (k*); the thermal expansion coefficients ratio (β*); the viscosities 

ratio (μ*) and the ratio of the densities (ρ*). The final results of the mathematical model are 

used to deduce the effect of the magnetic field on the variation of the linear velocities (axial), 

the microrotation velocity field and temperatures field -transfer heat - so these results are 

subject to a comparative discussion in the conclusion between our numerical model study 

taking into account the term of the magnetic diffusivity with another models studied 

analytically with or without magnetic effect. 

4.2. Configuration of the physical model 

Because of their high consistencies, non-Newtonian materials are most frequently 

processed under conditions of laminar flow. Furthermore, shear stresses are generally so high that 

viscous generation of heat can rarely be neglected, and the distribution of temperature dependence 

of the rheological properties adds to the complexity of the mass, momentum and energy balance 

equations. Numerical techniques are often needed to obtain solutions, even for highly idealized 

conditions of flow. Much of the research activity in this area has related to heat transfer to 

inelastic non-Newtonian fluids in laminar flow in circular and non-circular ducts, A. C. Eringen 

[5-6]. The suggested model theoretically and numerically studied, concerns a vertical channel, 

figure 1, composed of two infinite isothermal parallel plates, negligible thickness in (OX) axis 
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direction, limited in (OY) axis direction and maintained at different temperatures T1 and T2 where 

T2 >T1, under (=*0
2
) a constant magnetic field influence in (OY) axis direction. The channel 

is composed of two regions filled with an immiscible micropolar and a viscous fluids, the first one 

is limited by the following condition -h< y <0, with : 1 is a density, µ1 is a dynamic viscosity,  is 

a spinning viscosity, 
*
 is a magnetic permeability of fluid, 0 is a magnetic field coefficient, k1 is 

a thermal conductivity, β1 is a thermal dilation coefficient at a constant pressure and the second 

region is limited by the following condition 0< y < h2, occupied by a viscous fluid with 2 is a 

density, µ2 is a dynamic viscosity, k2 is a thermal conductivity and β2 is a thermal dilation 

coefficient.  

 

                            X 

              

                                                Non-Newtonien         Newtonien 

                                                       Micropolar Fluid      Viscous Fluid 

                            

μ1,β1, ρ1, k1, σ     μ2,β2 , ρ2, k2   

          B     K, σ* 

                  

                                             

                                                          g 

         T1 = T1
*
      U1                     U2             T2 = T2

*
 

-h1                                                    h2                  

  T=T1               O           T=T2                                 Y                                                                                                                                                                                                                                                                                                                                        

                                                                   

Figure 4.1: suitable diagram of a vertical channel formed of two regions of different type of immiscible fluids, 

under influence of gravity, magnetic and temperature fields. 

 

4.3. Mathematical formulation 

4.3.1. The balances of Continuity, micro/macro Continuum, and energy 

In general the two-dimensional Navier-Stocks equations of mass conservation (continuity), 

macro/micro-continuum and energy equations can be written in forms definite by the physician 

Eringen for the Non-Newtonian micropolar fluids in the first region.  
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The two-dimensional continuity equations of both regions. 

- First region. 

- Continuum balance. 

∂U1

∂X
+

∂V1

∂Y
= 0                        (4.1) 

- micro/macro momentum.  

U1
∂U1

∂X
+ V1

∂U1

∂Y
= −

1

ρ1

∂P1

∂X
+

 μ1+σ 

ρ1
 
∂2U1

∂X2 +
∂2U1

∂Y2  +
ρ1gβ1 T1−T1

∗  

ρ1
+

σ

ρ1

∂n

∂Y
−
σ∗B0

2U1

ρ1
                     (4.2) 

U1
∂V1

∂X
+ V1

∂V1

∂Y
= −

1

ρ1

∂P1

∂Y
+

 μ1+σ 

ρ1
 
∂2V1

∂X2 +
∂2V1

∂Y2  −
σ

ρ1

∂n

∂X
                (4.3) 

j  U1
∂n

∂X
+ V1

∂n

∂Y
 = −

2σn

ρ1
+

σ

ρ1
 
∂V1

∂X
−

∂U1

∂Y
 +

γ

ρ1
 
∂2n

∂X2 +
∂2n

∂Y2               (4.4) 

- Energy balance. 

U1
∂T1

∂X
+ V1

∂T1

∂Y
=

k1

ρ1cp 1
 
∂2T1

∂X2 +
∂2T1

∂Y2  +
σ∗B0

2U1
2

ρ1cp 1
                (4.5) 

The microrotation viscosity (spin gradient) γ and micro-inertia density j, in the 

literature, several studies consider the density of the micro-inertia by the following 

equation: 

  γ =  μ1 +
σ

2
 j                    (4.6)  

With  𝑗 = 𝑕1
2 the recent model studied, n represents the microrotation velocity 

designated by the normal vector on the plane (XoY), g represents respectively the gravity 

acceleration in the first region and the linear or axial velocity in the second region. 

- Seconde region 

- Continuum balance. 

∂U2

∂X
+

∂V2

∂Y
= 0                     (4.7) 
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- Macroscopic momentum balance 

U2
∂U2

∂X
+ V2

∂U2

∂Y
= −

1

ρ2

∂P2

∂X
+

μ2

ρ2
 
∂2U2

∂X2
+

∂2U2

∂Y2
 +

ρ2gβ2 T2−T2
∗  

ρ2
−
σ∗B0

2U2

ρ2
             (4.8) 

U2
∂V2

∂X
+ V2

∂V2

∂Y
= −

1

ρ2

∂P2

∂Y
+

μ2

ρ2
 
∂2V2

∂X2 +
∂2V2

∂Y2                  (4.9) 

- Energy balance. 

U2
∂T2

∂X
+ V2

∂T2

∂Y
=

k2

ρ2cp
 
∂2T2

∂X2 +
∂2T2

∂Y2  +
σ∗B0

2U2
2

ρ2cp 2
                          (4.10) 

4.3.2. Data and hypothesis 

We have imagine that each particle of a Non-Newtonian micropolar fluid can translate 

and independently rotate; this translation is described by the classical motion. Further, we 

assume that the motion and micromotion are everywhere continuous [6], the fluids were 

supposed to have constant physical properties except the densities, both fluids are 

considering incompressible, the flow mode is permanent, regular, laminar and entirely 

developed, the variation of the densities is considered weak and negligible except in the 

term gravity force, J. P. Kumar, N. Kumar, M. Madhu et al, [9],[21],[58]. It was assumed 

that the fluid properties, such as the density ρ, the dynamic viscosity µ and the heat 

conduction λ, are constants. They could therefore be considered as predefined and did not 

enter into the fluid-mechanical considerations of the quantities of the flow problem as 

unknowns that were to be computed. Thus the complexity of flow-problem solutions was 

considerably reduced, as with constant values for ρ, μ and λ the strong coupling between the 

momentum equations and the energy equation was broken. For the solution of flow 

problems, it was therefore sufficient to solve the continuity and the momentum equations, 

i.e. the energy equation had only to be employed when, in addition to the knowledge of the 

flow field, information on the temperature field of the fluid was needed. In this section, a 

flow problem will be considered for which it is no longer permissible to neglect the density 

modifications that occur. Restrictively, it will be assumed, however, that only small density 

modifications arise, so that the following holds, see [9],[21],[66], and M. A. Hosain et al. & 

Y. Y. Lok et al, [33],[35] are given by 

ρ1 = ρ0 1 − β1 T1 − T1
∗                               (4.11) 

ρ2 = ρ0 1 − β2 T2 − T2
∗                            (4.12) 
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4.4. Physical model without magnetic field effect 

In using the hypothesis set out in subsection (4.3 .2) we obtained. 

V1 = V2 = 0                                                                                                                                                (4.13) 

dU1

dX
=

dU2

dX
= 0                                                                                                                                            (4.14) 

The motion equations of region 1, will be. 

dU1

dX
= 0                                                                                                                                                        (4.15) 

 μ1 + σ 
d2U1

dY2 + ρ1gβ1 T1 − T1
∗ + σ

dn

dY
= 0                           (4.16) 

γ
d2n

dY2 − σ(2n +
dU1

dY
) = 0                                                                                                                          (4.17) 

d2T1

dY2 = 0                                                                                                                                                       (4.18) 

The motion equations of region 2, will be : 

dU2

dX
= 0                                                                                                                                                         (4.19) 

μ2
d2U2

dY2
+ ρ2gβ2 T2 − T2

∗ = 0                                                                                                               (4.20) 

d2T2

dY2 = 0                                                                                                                                                       (4.21) 

 

4.4.1. Analytical solution 

To solve the differential equations (4.15) - (4.21) which represent the free-convective 

flow in first and second regions, the equations (4.6), (4.11) & (4.12) are used in the absence 

of magnetic field, six boundary conditions were considered about velocity profiles and four 

boundary conditions for temperature profiles, in supposing that the flow is null for Y=- h1 

and Y = h2 (points in front of the both walls); for Y=0 the immiscibility interface separate the 

fluids it’s supposed that the continuity of linear velocity, equality between the shearing 

forces and the microrotation velocity is constant there, see A. Ishak et al, [7]. 
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A. The boundary and interface conditions 

Thus the mathematical relations of the boundary conditions are as follows: 

Velocities: 

Y = −h1 ⟹ U1 = 0 ; Y = h2 ⟹ U2 = 0 ; Y = 0 ⟹ U1 0 = U2 0                        (4.22) 

et 
dn

dY
= 0 ;  μ1 + σ 

dU1

dY
+ σn = μ2

dU2

dY
                           (4.23) 

Y = −h1 ⇒ n = 0                              (4.24) 

Temperatures: 

Y = −h1 ⇒ T1 = T1
∗ ; Y = h2 ⇒ T2 = T2

∗;  Y = 0  ⟹ T1 0 = T2 0  &  k1
dT1

dY
= k2

dT2

dY
                     (4.25) 

B. Introduce the dimensionless variables   

This step consist to introduce a dimensionless variables, because we're eliminated all 

dimensions (put, second, Kelvin, ...), h1, h2, T1, T2, ... and we limit our study to an interval the 

variable will be dimensionless and ranges over the interval defined and takes the values of  

[-1,0] ⋃ [0.1] respectively for the two regions, the procedures are. 

u1 =
U1

U0
; u2 =

U2

U0
; θ1 =

T1−T1
∗

∆T
 ;  θ2 =

𝐓𝟐−𝐓𝟐
∗

∆𝐓
 with ∆T = T1

∗ − T2
∗ & T1

∗ > T2
∗  

 N =
h1

U0
n; K =

σ

μ1
 ; dθ1 =

dT1

T1
∗−T2

∗ ⟺ dT1 = ∆T dθ1 & dT2 = ∆T dθ2 

y =
Y

hi
  y =

Y

h1
, region1;  y =

Y

h2
, region2 ; Moreover dY = h1dy & dY = h2dy  

- First region 

Introduce the dimensionless variables - above paragraph (B) - in equations (4.15) - 

(4.18), we obtain: 

Dimensionless motion equations of region1 

U0
du1

dx
= 0, U0 ≠ o ⟹

du1

dx
= 0                           (4.26) 

μ1
U0

h1
2  1 + K 

d2u1

dy2
+ ρ1gβ1 T1 − T1

∗ + σ
U0

h1
2

dN

dy
= 0                        (4.27) 
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μ1
U0

h1
3 h1

2  1 +
K

2
 

d2N

dy2
− σ(2

U0

h1
N +

U0

h1

du1

dy
) = 0                         (4.28) 

∆T
d2θ1

dy2 = 0                            (4.29) 

μ1U0

h1
2  1 + K 

d2u1

dy2
+ ρ1gβ1 T1 − T1

∗ + σ
U0

h1
2

dN

dy
= 0   

d2u1

dy2
+

1

 1+K 

h1
2ρ1gβ1

μ1U0
 T1 − T1

∗ +
1

 1+K 

σ

μ1

dN

dy
= 0   

d2u1

dy2 +
1

 1+K 

1

 
U 0h 1ρ1

μ1
 
 

h1
3ρ1

2gβ1∆T

μ1
2  θ1 +

K

 1+K 

dN

dy
= 0    

d2u1

dy2
+

1

 1+K 

Gr

Re
θ1 +

K

 1+K 

dN

dy
= 0                          (4.30) 

 Following the changes of variables specified in paragraph (B), equations (4.28), (4.29) 

are as follows:     

μ1U0

h1
 

2+K

2
 

d2N

dy2 −
σU0

h1
(2N +

du1

dy
) = 0  

d2N

dy2 −
2

 2+K 

σ

μ1
(2N +

du1

dY
) = 0  

d2N

dy2 −
2K

 2+K 
(2N +

du1

dy
) = 0  

d2N

dy2 −
2K

 2+K 
 2N +

du1

dy
 = 0                           (4.31)  

d2θ1

dy2 = 0                           (4.32) 

With: GR =
Gr

Re
 ; Gr =

h1
3ρ1

2β1g∆T

μ1
2  & Re =

ρ1h1U0

μ1
 ; K1 =

1

 1+K 
;  K2 =

K

 1+K 
;  K3 =

2K

 2+K 
;  

The final dimensionless differential equations that describe the motion in the first 

channel region (4.26), (4.30), (4.31), and (4.32) takes the following form. 

u1
′ (x) = 0                                                                                                                                                   (4.33)  

u1
′′ y + K1. GR. θ1(y) + K2. N′(y) = 0                                                                                               (4.34) 

N′′ y − 2K3. N − K3. u1
′ (y) = 0                           (4.35) 
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θ1
′′ = 0                                                                                                                                                         (4.36) 

- Second region 

By the same method, one replace the dimensionless variables in equations from 

(4.19) - (4.21):  

du2

dx
= 0                            (4.37) 

μ2U0

h2
2

d2u2

dy2
+ ρ2gβ2 T1

∗ − T2
∗ θ2 = 0 

d2u2

dy2
+

h2
2ρ2gβ2∆T

μ2U0
θ2 = 0 

d2u2

dy2
+

h2
2ρ2μ1gβ2h1

3ρ1
2β1∆T

ρ1h1
2μ2β1  

 U0h1ρ1

μ1
 μ1

2
θ2 = 0 

d2u2

dy2 +
h2

2ρ2μ1β2

h1
2ρ1μ2β1

 
h 1

3ρ1
2β1g∆T

μ1
2  

 
 U 0h 1ρ1

μ1
 
θ2 = 0  

d2u2

dy2 + h∗2. ρ∗. μ∗. β∗
Gr

Re
. θ2 = 0                          (4.38) 

 
 T1

∗−T2
∗  

h2
2

d2θ2

dy2 = 0 

d2θ2

dy2
= 0                             (4.39) 

The final dimensionless differential equations that describe the motion in the second 

region of the channel (4.36) - (4.38) takes the following form. 

 u2
′ (x) = 0                             (4.40) 

u2
′′ y + h∗2 . ρ∗. μ∗. β∗.

Gr

Re
. θ2(y) = 0                         (4.41) 

θ2
′′ (y) = 0                             (4.42) 

C. The interface and boundary conditions 

The final dimensionless of interface and boundary conditions are as follows:  
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- Velocities forms. 

Y = −h1 ⇒ y = −1,  u1 = 0 et N = 0 

Y = h2 ⇒ y = 1 ⇒ u2 = 0 

u1 0 = u2 0 ,  N
′(0) = 0 ;  μ1 + σ 

U0

h1

du1

dy
+ σ

U0

h1
N = μ2

U0

h2

du2

dy
⇔  μ1 + σ 

du1

dy
+ σN =

μ2
h1

h2

du2

dy
 

⇔  μ1 + σ 
du1

dy
+ σN = μ2

h1

h2

du2

dy
⇔  1 + K 

du1

dy
+ K. N =

μ2

μ1
.

h1

h2
.

du2

dy
  

du1

dy
+

K

 1 + K 
N =

1

μ∗h∗ 1 + K 

du2

dy
 

⟹ u1
′ + K2. N =

K1 .h∗

μ∗
u2

′                            (4.43)                                                                                              

- Temperature forms.  

 θ1(−1) = 0 et   θ2(1) = 0 ; 

Et Y = 0 ⇒ y = 0 ⟹ T1 = T2 ⟹ T1 − T1
∗ − T2

∗ = T2 − T2
∗ − T1

∗ ⇒
T1−T1

∗

∆T
−

T2
∗

∆T
=

T2−T2
∗

∆T
−

T1
∗

∆T
 

T1 − T1
∗

∆T
=

T2 − T2
∗

∆T
−

T1
∗

∆T
+

T2
∗

∆T
⟹ θ1 0 = θ2 0 −

 T1
∗ − T2

∗ 

∆T
⇒ θ1 0 = θ2 0 −

∆T

∆T
 

⇒ θ1 0 = θ2 0 − 1                                                                                                                             (4.44) 

et 
k1

h1

dθ1

dy
=

k2

h2

dθ2

dy
⇔

k1

k2

dθ1

dy
=

h1

h2

dθ2

dy
 

⟺ θ1
′ =

h

k∗
θ2
′                               (4.45)                                                                                                                                  

With: μ∗ =
μ1

μ2
; h∗ =

h1

h2
; k∗ =

k1

k2
; β∗ =

β1

β2
; 𝜌∗ =

ρ1

ρ2
  

According to the hypothesis specified in paragraph (4.2), equations (4.34) - (4.36) 

(4.40) - (4.42) can be written as follows: 

u1
′′ y + K1. GR. θ1(y) + K2. N′(y) = 0                                                                                             (4.46) 

N′′ − 4K3. N − 2K3. u1
′ = 0                                                                                                                   (4.47) 
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θ1
′′ = 0                                                                                                                                                         (4.48) 

u2
′′ + h∗2ρ∗. μ∗. β∗. GR. θ2 = 0                                                                                                                 (4.49) 

θ2
′′ = 0                                                                                                                                                         (4.50) 

We integrate the differential equations, (4.48), (4.50) we obtain: 

d2θ1

dy2 = 0 ⟹
dθ1

dy
= c1 ⟹  dθ1 = c1  dy ⟹ θ1 = c1y + c2  

d2θ2

dy2
= 0 ⟹

dθ2

dy
= c3 ⟹ dθ2 = c3  dy ⟹ θ2 = c3y + c4 

So the dimensionless functions of temperatures. 

θ1 = c1. y + c2                             (4.51) 

θ2 = c3. y + c4                                     (4.52) 

With the following differential equations: 

u2
′′ + h∗2. ρ∗. μ∗. β∗. GR. θ2 = 0 ⟹ u2

′′ + h∗2ρ∗. μ∗. β∗GR.  c3. y + c4 = 0 ⟹ 

u2
′′ = −c3. h∗2 . ρ∗. μ∗. β∗. GR. y − h∗2. ρ∗. μ∗. β∗. GR. c4  

By double integral we obtained: 

u2
′ = −

c3 .h∗
2

.ρ.μ∗.β∗.GR

2
y2 − c4. h∗2. ρ. μ∗. β∗. GR. y − c9                                                                             

u2 = −
h∗

2
.ρ.μ∗.β∗.GR

6
 c3y3 + 3c4y2 − c9y − c10                                                                                (4.53) 

To solve the equation (4.47), we are used the method of parameter variations, the 

form of the equation (4.47) shows that N has a solution of the following form. See R. 

Branson, [87]. 

N = Nh + Np                                                                                                                                              (4.54) 

𝑁𝑕
′′ −

4𝐾

 2+𝐾 
𝑁𝑕 = 0 ; The form of this equation is: 𝑓 ′′ + 𝐷. 𝑓 = 0 it admits a solution under 

form: Nh = c5 ch  D. y + c6sh⁡( D. y) ; et D =
4K

 2+K 
 . 
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So the solution of N is:  

N = c5 ch  D. y + c6 sh  D. y + Np                                                                                               (4.55) 

The particulate solution of N is. 

Np = C1(y)N1 + C2(y)N2                                                                                                                     (4.56) 

 with : N1 = ch  D. y  et N2 = sh  D. y   

 C1 y  and C2 y  are Two functions to determine, that represent a solutions for the 

system of equations (4.55) &(4.56), written in matrix form to solve: 

 
C1
′ N1 + C2

′ N2 = 0

C1
′ N1

′ + C2
′ N2

′ =
2K

 2+K 
u1
′
                                                                                                                        (4.57)   

   ⟹  
N1 N2

N1
′ N2

′   
C1
′

C2
′  =  

0
2K

 2+K 
u1
′  ⟹  

C1
′

C2
′  =  

N1 N2

N1
′ N2

′  
−1

 
0

2K

 2+K 
u1
′                                     (4.58) 

⟹  
N1 N2

N1
′ N2

′  
−1

=
1

det
 adj  

N1 N2

N1
′ N2

′   
t

=
1

 D
 

N1
′ −N1

−N2
′ N2

 =
1

 D
 
 Dch( Dy) sh( Dy)

− Dsh( Dy) ch( Dy)
        

From equation (4.58) we obtained: 

 
C1
′ = −

2K

 2+K  D
sh  Dy . u1

′

C2
′ =

2K

 2+K  D
ch  Dy . u1

′
 ⟹  

 C1
′ = −

2K

 2+K  D
 sh  Dy . u1

′

 C2
′ =

2K

 2+K  D
 ch  Dy . u1

′
   

⟹  
C1 = −

2K

 2+K  D
 sh  Dy . u1

′

C2 =
2K

 2+K  D
 ch  Dy . u1

′
⟹ 

C1 = −
2K

 2+K  D
 sh  Dy u1 −  Dch( Dy) 

C2 =
2K

 2+K  D
 ch  Dy u1 −  Dsh( Dy) 

  

The relations of C1et C2 obtained above, thus this equality: 
2K

 2+K  D
=

 D

2
, are replaced 

in (4.56), the equation (4.55) becomes: 

N = c7 ch  D. y + c8 sh  D. y +
GR

2 2+K 
 c1y2 + 2c2y +

2c1

D
                                                    (4.59) 

N′ =  Dc7 sh  D. y +  Dc8 ch  D. y +
GR

 2+K 
 c1y + c2                                                 (4.60) 

With: ch & sh, present the hyperbolic cosine & sine. 
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From the equations (4.46) & (4.47) we obtained: 

u1
′ = −

K

(1+K)
 c7ch  Dy + c8sh( Dy) −

2GR

(2+K)
 

c1

2
y2 + c2y − c7                                           (4.61) 

u1 = −
K

 D(1+K)
 c5sh  Dy + c6ch( Dy) −

2GR

(2+K)
 

c1

6
y3 +

c2

2
y2 − c7y − c8                        (4.62) 

4.4.2. Calculation of Constants 

A. Particular case, Newtonian-viscous fluid (K=0) 

The equations that govern the fluids motions in both regions become: 

θ1 = c1y + c2                                                                                                                                             (4.63) 

θ2 = c3y + c4                                                                                                                                            (4.64) 

u1 = −GR
c1

6
y3 − GR

c2

2
y2 + e1y + e2                                                                                                 (4.65) 

u2 = −h∗2. ρ∗. μ∗. β∗. GR
c3

6
y3 − h∗2. ρ∗. μ∗. β∗. GR

c4

2
y2 + e3y + e4                                             (4.66) 

u1
′ =

h∗

μ∗
u2
′  ; à y = 0                                                                                                                                  (4.67) 

The interface and boundary conditions become: 

When, y= −1 ⇒  
u1 = 0
θ1 = 1

⇔  
GR

6
c1 −

GR

2
c2 − e1 + e2 = 0                                                         (4.68)

c2 − c1 = 1                                                                                      (4.69)
   

When, y = 1 ⇒   
u2 = 0
θ2 = 0

⟺  
−

h∗
2
ρ∗.μ∗.β∗GR

6
c3 −

h∗
2
ρ.μ∗.β∗GR

2
c4 + e3 + e4 = 0                      (4.70)

c3 + c4 = 0                                                                                        (4.71)

   

When, y = 0 ⇒

 
 
 

 
 

u1 = u2

u1
′ =

1

μ∗.h∗
u2
′

θ1 = θ2

θ1
′ =

1

h∗k∗
θ2
′

⟺

 
 
 

 
 

e2 = e4                                                                                     (4.72)

e1 =
1

μ∗.h∗
e3                                                                              4.73 

c2 = c4                                                                                      4.74 

c1 =
1

h∗k∗
c3                                                                              (4.75)

   

By using equations (4.43) - (4.50), we obtained the following results: 

c1 = −
1

1 + h∗k∗
;  c2 = c4 = −h∗k∗c1;  c3 = h∗k∗c1;  e1 = −

GR(1 + 3h∗k∗ + 2h∗3ρ∗. μ∗. β∗k∗)

6 1 + μ∗h∗ (1 + h∗k∗)
; 



 

71 
 

e2 = e4 =  
μ∗h∗. GR(1 + 3h∗k∗ − 2h∗2ρ∗. β∗k∗)

6 1 + μ∗h∗ (1 + h∗k∗)
; e3 = μ∗h∗. e1 

B. Micropolar fluid case (𝐊 ≠ 𝟎) 

Calculation of constants: C1, C2 , C3, C4 , C5, C6, C7 , C8, C9, by using the interface and 

boundary conditions we obtained. 

At: 

y = −1 ⇒

 
 
 

 
 u1 = 0

N = 0
θ1 = 1

⟺

 
 
 

 
 

GR

3(2+K)
c1 −

GR

(2+K)
c2 +

Ksinh (− D)

 D(1+K)
c7 +

Kcosh (− D)

 D(1+K)
c8 − c9 + c10 = 0                  (4.76)

GR (D+2)

2D(2+K)
c1 −

GR

(2+k)
c2 + cosh − D c7 + sinh − D c8 = 0                               (4.77)

c2 − c1 = 1                                                                                                                      (4.78)

   

At : 

y = 0 ⇒

 
 
 
 

 
 
 

u1
′ +

K

(1+K)
N =

1

μ∗h∗(1+K)
u2
′

N′ = 0
θ1 = θ2

θ1
′ =

1

h∗k∗
θ2
′

u1 = u2

⟺

 
 
 
 

 
 
 

GR .K

D 2+K 
c1 −

1

μ∗h
c5 + 2Kc7 = 0                                                (4.79)

GR

(2+K)
c2 +  Dc8 = 0                                                                 (4.80)

c2 = c4                                                                                         (4.81)

c1 =
1

h∗k∗
c3                                                                                 (4.82)

c6 −
K

 D(1+K)
c8 − c10 = 0                                                       (4.83)

   

À : 

y = 1 ⇒

 
u2 = 0
θ2 = 0

⟺  
−

ρ∗.μ∗.β∗h∗
2

.GR

6
c3 −

ρ∗.μ∗.β∗h∗
2

.GR

2
c4 + c5 + c6 = 0                                                     (4.84)

c3 + c4 = 0                                                                                                                         (4.85)

   

By the sum of equations (4.53) (4.54) et (4.58) we obtained: 

c2 −
1

h∗k∗
c3 = 1 & c2 = c4 ⇒ c4 −

1

h∗
c3 = 1                                                                                   (4.86) 

and : c3 = h∗k∗. c1 , c4 = c2 = −h∗k∗. c1 & c1 = −
1

(1+h∗k∗)
 

 

From the equations (4.48), (4.51), (4.52) , (4.55), (4.56) we obtained:   

c8 = a2 + c7;  c7 =
a3 + a5 − a2 − a4

(1 + μ∗h∗(1 + k∗))
 



 

72 
 

Where: tanh(….): present the hyperbolic tangent. 

c5 =
a1 + c6sinh⁡( D)

cosh⁡( D)
  

c6 = −
c2GR

( 2 + K  D)
 

c10 = c6 −
K

 D(1 + K)
c8 

c9 = a3 − c10  

Accordingly to the results obtained later, the constants a1, a2, a3, a4 & a5, are us follows: 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

a1 =
GR(c1 − 2c2 +

2c1

D )

2 2 + K 
−

2A

D(2 + K)
a2 = −h∗k∗. c1

a2 =
K(c5 sinh  D − c6cosh⁡( D))

 1 + K 
+

2GR

 2 + K 
(
c1

6
−

c2

2
)

a3 = −ρ∗. μ∗. β∗. h∗2. GR(
c3

6
+

c4

6
)

a4 =
c6K

 1 + K  D
a5 = μ∗. h∗. K. (c1R + 2E)

E =
GR. L1

L2

L1 = 2 1 + K  2 + K D D 3μ∗h∗. c1K − μ∗. β∗h∗2c1 − c1 + 3c2 − ρ∗. μ∗. β∗. h∗2 2 + K 

+2K D 2Dc2 + c1 2 + D tanh  D  + 2Kc2 D 1 + cosh  D  − c1D D 1 + K 

L2 = 2D D 1 + K  3 + K − 4μ∗h∗K − 4Ktanh  D 

  

The functions defined the dimensionless linear and microrotation velocities are 

determined and provided by Annex A: 

 u1 y, GR , u2 y, GR  et N y, GR , u1 y, μ∗ , u2 y, μ∗  et N y, μ∗ , u1 y, h∗ , u2 y, h∗  et N y, h∗  

u1 y, k∗ , u2 y, k∗  et N y, k∗ , u1 y, K , u2 y, K , N y, K , u1 y, β∗ , u2 y, β∗  et N y, β∗ , 

u1 y, ρ∗ , u2 y, ρ∗ , N y, ρ∗ . 

y ∈  −1,1 ; GR =  5,10,15 ; μ∗ =  1,2,3 ; h∗ ∈  0.1,1,2,3 ; k∗ ∈  0.1,1,2,3 ; K =  1,2,3 ; 

β∗ =  0.2,0.5,0.7 ; ρ∗ =  0.2,0.5,0.7  
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4.5. Physical model in presence of a magnetic field 

4.5.1. Mathematical Formulation 

In using the same hypothesis indicated in paragraph (4.3.2) we obtained.  

V1 = V2 = 0                                                                                                                                               (4.87) 

dU1

dX
=

dU2

dX
= 0                                                                                                                                            (4.88) 

The motion equations of region1.  

dU1

dX
= 0                                                                                                                                                        (4.89) 

 μ1 + σ 
d2U1

dY2 + ρ1gβ1 T1 − T1
∗ − σ∗B0

2U1 + σ
dn

dY
= 0                       (4.90) 

γ
d2n

dY2 − σ(2n +
dU1

dY
) = 0                                                                                                                         (4.91) 

σ∗B0
2

ρ1Cp 1
U1

2 + α1
d2T1

dY2 = 0                                                                                                                            (4.92) 

The motion equations of region 2 : 

dU2

dX
= 0                                                                                                                                                        (4.93) 

μ2
d2U2

dY2 + ρ2gβ2 T2 − T2
∗ − σ∗B0

2U2 = 0                                                                                          (4.94) 

σ∗B0
2

ρ2Cp 2
U2

2 + α2
d2T2

dY2
= 0                                                                                                                             (4.95) 

4.5.2. Numerical results of the model 

The differential equations system from (4.90)-(4.95) doesn’t admit analytical 

solutions, in this case, we will use of variable change techniques to arrive at a dimensionless 

mathematical model, this step of work is similar to that in section (4.4.1,B), so the procedure 

is as follows: 

y =
Y

hi=1,2
  ⟹  Y = y. hi=1,2 ; ui=1,2 =

U i=1,2

U0
 ⟹  Ui=1,2 = U0. ui=1,2 & N =

h1

U0
n 

- Non-Newtonian micropolar/Newtonian-viscous fluids system. 

- Region1. 
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 step1. 

μ1U0

h1
2
 1 + K 

d2u1

dy2
+ ρ1gβ1 T1 − T1

∗ + σ
U0

h1
2

dN

dy
− σ∗B0

2U0u1 = 0 

μ1U0

h1
 

2 + K

2
 

h1
2

h1
2

d2N

dy2
−
σU0

h1
(2N +

du1

dy
) = 0 

σ∗B0
2U0

2

ρ1Cp1
u1

2 +
k1

ρ1CP1h1
2

d2T1

dy2
= 0 

 step2. 

 1 + K 
d2u1

dy2
+
ρ1gβ1h1

2

μ1U0

 T1 − T1
∗ + K

dN

dy
−
σ∗B0

2h1
2

μ1
u1 = 0 

 
2 + K

2
 

d2N

dy2
− K(2N +

du1

dy
) = 0 

σ∗B0
2h1

2

μ1
u1

2 +
k1

U0
2μ1

d2T1

dy2
= 0 

According to the following data: 

 T1 − T1
∗ =  T1

∗ − T2
∗ θ1;   T1

∗ − T2
∗ = ∆T ⟹ T1 = ∆Tθ1 + T1

∗ &  T2 − T2
∗ =  T1

∗ − T2
∗ θ1, we 

derive these equation, we obtain: 
d2T1

dy2 = ∆T
d2θ1

dy2  & 
d2T2

dy2 = ∆T
d2θ2

dy2 . 

 Step 3. 

 1 + K 
d2u1

dy2
+
ρ1gβ1h1

2

μ1U0

 T1 − T1
∗ + K

dN

dy
−
σ∗B0

2h1
2

μ1

u1 = 0 

 
2 + K

2
 

d2N

dy2
− K(2N +

du1

dy
) = 0 

σ∗B0
2h1

2

μ1
u1

2 +
k1∆T

U0
2μ1

d2θ1

dy2
= 0 

 Step 4. 

d2u1

dy2
+

1

 1 + K 

μ1

ρ1h1U0
 

h1
3ρ1

2gβ1∆T
μ1

2  θ1 +
K

 1 + K 

dN

dy
−

1
 1 + K 

 
h1

2
σ∗B0

2

μ1

 u1 = 0 
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d2N

dy2
−

4K

 2 + K 
N −

2K

 2 + K 

du1

dy
= 0 

 
h1

2σ∗B0
2

μ1
 u1

2 +
k1∆T

U0
2μ

1

d2θ1

dy2
= 0 

 Step 5. 

d2u1

dy2
+

1

 1 + K 

Gr

Re
θ1 +

K

 1 + K 

dN

dy
−

Ha
 1 + K 

u1 = 0 

d2N

dy2
−

4K

 2 + K 
N −

2K

 2 + K 

du1

dy
= 0 

Ha. u1
2 +

k1∆T

U0
2μ

1

d2θ1

dy2
= 0 

 Step 6. 

d2u1

dy2
+

GR

 1 + K 
θ1 +

K

 1 + K 

dN

dy
−

Ha
 1 + K 

u1 = 0 

d2N

dy2
−

4K

 2 + K 
N −

2K

 2 + K 

du1

dy
= 0 

Ha. u1
2 +

k1∆T

U0
2μ

1

d2θ1

dy2
= 0 

 Step 7. 

u1
′′ +

GR

 1 + K 
θ1 +

K

 1 + K 
N′ −

Ha
 1 + K 

u1 = 0 

N′′ −
4K

 2 + K 
N −

2K

 2 + K 
u1
′ = 0 

Ha. u1
2 +

k1

CP1μ1

CP1∆T

U0
2 θ1

′′ = 0 

 Step 8. 
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u1
′′ +

GR

 1 + K 
θ1 +

K

 1 + K 
N′ −

Ha
 1 + K 

u1 = 0 

N′′ −
4K

 2 + K 
N −

2K

 2 + K 
u1
′ = 0 

Ha. u1
2 +  

k1

CP1ρ1ν1

 
1

 
U0

2

CP1∆T
 

θ1
′′ = 0 

 Step 9. 

u1
′′ +

GR

 1 + K 
θ1 +

K

 1 + K 
N′ −

Ha
 1 + K 

u1 = 0 

N′′ −
4K

 2 + K 
N −

2K

 2 + K 
u1
′ = 0 

Ha. u1
2 +  

α1

ν1

 
1

EC

θ1
′′ = 0 

In using the following data: u1 = f y , u2 = g y  et Y =
y

h2
 ,  we obtain:  

 step10. 

f′′ −
Ha

 1 + K 
f +

K

 1 + K 
N′ +

GR

 1 + K 
θ1 = 0 

N′′ −
4K

 2 + K 
N −

2K

 2 + K 
f′ = 0 

θ1
′′ + Ha. Pr . E

C
. f 2 = 0 

 step11. 

f ′′ + K1. GR.θ1 + K2. N′ − K1. Ha. f = 0                                     (4.96)                                                                                      

N′′ − 2K3N − K3f′ = 0                            (4.97)                                                                                                           

θ1
′′ + Br. Ha. f

2
= 0                                        (4.98)   

- Region 2  

μ2

d2U2

dY2
+ ρ2gβ2 T2 − T2

∗ − σ∗B0
2U2 = 0 
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σ∗B0
2

ρ2Cp2
U2

2 + α2

d2T2

dY2
= 0 

 Step 1. 

d2U2

dY2
+
ρ2gβ2ΔT

μ2
θ2 −

σ∗B0
2

μ2
U2 = 0 

σ∗B0
2

ρ2Cp2
U2

2 +
k2

ρ2CP2

d2T2

dY2
= 0 

 Step 2. 

U0

h2
2

d2u2

dy2
+
ρ2gβ2ΔT

μ2
θ2 −

σ∗B0
2U0

μ2
u2 = 0 

σ∗B0
2U0

2

ρ2Cp2
u2

2 +
k2∆T

ρ2CP2h2
2

d2θ2

dy2
= 0 

 Step 3. 

d2u2

dy2
+
ρ2μ1h2

2β2

ρ1μ2h1
2β1

1

 
ρ1U0h1

μ1
 
 
ρ1

2gh1
3β1ΔT

μ1
2  θ2 −

μ1h2
2

μ2h1
2  
σ∗B0

2h1
2

μ1
 u2 = 0 

h2
2

h1
2  

σ∗B0
2h1

2

μ1
 u2

2 +
k2

k1
 

k1∆T

μ1U0
2 

d2θ2

dy2
= 0 

 Step 4. 

d2u2

dy2
+ ρ∗μ∗H2β∗

Gr

Re
θ2 − μ∗H2Ha. u2 = 0 

H2Ha. u2
2 +

1

k∗PrEC

d2θ2

dy2
= 0 

 Step 5. 

u2
′′ + ρ∗μ∗H2β∗

Gr

Re
θ2 − μ∗H2Ha. u2 = 0 

H2. Ha. u2
2 +

1

k∗. Pr . EC
θ2
′′ = 0 

 Step 6. 

g′′ −
μ∗.Ha

H2
g+.

GR .μ∗

ρ∗.H2 .β∗
θ2 = 0                                                (4.99) 

θ2
′′ +

Ha .k∗.Br

H2 . g2 = 0                                     (4.100) 

With: GR =
Gr

Re
 ; Gr =

h1
3ρ1

2β1g∆T

μ1
2 ;  Re =

ρ1h1U0

μ1
 ; μ∗ =

μ1

μ2
; h∗ =

h1

h2
; k∗ =

k1

k2
; β∗ =

β1

β2
; ρ∗ =

ρ1

ρ2
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 Ha =
σ∗B0

2h1
2

μ1
 ;  EC =

U0
2

CP 1ΔT
;  Pr =

ν1

α1
 ; Br = Pr. Ec; K1 =

1

1+K
 ;  K2 =

K

1+K
 ; K3 =

2K

2+K
 ; 

 

Particulate case: K → 0 (viscous/viscous fluids system): 

 f ′′ − Ha. f + GR. θ1 = 0                                                                                                                       (4.101) 

 θ1
′′ + Br. Ha. f 2 = 0                                                                                                                               (4.102)  

g′′ −
μ∗.Ha

H2 g+.
GR .μ∗

ρ∗.H2 .β∗
θ2 = 0                                                                                                               (4.103)  

𝜃2
′′ +

𝐻𝑎.𝑘∗.𝐵𝑟

𝐻2 . 𝑔2 = 0                                                                                                                        (4.104) 

4.5.3. Calculation of local friction coefficients, Cf1 et Cf2 

In our study, the main interest physical quantities are the local friction coefficients 

close to the channel walls, the shear rate and the Nusselt number which represents the heat 

transfer rate, except that the calculation of the friction coefficients and the shear rate is done 

in function of a variable y, while the calculation of the Nusselt number is given as a function 

of a variable x, which requires the writing of balance equations in two dimensions in 

boundary layer. 

The general formula of local friction coefficient and the shear rate are given by. 

A wall in contact with a non-Newtonian Micropolar fluid. 

𝐶𝑓1 =
𝜏1𝑌

 
1

2
𝜌1. 𝑈0

2                         (4.105)  

𝜏1𝑌 = − 𝜇1 + 𝜎  
𝑑𝑈1

d𝑌
 
 𝑌=−𝑕1 

+ 𝜎(𝑛)𝑌=−𝑕1
                    (4.106) 

A wall in contact with a Newtonian-viscous fluid.  

 𝐶𝑓2 =
𝜏2𝑌

 
1

2
𝜌2 . 𝑈0

2                              (4.107) 

𝜏2𝑌 = −𝜇2  
𝑑𝑈2

𝑑𝑌
 
 𝑌=𝑕2 

                        (4.108) 
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To calculate the local friction coefficient values in relations (4.105) and (4.107), we 

should write them in dimensionless form. In considering that: n = 0, 𝜎(𝑛)𝑌=−𝑕1
  

- Region1. 

𝐶𝑓1 = −
 𝜇1 + 𝜎 

 
1
2𝜌1. 𝑈0

2 
 
𝑑𝑈1

𝑑𝑌
 
 𝑌=−𝑕1 

⇒ 𝐶𝑓1 = −
𝜇1  1 +

𝜎
𝜇1
 

 
1
2 𝜌1. 𝑈0

2 
 
𝑑 𝑢1𝑈0 

𝑑 −𝑕1𝑦 
 
 𝑦=−1 

 

⟹ 𝐶𝑓1 =
2𝑈0 1 + 𝐾 

 
𝜌1. 𝑕1 . 𝑈0

2

𝜇1
 

 
𝑑𝑢1

𝑑𝑦
 
 𝑦=−1 

⟹ 𝐶𝑓1 ==
2 1 + 𝐾 

 
𝜌1. 𝑕1𝑈0

𝜇1
 
 
𝑑𝑢1

𝑑𝑦
 
 𝑦=−1 

 

⟹ 𝐶f1 =
2 1 + 𝐾 

𝑅𝑒1
 
𝑑𝑢1

𝑑𝑦
 
 𝑦=−1 

 

 

𝐶𝑓1 =
2 1+𝐾 

𝑅𝑒1
𝑓′(−1)                                     (4.109) 

- Region2.         

𝐶𝑓2 = −
𝜇2

 
1
2 𝜌2 . 𝑈0

2 
 
𝑑 𝑢2𝑈0 

𝑑 𝑕2𝑦 
 
 𝑦=1 

⇒ 𝐶𝑓2 = −
𝑈0. 𝜇2

 
1
2 𝜌2. 𝑕2. 𝑈0

2 
 
𝑑𝑢2

𝑑𝑦
 
 𝑦=1 

 

⇒ 𝐶𝑓2 = −
𝜌1. 𝑕1. 𝜇2

𝜌2. h2. μ1
.

2

 
ρ1. h1. U0

μ1
 
 

du2

dy
 
 y=1 

⇒ −

ρ1

ρ2
.
h1

h2
μ1

μ2

.
2

 
ρ1. h1. U0

μ1
 
 

du2

dy
 
 y=1 

⇒ 

Cf2 = −
2.ρ∗.H

μ∗Re
g′(1)                       (4.110) 

 

4.6. Conclusion 

The development of the differential equations system, either in the absence or in the 

presence of the magnetic field, went through a mathematical technique to change the 

variables in aim to make it in dimensionless form, keeping a same hypothesis and a same 

boundary conditions, in first hand, with  Successful, we have two different  final  system of 

differential equations of both studied cases, in the other hand, we found that the presence of 

the magnetic diffusivity term allows the appearance of three dimensionless numbers and 

ratio, Prandtl, Eckert, Hartmann and thermal conductivities ratio, alongside, five other 

dimensionless ratios are found in the case a channel without magnetic field effect case: 

Grashoff and Reynolds ratio, widths ratio, dynamic viscosity ratio, thermal dilation 

coefficients ratio and densities ratio. 
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Chapter 5: Results and discussions 

 

5.1. Introduction 

 In this last chapter, it finds two means of figures, curves obtained from analytical 

solution using Microsoft Excel for the model without magnetic field effect. Thus a numerical 

solution is done for the model with a magnetic field effect by computing "Matlab". The 

obtained figures show us dimensionless linear velocities and dimensionless microrotation 

velocity into both regions of a channel. So the structure of the flow is represented by 

dimensionless velocities  𝑢1 , 𝑢2 𝑒𝑡 𝑁. 

First part (5.2) present the validation part study. In this point, we should improve that 

our analytic solutions are the same of those obtained by J. P. Kumar [9]. 

Second part of the solution (5.3) presents our proper work of the physic model under a 

magnetic field effect. 

5.2. The effect of the parameters on linear and microrotation velocities without 

magnetic field 

5.2.1. The mixed convection parameter 

 

Figure 5.1: Dimensionless linear velocities profiles for different values of the mixed convection parameter 

with «K=0, h*=1, k*=1, *=1, *=1, *=1». 

 

 

Looking at Figure 5.1, 5.2 and 5.3, we have observed that the parameter of the mixed 

convection, also called, ratio of Grashoff to the Reynolds numbers (GR=Gr/Re) have a similar 
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effect on the dimensionless linear and microrotation velocities profile (u1, u2 et N). About 

the micropolar fluid, we have noticed that the increase of the mixed convection parameter 

causes an increase of the buoyancy force which support the motion, therefore in the case 

when the micropolar fluid is replaced by a Newtonian viscous fluid(K → 0), the effect of the 

variation of mixed convection parameter causes the increase of the buoyancy forces. 

However the attractive is that the increase in velocity profiles is significant in case of 

viscous-viscous fluids system. 

 

 

Figure 5.2: Dimensionless linear velocities profiles for different values of the mixed convection parameter with 
«K=1, h*=1, k*=1, *=1, *=1, *=1». 

 

 

 

 

Figure 5.3: Dimensionless microrotation velocity profile for different values of the mixed convection 
parameter with « K=1, h*=1, k*=1, *=1, *=1, *=1». 
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5.2.2. The viscosity coefficients ratio 

 

 

Figure 5.4: Dimensionless linear velocities profile for different values of viscosities ratio with « K=0, h*=1, 
k*=1, GR=5, *=1, *=1». 

 

 

Figure 5.5: Dimensionless linear velocities profile for different values of viscosities ratio with « K=1, h*=1, 
k*=1, GR=5, *=1, *=1». 

 

From figures 5.4, 5.5 & 5.6, we note that the variation of viscosity coefficients ratio of 

the micropolar-non-Newtonian and Newtonian viscous fluid has an apparent effect on the 

linear and micro-rotation velocities field, it is clear that the increase in the viscosities ratio, 

causes an increase in the linear velocities of both fluid regions, we also say that the 
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increase is significant in the case of a viscous-viscous fluid system (K→0). When the 

viscosity ratio increases causes a decrease in the microrotation velocity profile. 

 

Figure 5.6: The dimensionless microrotation velocity profile for different values of the viscosities ratio with 

«K=1, h*=1, k*=1, GR=5, *=1, *=1». 

 

5.2.3. The widths ratio of fluids 

 

 

Figure 5.7: Dimensionless linear velocities profile for different values of channel widths ratio with « K=0, µ
*
=1, 

k*=1, GR=5, *=1, *=1». 
 

 

By observing the curves in Figure 5.7, 5.8 & 5.9, we observe that the widths ratio of 

both regions has an apparent effect on the linear and microrotation velocities, when the 

ratio of the widths increases the dimensionless linear and microrotation velocities 

increase, furthermore in the case which the viscous-micropolar fluid system is replaced 
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by viscous-viscous fluids system (K→0), the increase in the profile of linear and 

microrotation velocities according to the widths ratio h is greater. 

 

 
Figure 5.8: Dimensionless linear velocities profile for different values of channel widths ratio with «K=1, 

µ
*
=1, k*=1, GR=5, *=1, *=1». 

 

 

 

Figure 5.9: variation of dimensionless microrotation velocity for different values of widths ratio h of the 
channel, with «K=1, µ

*
=1, k*=1, GR=5, *=1, *=1». 

In other way, in observing the curves in figs. 5.4 – 5.6, facing the others in fig. 5.7 – 

5.9, we can say that the width ratio of both regions support the microrotion velocity 

more than dynamics viscosities ratio. A fig. 5.6 shows that the spin velocity takes values 

from 0.9 to 1.3, but in fig. 5.9, the velocity of spin start over than the value 1.3 and takes 

more this value. We can also observe the same for the linear velocity variations. Values of 
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the linear velocities curves do not exceed more than 0.8 in fig. 5.5 but in fig. 5.8 the 

velocities exceed than a value 2.5.  

5.2.4. The thermal conductivities ratio 

 

Figure 5.10: Dimensionless linear velocities profile for different values of thermal conductivities ratio with 
«K=0, µ*=1, h*=1, GR=5, *=1, *=1». 

 

Figure 5.11: Dimensionless linear velocities profile for different values of thermal conductivities ratio with 
«K=1, µ*=1, h*=1, GR=5, *=1, *=1». 

 

In analyzing the curves in figure 5.10, 5.11 & 5.12, the linear velocities profile in both 

regions increase when the thermal conductivities ratio increase for the both cases when 

K=0 and K=1, but the microrotation velocity decrease in the first region when the thermal 

conductivities ratio increase. 
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Figure 5.12: variation of dimensionless microrotation velocity for different values of widths ratio h of the 
channel, with with «K=1, µ*=1, h*=1, GR=5, *=1, *=1». 

 

5.2.5. The material parameter and thermal dilation coefficients 

 

Figure 5.13: variation of dimensionless linear velocities profile for different values of material parameter, 

with «k*=1, µ*=1, h*=1, GR=5, *=1, *=1». 
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curves in fig. 5.12 facing the others in fig. 5.17, we can say that the thermal conductivities 

ratio of both regions support, respectively, the linear and microrotion velocities more 

than thermal dilations ratio. A fig. 5.10 and fig. 5.11 show that the linear velocity takes 

values from 0.9 to 1.5, but in fig. 5.15 and fig. 5.16, the linear velocity starts over than the 
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value 0.15 to 0.45. We can also observe the same for the spin velocities, values of the 

linear velocities curves don’t exceed more than 1.4 in fig. 5.12, but in fig. 5.17, the 

microrotation values exceed than a value 1.4 to 1.6. 

 

Figure 5.14: variation of dimensionless microrotation velocities profile for different values of material 

parameter with «k*=1, µ*=1, h*=1, GR=5, *=1, *=1». 

 

 
 

Figure 5.15: variation of dimensionless linear velocities profile for different values of thermal dilation 

coefficients ratio, with «K=0, k*=1, µ*=1, h*=1, GR=5, *=1». 

 

 

 

We observed in figures 5.13-5.16, that when the material parameter - which 

characterize the variation of the form and the structure of the suspended fine particles 

within a non-Newtonian-micropolar-fluid - and the dilation thermal coefficients ratio (in 

cases K=0 & K=1) increase, the linear velocities increase, but in figures 5.14 & 5.17, the 
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microrotation velocity decrease according to the increase of the material parameter and 

dilation thermal coefficients ratio. 

  

 

Figure 5.16: variation of dimensionless linear velocities profile for different values of thermal dilation 
coefficients ratio, with «K=1, k*=1, µ*=1, h*=1, GR=5, *=1». 

 

 

Figure 5.17: variation of dimensionless microrotation velocities profile for different values of thermal dilation 

coefficients ratio, with «K=1, k
*
=1, µ

*
=1, h*=1, GR=5, *=1». 

 

5.2.6. The densities ratio 

by analyzing the curves obtained in Figures 5.18-5.20, it is clear that the variation of 

densities ratio have an effect on the linear and the microrotation velocities profile in both 

regions of a channel, we note that the increase in densities ratio causes a decrease in a 

linear and microrotation velocity profiles of case K → 0 and K = 1. 

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

-1 -0,5 0 0,5 1

D
im

en
si

o
n

le
ss

 li
n

ea
r 

ve
lo

ci
ti

es
, u

1
, u

2
 

Y

Micropolar fluid                    Viscous flud

β*=0,7

β*=0,5

β*=0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-1 -0,8 -0,6 -0,4 -0,2 0

D
im

e
n

si
o

n
le

ss
 m

ic
ro

ta
ti

o
n

 
ve

lo
ci

ty
, N

y

Micropolar Fluid

β*=0,7

β*=0,5

β*=0,2



 

90 
 

 

Figure 5.18: variation of dimensionless linear velocities profile for different values of densities ratio, with 
«K=0, k*=1, µ*=1, h*=1, GR=5, β*=1». 

 

 

Figure 5.19: variation of dimensionless linear velocities profile for different values of densities ratio, with 
«K=1, k*=1, µ*=1, h*=1, GR=5, β*=1». 

 

In addition, the curves in fig. 5.10 & 5.11, facing the others in fig. 5.18 & 5.19, and 

curves in fig. 5.12 facing the others in fig. 5.20, we can say that the thermal conductivities 

ratio of both regions and the densities ratio might be have a same effect, so, they support 

the micropolar fluid flow. We also, observe that the curves in fig. 5.12, 5.17 and fig. 5.20 

show that the densities ratio has more effect on the spine velocity than the thermal 

dilation and conductivities ratio within micropolar fluid flow. 
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Figure 5.20: variation of dimensionless microrotation velocities profile for different values of densities ratio, 
with «K=1, k

*
=1, µ

*
=1, h*=1, GR=5, β*=1». 

5.3. The effect of dimensionless parameters in presence of magnetic field 

The dimensionless differential equations obtained are programmed under MATLAB, as a 

result, curves obtained in this investigate; represent the flow structure (velocity profile). The 

structure of a flow is represented by dimensionless linear or axial velocity curves (u1, u2) and 

dimensionless microrotation velocity curves (N). 

 

5.3.1. The material parameter effect in varying the magnetic parameter for  𝑷𝒓 ≤ 𝟏 

 

Figure 5.21: variation of dimensionless linear velocities profile for different values of material parameter with 
« (a) Ha=1, (b) Ha=3, Pr=0.7, Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.22: variation of dimensionless linear velocities profile for different values of material parameter 

with « (a) Pr=0.7, Ha=5, (b) Pr=0.1, Ha=1 & Ec=1GR=5, h*=1, k*=1, *=1, *=1, *=1». 

 

Figure 5.23: : variation of dimensionless linear velocities profile for different values of material parameter 
with « (a) Pr=0.1, Ha=3, (b) Pr=0.1, Ha=5, Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

 

 

First, by observing the curves obtained in figures 5.21-5.31, we note that the material 

parameter variation has an apparent effect on the linear and microrotation velocities profile, 

it’s clear that an increase in the material parameter, as Prandtl number of 0.1-3 and 

Hartmann number of 1-5 causes a decrease in the linear velocity profiles in both regions (i.e. 

a decrease in buoyancy forces) of non-Newtonian-micropolar and Newtonian-viscous fluids, 

except in figure 5.32-a, case Pr=3, Ha=5 & K=0-2, the linear velocities increase within a 

micropolar fluid region, but about Newtonian-viscous fluid region- 
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Figure 5.24: variation of dimensionless linear velocities profile for different values of material parameter 

with « (a) Ha=1, (b) Ha=3 & Pr=1, Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

 

5.3.2. The material parameter effect in varying the magnetic parameter for 𝟏 < 𝑷𝒓 ≤
𝟐𝟎 

 

Figure 5.25: variation of dimensionless linear velocities profile for different values of material parameter 

with « (a) Ha=5, Pr=1, (b) Ha=1, Pr=3 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

 

Moreover, the curves in fig. 5.21 – 5.25, facing the others in fig. 5.26 – 5.31, we can 

say that, in presence of magnetic effect, curves obtained in fig. 5.21 – 5.25, Prandtl 

number values from 0.1-1.0 had not a strong effect to raise velocities of both fluids. But 

curves obtained in fig. 5.26 – 5.31 show that while Pr takes values more than 1 the 

velocity curves in both regions will be more active for magnetic parameter values from 3 

– 5.  
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Figure 5.26: variation of dimensionless linear velocities profile for different values of material parameter 

with « (a) Ha=3, Pr=3, (b) Ha=5, Pr=3, K=0-2 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

 

  

Figure 5.27 variation of dimensionless linear velocities profile for different values of material parameter with 

« (a) Ha=5, Pr=3, K=3-6, (b) Ha=1, Pr=20, K=0-3, Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  

Figure 5.28 variation of dimensionless linear velocities profile for different values of material parameter with 

« (a) Ha=1, Pr=20, K=4-6, (b) Ha=3, Pr=20, K=0-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 
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In figures 5.28-5.30, we observed an increase in the linear velocities profile for K<3, 

10 <Pr <50, Ha=1-5, we can also noticed a perturbation in velocities profile for K>3 in both 

regions, up and equal value 3 of Hartmann number including figure 5.31.    

 

  

Figure 5.29 : variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=5, Pr=20, (a) K=0-2, (b), K=2-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

 

5.3.3. The material parameter effect with varying the magnetic parameter 

for 𝟐𝟎 < 𝑷𝒓 < 10𝟎 

 

  

Figure 5.30 : variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=1, Pr=40, (a) K=1-2, (b) K=2-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 
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Figure 5.31: variation of dimensionless linear velocities profile for different values of material parameter 

with « Ha=3, Pr=40, (a) K=1-5, (b) K=6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

  

 

Figure 5.32 : variation of dimensionless linear velocities profile for different values of material parameter 

with « Ha=5, Pr=40, (a) K=0-1, (b) K=2-3, (c)K=4-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 
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Figure 5.33: variation of dimensionless linear velocities profile for different values of material parameter 

with « Ha=1, Pr=50, (a) K=0-1, (b) K=2-3, (c) K=4-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 
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Figure 5.34 : variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=3, Pr=50, (a) K=0-2, (b) K=3-34, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 

  

 

Figure 5.35 : variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=5, Pr=50, (a) K=0-2, (b) K=3-4, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1» 
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In analyzing the effect of material parameter variation by varying Prandtl number and 

magnetic field (figures 5.32-5.38), we note that a high values of material parameter, Prandtl 

and Hartmann numbers have a significant effect on the linear and microrotation velocities 

profile, so the increase of the three dimensionless parameters provoke a perturbation in the 

linear velocity profiles in both regions. In other way we can note that, in same time, the 

linear velocities profile increase within non-Newtonian micropolar fluid, and decrease 

within Newtonian-viscous fluid, when the material parameter increase.  

 

5.3.4. The material parameter effect with varying the magnetic parameter 
for 𝑷𝒓 = 𝟏𝟎𝟎 

  

Figure 5.36: : variation of dimensionless linear velocity profiles for different values of material parameter with 

« Ha=1, Pr=100, (a) K=0-2, (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.37: variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=3, Pr=100, (a) K=0-2, (b) K=2-4, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

 

  

 

Figure 5.38: variation of dimensionless linear velocities profile for different values of material parameter with 

« Ha=5, Pr=100, (a) K=0-1, (b) K=2-3, (c) K=4-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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5.4. The effect of parameter variations on microrotation velocity in presence of 
magnetic field 
 
5.4.1. The material parameter effect in varying the magnetic parameter  
for 𝟎. 𝟏 ≤ 𝑷𝒓 ≤ 𝟑 
 

  

  

 

Figure 5.39: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Pr=0.1, (a) Ha=1, K=0-6, , (b) Ha=3, K=1-2, (c) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, 

*=1». 

 
 

In figures 5.39-a,b,c, above we observed that the increase in the material parameter 

causes a decrease in microrotation velocity profiles for K = 0.0-3.0, but the microrotation 

velocities increase when the material parameter takes values 3-6. 
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Figure 5.40 : variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=0.7, Ha=1, (a), K=1-2, , (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

 

  

Figure 5.41: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=0.7, Ha=3, (a), K=1-2, , (b) K=3-6 &  Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.42: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Pr=0.7, Ha=5, (a), K=1-2, , (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  

Figure 5.43: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=1, Ha=1, (a), K=1-2, , (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  

Figure 5.44: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=1, Ha=3, (a), K=1-2, , (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.45: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=1, Ha=5, (a), K=1-2, (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  
Figure 5.46: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=3, Ha=1, (a), K=1-2, (b) K=3-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  
Figure 5.47: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=3, K=1-6, (a) Ha=3, (b) Ha=5 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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5.4.2. The material parameter effect in varying the magnetic parameter for 𝟑 < 𝑃𝑟 ≤

50 

 
 

Figure 5.48: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=10, K=1-6, (a) Ha=1, (b) Ha=3 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

  

 
Figure 5.49: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=10, Ha=3, (a) K=1-2, (b) K=3-4, (c) K=4-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.50: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=10, Ha=5, (a) K=1-2, (b) K=3-5, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure 5.51: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=50, Ha=1, (a) K=1-3, (b) K=3-4, (c) K=4-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, 

*=1». 

 

  

 
Figure 5.52: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=50, Ha=5, (a) K=1-2, (b) K=3-5, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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5.4.3. The material parameter effect in varying the magnetic parameter for 𝑷𝒓 = 𝟏𝟎𝟎 

  

 

Figure 5.53: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Pr=100, Ha=1, (a) K=1-2, (b) K=3-5, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, 

*=1». 
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Figure 5.54: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Pr=100, Ha=5, (a) K=1-3, (b) K=3-5, (c) K=5-6 & Ec=1, GR=5, h*=1, k*=1, *=1, *=1, 

*=1». 
 

5.4.4. The thermal conductivities ratio, magnetic parameter effect for 𝟏𝟎 ≤ 𝑷𝒓 ≤
𝟏𝟎𝟎 

  

  
Figure 5.55: variation of dimensionless microrotation velocity profile for different values of material parameter with 

« Ha=1, Pr=10, k*=2,, (a) K=1-2, (b) K=3-4, (c) K=4-5, (d) K=5-6  & Ec=1, GR=5, h*=1, *=1, *=1, *=1». 
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Figure 5.56: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Pr=10, Ha=5, k*=2,, (a) K=1-4, (b) K=4-5, (c) K=5-6  & Ec=1, GR=5, h*=1, *=1, *=1, *=1». 
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Figure 5.57: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Ha=1, Pr=50, k*=2, (a) K=1-2, (b) K=2-3, (c) K=3-5, (d) K=5-6  & Ec=1, GR=5, h*=1, *=1, 

*=1, *=1». 

  

  

Figure 5.58: variation of dimensionless microrotation velocity profile for different values of material 
parameter with « Ha=5, Pr=50, k*=2,, (a) K=1-3, (b) K=3-4, (c) K=4-5, (d) K=5-6  & Ec=1, GR=5, h*=1, *=1, 

*=1, *=1». 
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Figure 5.59: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha=1, Pr=100, k*=2,, (a) K=1-6, (b) K=1-2, (c) K=2-3, (d) K=3-4, (e) K=4-5, (f) K=5-6  & 

Ec=1, GR=5, h*=1, *=1, *=1, *=1». 
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Figure 5.60: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha=5, Pr=100, k*=2, (a) K=1-4, (b) K=4-5, (c) K=5-6 & Ec=1, GR=5, h*=1, *=1, *=1, *=1». 

 

5.4.5. The Eckert number and width ratio effects for 𝑷𝒓 = 𝟓𝟎 
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Figure 5.61: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha= 3, Pr=50, k*=2, Ec=2, h*=2, (a) K=1-6, (b) K=1-3, (c) K=3-4, (d) K=4-6 & GR=5, *=1, 

*=1, *=1». 

 

5.4.6. The dynamical viscosities ratio effect for 𝑷𝒓 = 𝟓𝟎 

  

  
Figure 5.62: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha= 3, Pr=50, k*=2, Ec=2, h*=3, *=2, (a) K=1-6, (b) K=1-2, (c) K=3-5, (d) K=5-6  & GR=5, , 

*=1, *=1». 
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Indeed J.P Kumar & al. [9], N. Kumar et al. [21], and B. Suresh Babu et al. [59], 

have concluded a same results about the microrotation velocity (K=1, 2, 3) and the linear 

velocity profile of a Newtonian-viscous and non-Newtonian micropolar fluids when Prandtl 

number is low of 1 and Hartmann number doesn’t exceed 1, thus which for the linear 

velocities profile of Newtonian viscous fluid in absence of a magnetic field. But the results 

obtained by A. Ishak et al. [7] in studying the forced flow in the presence of a magnetic field 

are different, for the microrotation velocity they have proved that the increase in the 

material parameter causes a decrease in the microrotation velocity of the suspended fine 

particles. 

 
5.4.7. The mixed convection parameter effect for 𝑷𝒓 = 𝟓𝟎 

 

  

  
Figure 5.63: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha= 3, Pr=50, k*=2, Ec=2, h*=2, *=2, GR=10, (a) K=1-6, (b) K=1-2, (c) K=3-5, (d) K=5-6  & 

*=1, *=1». 
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5.4.8. The densities ratio effect for 𝑷𝒓 = 𝟓𝟎 
 

  

  

 
Figure 5.64: variation of dimensionless microrotation velocity profile for different values of 
material parameter with « Ha= 3, Pr=50, k*=2, Ec=2, h*=2, *=2, GR=10, *=2 (a) K=1-2, 

(b) K=2-3, (c) K=3-4, (d) K=4-5, (e) K=5-6 & *=1». 
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5.4.9. The thermal dilation parameter effect for 𝑷𝒓 = 𝟓𝟎 

   

 
Figure 5.65: variation of dimensionless microrotation velocity profile for different values of material 

parameter with « Ha= 3, Pr=50, k*=2, Ec=2, h*=2, *=2, GR=10, *=2, *=2, (a) K=1-2, (b) K=2-3, (c) 

K=3-4, (d) K=4-5, (e) K=5-6 ». 
 

 

5.5. The effect of parameter variations on the linear velocity profiles for 𝑲 = 𝟎 & 𝟏,

𝑯𝒂 = 𝟏 & 5, 𝑷𝒓 ≤ 𝟏 

5.5.1. The thermal conductivity ratio effect in varying Ha and Pr 

Also, by examining the curves obtained in figure 5.65-5.75, we can observe a minor 

variation in velocity profiles in both regions of fluids, first from fig. 5.65-5.70, the variation of 

Prandtl number – which means that the rate of a viscous diffusivity is low compared to the 

rate of thermal diffusivity – of 0.1-1.0 (figure 5.65.-a,b,c,d) causes a slight decrease in the 

linear velocity profiles within a non-Newtonian micropolar fluid for cases K=1 & K → 0 with 

Ha=1, which means that, a low viscous diffusivity rate relative to a thermal diffusion rate 

causes a slight increase in the linear velocity profiles.  
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Figure 5.66: Dimensionless linear velocities profile according to Prandtl number variation, « K=1, K→0, k*=2, 

Ec=1, h*=1, *=1, GR=5, *=1, *=1, (a) Ha= 1, (b) Ha=3, (c) Ha=5, (d) Ha=1, Pr=0.1, Ec=2 ». 

 
5.5.2. The Eckert number effect in varying Pr 
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Figure 5.67: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

k*=2, Ec=2, h*=5, *=1, GR=5, *=1, *=1, (a) K=1, K→0, Pr=0.1-0.7, (b) K→0, Pr=0.7-1 & K=1; Pr=0.1-1, (c) 

K→0; K=1, Pr=0.7-1 Ha=5 ». 

 

 

           But in the second region, the increase in dimensionless linear velocities profile is 

important compared to the first region. We think that, the variation of linear velocity profiles 

hasn’t a significant effect when the values of Prandtl number vary of 0.1-1.0 & Ha<=1. 

5.5.3. The mixed convection parameter effect in varying Ha and Pr 
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Figure 5.68: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

Ha=1, k*=2, Ec=2, GR=10, (a) Pr= 0.1 – 0.4, K→0; K=1; K→0, 0.4-1, (b) K→0; K=1 Pr=0.1 – 0.4; (c) K→0; 

K=1, Pr=0.7 – 1  & h*=1, *=1, *=1, *=1»». 

  

  

Figure 5.69: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

Ha=5, k*=2, Ec=2, GR=10, (a) K→0, Pr= 0.4– 0.7 ; K=1; Pr=0.1-1, (b) K→0; K=1 Pr=0.1 – 0.4; (c) K→0; 
Pr=0.4 – 0,7, K=1, Pr=0.1 – 0.4, (d) K→0, K=1; Pr=0.7 – 1 & h*=1, *=1, *=1, *=1». 
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Therefore, in the region filled of Newtonian-viscous fluid, we can note down an 

increase in the linear velocity profiles (figures 5.67 & 5.68) for Prandlt number values 

varying from low than 1, but for Hartmann number values vary more than 3, we observe a 

perturbation in the field of linear velocities in both regions of fluids.  

5.5.4. The widths ratio and dynamical viscosities ratio effects in varying Ha and Pr 

We have also in figure 5.69, a visible effect of the magnetic field, we can note that for 

Prandtl number varies of low than 1 (fig. 5.69-a,b,c,d), Hartmann equal 1-5 and the ratio of 

widths varies of 1-2, ratio of dynamical viscosities varies of 1-2 the linear velocities field 

decrease in the micropolar fluid region, but in viscous fluid region we observe an increase in 

the linear velocities field. 

  

  

Figure 5.70: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

(a) Ha=1, h*=1, *=1; (b) Ha=5, h*=1, *=1, (c) Ha=1, h*=2, *=2 (d) Ha=5, h*=2, *=2 &, K→0; K=1, k*=2, 
Ec=2, GR=10, Pr= 0.1– 1,  *=1, *=1». 
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5.5.5. The Thermal dilations ratio effect in varying Ha and Pr 

We can also note that, an increase in the rate of viscous diffusivity compared to the 

rate of thermal diffusivity (fig. 5.70 -5.75) causes an apparent decrease in the linear velocity 

profiles within micropolar and viscous fluids for Prandlt values vary low than 1, in cases 

K=1, K→0, Hartmann number of 1-5, Eckert number equal 2, Mix parameter up then 5, ratio 

of widths equal 2, ratio of thermal conductivities equal 2 and thermal dilation equal 2, but 

when Praudtl number takes value more than 10, we observe a perturbation in velocities field 

distribution in both regions of the channal. 

 

  

  
Figure 5.71: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

K→0; K=1, k*=2, Ec=2, GR=10, Pr= 0.1– 1, *=1 (a) h*=2, Ha=1, *=2; (b) h*=2, Ha=5, *=2, (c) Ha=1, h*=2, 
*=2, *=2 (d) h*=2, Ha=5, *=2, *=1». 
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5.6. The dimensionless parameter and number effects on linear velocities 
for 𝟏 < 𝑃𝑟 ≤ 90 

  

  

Figure 5.72: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

K→0; K=1, (a) Ha=5, Pr= 1– 10, (b) Ha=1, Pr= 10– 90, (c) Ha=5, Pr= 10-90, (d) Ha=1, k*=2, Pr= 10-90 & 

GR=5 , Ec=1, k*=1, h*=1, *=1, *=1, *=1». 
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Figure 5.73: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

GR=5 , h*=1, *=1, *=1, *=1, K→0; K=1, Pr= 10– 90;(a) k*=2, Ha=1, (b) Ha=1, k*=2, Ec=2, (c) k*=2, Ec=2, 

Ha=5, (d) Ha=1, k*=2, Ec=2, GR=10 ». 

  

  
Figure 5.74: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

h*=1, *=1, *=1, *=1, K→0; K=1, Pr= 10– 90;(a) Ha=5, k*=2, Ec=2, GR=10, (b) Ha=1, k*=2, Ec=2, GR=10, 

h*=2, (c) Ha=1, k*=2, Ec=2, GR=10, h*=2, (d) Ha=5, k*=2, Ec=2, GR=10, h*=2, *=2 ». 
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Figure 5.75: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

(a) Ha=5, k*=2, Ec=2, GR=10, h*=2, *=2, (b) Ha=1, k*=2, Ec=2, GR=10, h*=2, *=2, , *=2,  (c) Ha=5, k*=2, 

Ec=2, GR=10, h*=2, *=2, , *=2, (d) Ha=1, k*=2, Ec=2, GR=10, h*=2, *=2, *=2, *=2». 
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Figure 5.76: variation of dimensionless linear velocities profile for different values of Prandtl number with « 

(a) Pr= 10– 90, Ha=5, k*=2, Ec=2, GR=10, *=2, *=2, *=2, (b) Pr= 3-70, K=1, Ha=1, (c)K=0 & k*=1, Ec=1, 
GR=5, h*=1, *=1 , *=1».  

 

5.7. The dimensionless parameter and number effects on microrotaion velocity 
for 𝟏 < 𝑷𝒓 ≤ 𝟓𝟎 

  

 
Figure 5.77: variation of dimensionless microrotation velocity profile for different values of Prandtl number  

with « (a) & (b) K=1, Ha=1, (c) K=1, Ha=5 & h*, Ec=1, GR=5, *=1, *=1, *=1, k*=1». 
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5.8. The effects of mixed convection parameter, Eckert and Hartmann numbers on 
velocities profiles 

  
Figure 5.78: variation of dimens ionless linear velocities profile for different values of Hartmann number with 

« (a) K=1, (b) K=0, Ha=1, & Pr= 0.1, k*=2, Ec=1, GR=5, h*=1, *=1, *=1, *=1». 

  

 
Figure 5.79: variation of dimensionless microrotation velocity, with « (a) Ha=0-5, (b) GR=5-15, (c) Ec=0-0.6 & 

K=1, Pr=0.1, Ec=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 
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Figure. 5.80: variation of dimensionless linear velocities profile for different values of mix convection parameter 

with « (a). K=1, (b) K→0 Pr=0.7, Ha=1, Ec=1, h*=1, k*=1, *=1, *=1, *=1». 

 

  

Figure 5.81: variation of dimensionless linear velocities profile for different values of Eckert number with « (a) 

K=1, (b) K→0, Pr=0.7, Ha=1, GR=5, h*=1, k*=1, *=1, *=1, *=1». 

 

 

5.9. The calculation of Local skin friction Coefficients 

 One is calculated in using the both formulations of the local skin friction coefficient, 

one obtained results which are filled in tables, 5.1 and 5.2. 
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Table 5.1: Local skin-friction Coefficient results for different values of Ha, K and Re ≤ 2000, with ρ
* 
= 1, 

β
* 
= 1, * = 1, h* = 1, Pr = 0.7, Ec=1.   )1('.1

Re

2

1
 fK

f
C , )1('

Re

2

2
g

f
C  .   

 

Ha 

 

K 
Non-Newtonian micropolar fluid,  

 Gr =2×10
3
, Re =10

3
         

Newtonian viscous fluid, Gr = 4×10
3
, 

Re = 2×10
3
 

  f‘(-1)  Cf1
 

          g’(1) Cf2 

1 1 

2 

5 

0,2329 

0,1770 

0.1051 

0,0009316 

0,0001062 

0,0012612 
 

-0,3068 

-0,2782 

-0,2336 

0,0003068 

0,0002782 

0,0002336 

2 1 

2 

5 

0.1902 

0,1497 

0,0936 

0,0007608 

0,0008982 

0,0011232 
 

-0,2476 

-0,2298 

-0,1998 

0,0002476 

0,0002298 

0,0001998 

3 1 

2 

5 

0.1608 

0.1299 

0.0845 

0,0006432 

0,0007794 

0,0010140 
 

-0.2065 

-0.1948 

-0.1738 

0.0002065 

0.0001948 

0.0001738 

 

 

Table 5.2: Local skin-friction Coefficient results for different values of Ha, K and Re ≤ 1000, with ρ* = 1,  

β* = 1, * = 1, h* = 1, Pr = 0.7, Ec =1.   )1('.1
Re

2

1
 fK

f
C , )1('

Re

2

2
g

f
C 

  
 

 
Non-Newtonian micropolar fluid, Gr =103,  

Re =0.5×103 

 Newtonian viscous fluid, Gr =  2×103,  

Re = 103 

Ha K f‘(-1)  Cf1  g’(1)  Cf2 

1 1 

2 

5 

0,2329 

0,1770 

0.1051 

0,0018632 

0,0002124 

0,0025224 

-0,3068 

-0,2782 

-0,2336 

0,0006136 

0,0005564 

0,0004672 

2 1 

2 

5 

0.1902 

0,1497 

0,0936 

0,0015216 

0,0017964 

0,0022464 

-0,2476  

-0,2298 

-0,1998 

0,0004952 

0,0004596 

0,0003996 

3 1 

2 

5 

0.1608 

0.1299 

0.0845 

0,0012864 

0,0015588 

0,0020280 

-0.2065 

-0.1948 

-0.1738 

0,0004130 

0,0003896 

0,0003476 

 

5.10. Conclusion  

In this chapter we presented a graphic result of two cases of the proposed model. 

First case present (validation part) a system of fluid without magnetic field effect, indeed 

this mathematical model was studied by J. P. Kumar et al. [9], we have obtained the same 
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results, so, for the second case, a model was under a magnetic field effect as we have 

focus our studied on is different and the results obtained, present a comparative study 

with N. Kumar’s results[63], therefore, we can conclude that: 

In general, high values of magnetic fields (i.e. Hartmann number more than 1), 

Prandtl number value more than 1, the parameter value of the mixed convection more 

than 5 and ratio values of; widths, dynamic viscosities, thermal expansion coefficients, 

thermal conductivities coefficients and fluid densities, more than 1, cause a decrease and 

disturbance in field of dimensionless linear velocities in both regions of the channel. 

In details, the effects of; the mixed convection parameter, the ratio of a dynamical 

viscosities, the widths ratio (h*) and a thermal dilation coefficients ratio maintained the 

dimensionless linear velocities which involve that -an increase of buoyancy forces, favor 

the lubrication systems, but the increase in viscous effect provoke a decrease in the 

linear velocities (which means a reduction in the buoyancy forces),  



 

 
 

 

 

 

 

 

Overall conclusion and prospects 
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Overall conclusion and prospects  

 

This work consists in studying the flow of two immiscible fluids in a vertical channel 

in mixed convection. Complexities not considered in the literature have emerged: One of 

both fluids is of non-Newtonian micropolar type; the channel is subjected to a magnetic field 

with dissipation of thermal and magnetic energy not ignored; the convection is mixed. 

After a mathematical formulation characterized by strong couplings between 

movement equations and taking into account these complexities. Dimensionless equations 

were obtained by the application of the similarity method while using an efficient procedure 

for the boundary conditions, has led to following results: 

1. The variation of the material parameter (K: means the shape and the structure) from 

3 to 6, the low magnetic parameter of Prandtl <1 (α> ν: significant energy transfer by 

conduction), or moderately low (Pr<20, α<ν: energy transfer by viscous dissipation is 

important), increases the profile of the microrotation; 

2. Also, the variation of “K” provokes an increase in the viscosity of the micro-inertia. 

Whereas, for values of Pr> 20, the microrotation velocity decreases, this causes a 

decrease in the micro-inertia. 

It can also be concluded that: 

3. First, the increase of Prandtl number (Pr: means a high viscous diffusivity rate 

relative to a thermal diffusivity rate) with a large magnetic flux, "Ha", does not favour 

the field of linear velocities. Energetically, the decrease in the velocity means that the 

buoyancy forces decrease within the FM, which represents a disadvantage for 

systems using lubricant fluids; 

4. However, in the case of Newtonian viscous fluid, an increase of “Pr” and a strong 

magnetic field "Ha" favour the field of linear velocities, which means that the 

buoyancy forces increase; this is an advantage for systems using lubricant fluids. So, 

the presence of both types of fluids will lead to an optimization of “Ha” give meaning 

to studied objectives. 

5. Then, the increase in mixed parameter (GR: means an increase in buoyancy forces 

relative to inertia forces) favours linear velocities within the Newtonian viscous fluid. 

Also, an increase of “GR” favours the micro-rotation velocity within micropolar fluid, 

which this increases the viscosity of micro-inertia ; 
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6. Also, the increase in Eckert number (Ec: means the kinetic energy rate is higher than 

the enthalpy energy rate) does not favour linear and microrotation velocities within 

the micropolar fluid. On the other hand, an increase of “Ec” favours the linear velocity 

within the Newtonian viscous fluid, which represents in presence of magnetic field: 

a) First, a disadvantage for lubrication systems using a type of micropolar fluids with 

high polarity; 

b) Second, the micropolar fluid with low polarity (K→0) can be used as a method of 

accumulation heat, which represents an advantage. For example, controlling 

certain joint diseases (rheumatism) in human joints. 

Finally, as prospects as resulting from this work, we can predict that: 

It is possible to study more complex configuration with more than two regions of 

different types of fluids. For example, fluid models of CARREAU and  modified CARREAU, 

Cristo-liquids, plastic fluids, ANDRADE fluid, and ARHENIUS fluid, as well that of horizontal, 

vertical or inclined channels. 
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Annex 
 

Equations in following form: 𝒖𝟏 𝒚, 𝑮𝑹 , 𝒖𝟐 𝒚, 𝑮𝑹 ,𝑵 𝒚, 𝑮𝑹 , (figures 5.1, 5.2, 5,3) 

𝑲 = 𝟎 :  

𝑚 = 1, 𝜌 = 1, 𝑘 = 1, 𝑏 = 1  𝑒𝑡 𝑕∗ = 1 

GR=5 : 

𝑢1 = 0.42𝑦3 − 1.25𝑦2 − 0.80𝑦 + 0.88        

𝑢2 = 0.35𝑦3 − 2.15𝑦2 + 0.92𝑦 + 0.88 

GR=10 : 

𝑢1 = 0.83𝑦3 − 2.5𝑦2 − 1.63𝑦 + 1.68 

𝑢2 = 0.97𝑦3 − 2.92𝑦2 + 0.25𝑦 + 1.7  

GR=15 : 

𝑢1 = 1.25𝑦3 − 3.75𝑦2 − 2.75𝑦 + 2.25 

𝑢2 = 0.9𝑦3 − 3.55𝑦2 + 0.38𝑦 + 2.25  

𝑲 = 𝟏 ;  

𝑮𝑹 = 𝟓 : 

𝑢1 = −0.528𝑠𝑖𝑛𝑕 𝑦 − 0.417𝑐𝑜𝑠𝑕 𝑦 + 0.278𝑦3 − 0.833𝑦2 − 0.234𝑦 + 0.92 ;  

−1 ≤ 𝑦 ≤ 0 

𝑢2 = −0.117𝑦3 − 0.125𝑦2 − 0.25𝑦 + 0.5;  0 ≤ 𝑦 ≤ 1 

𝑁 =  1.22𝑐𝑜𝑠𝑕 𝑦 + 0.57𝑠𝑖𝑛𝑕 𝑦 − 1.10𝑦2 + 0.33𝑦 + 0.21 

GR=10 : 

𝑢1 =  −0.45 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.42 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.28 ∗ 𝑦3 − 0.83 ∗ 𝑦2 + 0.50 ∗ 𝑦 + 1.75 

𝑢2 = −0.58 ∗ 𝑦3 − 0.25 ∗ 𝑦2 − 0.5 ∗ 𝑦 + 1.33 

𝑁 = 1.37 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 1.14 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.6 ∗ 𝑦2 + 0.66 ∗ 𝑦 + 1.49 

GR=15 : 

𝑢1 = −0.15 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.42 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.312 ∗ 𝑦3 − 0.85 ∗ 𝑦2 + 0.496 ∗ 𝑦 + 2.12 

𝑢2 = −0.96 ∗ 𝑦3 − 0.25 ∗ 𝑦2 − 0.5 ∗ 𝑦 + 1.7 

𝑁 = 1.99𝑐𝑜𝑠𝑕 𝑦 + 1.75𝑠𝑖𝑛𝑕 𝑦 − 1.78𝑦2 + 1.12𝑦 + 1.88 
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Equations in following form: 𝒖𝟏 𝒚, 𝝁∗ , 𝒖𝟐 𝒚, 𝝁∗ , 𝑵 𝒚, 𝝁∗ , (figures 5.4, 5.5, 5.6) 

𝑲 = 𝟎 : 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟏 : 

𝑢1 = 0.33 ∗ 𝑦3 − 1.33 ∗ 𝑦2 − 0.97 ∗ 𝑦 + 0.67 

𝑢2 = −0.53 ∗ 𝑦3 − 0.33 ∗ 𝑦2 + 0.17 ∗ 𝑦 + 0.67 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟐 : 

𝑢1 = 0.42 ∗ 𝑦3 − 1.42 ∗ 𝑦2 − 0.25 ∗ 𝑦 + 1.6 

𝑢2 = −1.62 ∗ 𝑦3 − 0.83 ∗ 𝑦2 + 0.83 ∗ 𝑦 + 1.6 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟑 : 

𝑢1 = 0.75 ∗ 𝑦3 − 1.42 ∗ 𝑦2 − 0.25 ∗ 𝑦 + 1.9 

𝑢2 = −1.89 ∗ 𝑦3 − 0.83 ∗ 𝑦2 + 0.83 ∗ 𝑦 + 1.9 

𝑲 = 𝟏 : 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟏  

𝑢1 = −0.42 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.83 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.32 ∗ 𝑦3 − 0.83 ∗ 𝑦2 − 0.17 ∗ 𝑦 + 1.12 

𝑢2 = −0.25 ∗ 𝑦3 − 0.31 ∗ 𝑦2 + 0.25 ∗ 𝑦 + 0.29 

𝑁 = 2.11 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.83 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 2.58 ∗ 𝑦2 + 0.83 ∗ 𝑦 − 0.83 

 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟐 : 

𝑢1 = −0.42 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.83 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.18 ∗ 𝑦3 − 0.83 ∗ 𝑦2 − 0.18 ∗ 𝑦 + 1.25 

𝑢2 = −0.33 ∗ 𝑦3 − 0.75 ∗ 𝑦2 + 0.65 ∗ 𝑦 + 0.42 

𝑁 = 1.19 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.491 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.58 ∗ 𝑦2 + 0.72 ∗ 𝑦 − 0.12 

 

𝑮𝑹 = 𝟓, 𝝁∗ = 𝟑 : 

𝑢1 = −0.61 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.83 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.18 ∗ 𝑦3 − 1.15 ∗ 𝑦2 − 0.18 ∗ 𝑦 + 1.35 

𝑢2 = −0.51 ∗ y3 − 1.25 ∗ y2 + 1.25 ∗ y + 0.51 

𝑁 = 1.19 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.57 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.58 ∗ 𝑦2 + 0.72 ∗ 𝑦 − 0.22 
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Equations in following form: 𝒖𝟏 𝒚, 𝒉∗ , 𝒖𝟐 𝒚, 𝒉∗ , 𝑵 𝒚, 𝒉∗ , (figures 5.7, 5.8, 5.9) 

𝑲 = 𝟎 : 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟏 : 

𝑢1 = 0.42 ∗ 𝑦3 − 1.25 ∗ 𝑦2 − 0.80 ∗ 𝑦 + 0.88 

𝑢2 = 0.35 ∗ 𝑦3 − 2.150 ∗ 𝑦2 + 0.92 ∗ 𝑦 + 0.88 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟐 : 

𝑢1 = 1.12 ∗ 𝑦3 − 1.67 ∗ 𝑦2 + 0.28 ∗ 𝑦 + 3.0922 

𝑢2 = −1.12 ∗ 𝑦3 − 2.55 ∗ 𝑦2 + 0.56 ∗ 𝑦 + 3.10 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟑 : 

𝑢1 = 1.52 ∗ 𝑦3 − 1.88 ∗ 𝑦2 + 1.82 ∗ 𝑦 + 5.19 

𝑢2 = −5.19 ∗ 𝑦3 − 5.54 ∗ 𝑦2 + 5.54 ∗ 𝑦 + 5.19 

𝑲 = 𝟏 : 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟏 : 

𝑢1 = −0.528 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.417 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.32 ∗ 𝑦3 − 0.833 ∗ 𝑦2 − 0.234 ∗ 𝑦 + 0.98 

𝑢2 = −0.12 ∗ 𝑦3 − 0.13 ∗ 𝑦2 − 0.25 ∗ 𝑦 + 0.55 

𝑁 = 0.65 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.92 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.42 ∗ 𝑦2 + 1.33 ∗ 𝑦 + 0.66 

 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟐 : 

𝑢1 = −1.33 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.56 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.29 ∗ 𝑦3 − 1.11 ∗ 𝑦2 + 1.12 ∗ 𝑦 + 1.88; 

 −1 ≤ 𝑦 ≤ 0 

𝑢2 = 0.88 ∗ 𝑦3 − 2.76 ∗ 𝑦2 + 0.56 ∗ 𝑦 + 1.33; 0 ≤ 𝑦 ≤ 1 

𝑁 = 0.65 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.98 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.51 ∗ 𝑦2 + 1.33 ∗ 𝑦 + 0.68; −1 ≤ 𝑦 ≤ 0 

 

𝑮𝑹 = 𝟓, 𝒉∗ = 𝟑 : 

𝑢1 = −0.56 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.56 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.29 ∗ 𝑦3 − 0.76 ∗ 𝑦2 + 1.21 ∗ 𝑦 + 2.55; 

 −1 ≤ 𝑦 ≤ 0 
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𝑢2 = −2.91 ∗ 𝑦3 − 2.99 ∗ 𝑦2 + 3.91 ∗ 𝑦 + 1.98;  0 ≤ 𝑦 ≤ 1 

𝑁 = 0.42 ∗ 𝑐𝑜𝑠𝑕 𝑦 − 0.83 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 1.51 ∗ 𝑦2 + 1.33 ∗ 𝑦 + 1.22; −1 ≤ 𝑦 ≤ 0 

 

Equations in following form: 𝒖𝟏 𝒚, 𝒌∗ , 𝒖𝟐 𝒚, 𝒌∗ , 𝑵 𝒚, 𝒌∗ , (figures 5.10, 5.11, 5.12) 

𝑲 = 𝟎 : 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟏 : 

𝑢1 = 0.42 ∗ 𝑦3 − 1.25 ∗ 𝑦2 − 0.80 ∗ 𝑦 + 0.88; −1 ≤ 𝑦 ≤ 0 

𝑢2 = 1.12 ∗ 𝑦3 − 2.55 ∗ 𝑦2 + 0.54 ∗ 𝑦 + 0.88;  0 ≤ 𝑦 ≤ 1 

 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟐 : 

𝑢1 = 0.48 ∗ 𝑦3 − 1.82 ∗ 𝑦2 − 1.25 ∗ 𝑦 + 1.07; −1 ≤ 𝑦 ≤ 0 

𝑢2 = 0.83 ∗ 𝑦3 − 2.33 ∗ 𝑦2 + 0.42 ∗ 𝑦 + 1.07; 0 ≤ 𝑦 ≤ 1 

 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟑 : 

𝑢1 = 0.78 ∗ 𝑦3 − 1.82 ∗ 𝑦2 − 1.25 ∗ 𝑦 + 1.33; −1 ≤ 𝑦 ≤ 0 

𝑢2 = 0.88 ∗ 𝑦3 − 2.63 ∗ 𝑦2 + 0.42 ∗ 𝑦 + 1.33; 0 ≤ 𝑦 ≤ 1 

 

𝑲 = 𝟏 : 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟏 : 

𝑢1 = −0.53 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.45 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.32 ∗ 𝑦^3 − 0.83 ∗ 𝑦^2 − 0.23 ∗ 𝑦 + 0.98; −1 ≤ 𝑦

≤ 0 

𝑢2 = −0.22 ∗ 𝑦^3 − 0.44 ∗ 𝑦^2 + 0.12 ∗ 𝑦 + 0.53;  0 ≤ 𝑦 ≤ 1 

𝑁 = 2.11 ∗ 𝑐𝑜𝑠𝑕(𝑦) − 0.83 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 2.58 ∗ 𝑦^2 + 0.83 ∗ 𝑦 − 0.83; −1 ≤ 𝑦 ≤ 0 

 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟐 : 

𝑢1 = −0.98 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.56 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.19 ∗ 𝑦3 − 0.94 ∗ 𝑦2 + 0.67 ∗ 𝑦 + 1.52; 

−1 ≤ 𝑦 ≤ 0 

𝑢2 = −0.22 ∗ 𝑦^3 − 0.54 ∗ 𝑦^2 − 0.22 ∗ 𝑦 + 0.96;  0 ≤ 𝑦 ≤ 1 
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𝑁 = 1.24 ∗ 𝑐𝑜𝑠𝑕(𝑦) − 1.11 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 1.55 ∗ 𝑦^2 + 1.11 ∗ 𝑦 − 0.56; −1 ≤ 𝑦 ≤ 0 

 

𝑮𝑹 = 𝟓, 𝒌∗ = 𝟑 : 

𝑢1 = −0.98 ∗ 𝑠𝑖𝑛𝑕 𝑦 − 0.56 ∗ 𝑐𝑜𝑠𝑕 𝑦 + 0.19 ∗ 𝑦3 − 0.94 ∗ 𝑦2 + 0.87 ∗ 𝑦 + 1.72; 

−1 ≤ 𝑦 ≤ 0 

𝑢2  = −0.42 ∗ 𝑦^3 − 0.54 ∗ 𝑦^2 − 0.22 ∗ 𝑦 + 1.16;  0 ≤ 𝑦 ≤ 1 

𝑁 = 0.79 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 1.45 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.21 ∗ 𝑦^2 − 1.45 ∗ 𝑦 − 0.75; −1 ≤ 𝑦 ≤ 0 

 

Equations in following form: 𝒖𝟏 𝒚,𝑲 , 𝒖𝟐 𝒚,𝑲 ,𝑵 𝒚,𝑲 , (figures 5.13, 5.14) 

𝑮𝑹 = 𝟓,𝑲 = 𝟏 : 

𝑢1 = −0.53 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.45 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.32 ∗ 𝑦^3 − 0.83 ∗ 𝑦^2 − 0.23 ∗ 𝑦 + 0.98;  

−1 ≤ 𝑦 ≤ 0 

𝑢2 = −0.22 ∗ 𝑦^3 − 0.44 ∗ 𝑦^2 + 0.12 ∗ 𝑦 + 0.53;  0 ≤ 𝑦 ≤ 1 

𝑁 = 1.95 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.46 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 2.58 ∗ 𝑦^2 + 0.83 ∗ 𝑦 − 0.63;  

−1 ≤ 𝑦 ≤ 0 

𝑮𝑹 = 𝟓,𝑲 = 𝟐 : 

𝑢1 = −1.77 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 0.47 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) + 0.21 ∗ 𝑦^3 − 0.55 ∗ 𝑦^2 + 1.36 ∗ 𝑦 +

0.42; −1 ≤ 𝑦 ≤ 0. 

𝑢2 = −0.11 ∗ 𝑦^3 − 0.72 ∗ 𝑦^2 + 0.88 ∗ 𝑦 − 0.05;  0 ≤ 𝑦 ≤ 1 

𝑁 = 2.55 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.44 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 3.55 ∗ 𝑦^2 + 1.18 ∗ 𝑦 − 0.33;  

−1 ≤ 𝑦 ≤ 0 

𝑮𝑹 = 𝟓,𝑲 = 𝟑 : 

𝑢1 = −2.82 ∗ 𝑠𝑖𝑛𝑕(1.22 ∗ 𝑦) − 0.47 ∗ 𝑐𝑜𝑠𝑕(1.22 ∗ 𝑦) + 0.21 ∗ 𝑦^3 − 1.75 ∗ 𝑦^2 + 1.36 ∗ 𝑦

− 0.17; −1 ≤ 𝑦 ≤ 0 

𝑢2 = −0.21 ∗ 𝑦^3 − 0.82 ∗ 𝑦^2 + 1.65 ∗ 𝑦 − 0.64;  0 ≤ 𝑦 ≤ 1 

𝑁 = 3.24 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.43 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 3.80 ∗ 𝑦^2 + 1.92 ∗ 𝑥 − 0.52;  

−1 ≤ 𝑦 ≤ 0 

 



 

146 
 

Equations in following form: 𝒖𝟏 𝒚, 𝜷∗ , 𝒖𝟐 𝒚, 𝜷∗ , 𝑵 𝒚, 𝜷∗ , (figures 5.15, 5.16, 5.17) 

𝜇∗ = 1, 𝜌 = 1, 𝑘∗ = 1, 𝐺𝑅 = 5  𝑒𝑡 𝑕∗ = 1. 

𝑲 = 𝟎,𝜷∗ = 𝟎. 𝟕 :  

𝑢1 = −0.42 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.41 ∗ 𝑦 + 0.42 

𝑢2 = −0.15 ∗ 𝑦^3 − 0.88 ∗ 𝑦^2 + 0.61 ∗ 𝑦 + 0.42 

𝑲 = 𝟎,𝜷∗ = 𝟎. 𝟓 : 

𝑢1 = −0.42 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.58 ∗ 𝑦 + 0.25 

𝑢2 = −0.23 ∗ 𝑦^3 − 0.89 ∗ 𝑦^2 + 0.87 ∗ 𝑦 + 0.25 

𝑲 = 𝟎,𝜷∗ = 𝟎. 𝟐 : 

𝑢1 = −0.42 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.68 ∗ 𝑦 + 0.15 

𝑢2 = −0.23 ∗ 𝑦^3 − 0.75 ∗ 𝑦^2 + 0.83 ∗ 𝑦 + 0.15 

𝑲 = 𝟏,𝜷∗ = 𝟎. 𝟕 : 

𝑢1 = −0.51 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.42 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.28 ∗ 𝑦^3 − 0.833 ∗ 𝑦^2 − 0.29 ∗ 𝑦 + 0.87 

𝑢2 = −0.115 ∗ 𝑦^3 − 0.142 ∗ 𝑦^2 − 0.208 ∗ 𝑦 + 0.446 

𝑁 = 2.06 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.33 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 2.58 ∗ 𝑦^2 + 0.83 ∗ 𝑦 − 0.63 

 

𝑲 = 𝟏,𝜷∗ = 𝟎. 𝟓 : 

𝑢1 = −0.51 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.42 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.28 ∗ 𝑦^3 − 0.77 ∗ 𝑦^2 − 0.38 ∗ 𝑦 + 0.71 

𝑢2 = −0.12 ∗ 𝑦^3 − 0.092 ∗ 𝑦^2 − 0.09 ∗ 𝑦 + 0.297 

𝑁 = 2.15 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.22 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 2.58 ∗ 𝑦^2 + 0.83 ∗ 𝑦 − 0.63 

 

𝑲 = 𝟏, 𝜷∗ = 𝟎. 𝟐: 

𝑢1 = −0.51 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.42 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.28 ∗ 𝑦^3 − 0.7 ∗ 𝑦^2 − 0.47 ∗ 𝑦 + 0.55 

𝑢2 = −0.147 ∗ 𝑦^3 − 0.03 ∗ 𝑦^2 + 0.04 ∗ 𝑦 + 0.135 

𝑁 = 2.23 ∗ 𝑐𝑜𝑠𝑕(1.15 ∗ 𝑦) − 0.12 ∗ 𝑠𝑖𝑛𝑕(1.15 ∗ 𝑦) − 2.58 ∗ 𝑦^2 + 0.83 ∗ 𝑦 − 0.63 

 

Equations in following form: 𝒖𝟏 𝒚, 𝝆 , 𝒖𝟐 𝒚, 𝝆 , 𝑵 𝒚, 𝝆 , (figures 5.18, 5.19, 5.20) 

𝜇∗ = 1, 𝛽∗ = 1, 𝑘 = 1, 𝐺𝑅 = 5  𝑒𝑡 𝑕∗ = 1. 
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𝑲 = 𝟎, 𝝆 = 𝟎. 𝟕 :  

𝑢1 = 0.55 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.60 ∗ 𝑦 + 1.22 

𝑢2 = 0.35 ∗ 𝑦^3 − 2.150 ∗ 𝑦^2 + 0.58 ∗ 𝑦 + 1.22 

𝑲 = 𝟎, 𝝆 = 𝟎. 𝟓 :  

𝑢1 = 0.55 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.43 ∗ 𝑦 + 1.39 

𝑢2 = 0.35 ∗ 𝑦^3 − 2.150 ∗ 𝑦^2 + 0.42 ∗ 𝑦 + 1.39 

 

𝑲 = 𝟎, 𝝆 = 𝟎. 𝟐:  

𝑢1 = 0.55 ∗ 𝑦^3 − 1.25 ∗ 𝑦^2 − 0.27 ∗ 𝑦 + 1.56 

𝑢2 = 0.35 ∗ 𝑦^3 − 2.150 ∗ 𝑦^2 + 0.25 ∗ 𝑦 + 1.56 

𝑲 = 𝟏, 𝝆 = 𝟎. 𝟕 : 

𝑢1 = −0.528 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.462 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.498 ∗ 𝑦^3 − 0.833 ∗ 𝑦^2 − 0.234 ∗ 𝑦 + 1.2 

𝑢2 = −0.33 ∗ 𝑦^3 − 0.12 ∗ 𝑦^2 − 0.285 ∗ 𝑦 + 0.74 

𝑁 = 1.21 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.54 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 1.02 ∗ 𝑦^2 + 0.295 ∗ 𝑦 + 0.09 

𝑲 = 𝟏, 𝝆 = 𝟎. 𝟓 : 

𝑢1 = −0.52 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.49 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.56 ∗ 𝑦^3 − 0.95 ∗ 𝑦^2 − 0.22 ∗ 𝑦 + 1.43 

𝑢2 = −0.39 ∗ 𝑦^3 − 0.21 ∗ 𝑦^2 − 0.33 ∗ 𝑦 + 0.94 

𝑁 = 1.21 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.59 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 1.05 ∗ 𝑦^2 + 0.31 ∗ 𝑦 + 0.195 

𝑲 = 𝟏, 𝝆 = 𝟎. 𝟐 : 

𝑢1 = −0.52 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 0.55 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.63 ∗ 𝑦^3 − 1.05 ∗ 𝑦^2 − 0.21 ∗ 𝑦 + 1.71 

𝑢2 = −0.39 ∗ 𝑦^3 − 0.21 ∗ 𝑦^2 − 0.55 ∗ 𝑦 + 1.16 

𝑁 = 1.21 ∗ 𝑐𝑜𝑠𝑕(𝑦) + 0.59 ∗ 𝑠𝑖𝑛𝑕(𝑦) − 1.15 ∗ 𝑦^2 + 0.33 ∗ 𝑦 + 0.31 


