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Abstract

Weakly interacting Bose gases in a disorder environment have long been a challen-

ging topic in the field of condensed matter physics due to the intriguing interplay between

superfluidity and localization. In this thesis we perform extensive theoretical and numerical

studies of dipolar Bose gases in random potentials. To this end we develop a Bogoliubov-

Huang-Meng theory for a weakly interacting Bose-Einstein condensate in a random envi-

ronment, then specialize it to dipolar interactions and Gaussian correlated disorder. This

model provides a reasonable description of weakly interacting Bose gases in random po-

tentials. As a first step, we investigate a three-dimensional dipolar Bose condensed gas in

the presence of the three-body interactions with an additional Guassian-correlated disorder

potential at both zero and finite temperatures. Importantly, we find that at finite temperature

the condensate co-exists with both the Bose-glass and thermal components. Corrections due

to quantum, thermal and disorder fluctuations to the condensate depletion, the one-body

density correlation function, the equation of state and the ground state energy are properly

calculated. We show that the interplay of the disorder, dipole-dipole interaction and three-

body interaction play a fundamental role in the physics of the system. Interestingly, we find
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that the three-body interactions release atoms localized in the respective minima of the ran-

dom potential. Increasing the strength of the three-body interactions leads to decrease the

one-body density matrix. Furthermore, we calculated the chemical potential and ultravio-

let divergences are removed using an appropriate renormalization method. The combined

effects of the dipole-dipole interactions, three-body interactions, and temperature found to

crucially affect the chemical potential and the ground state energy. In the absence of the

DDI and the three-body interactions, we reproduce the seminal results of Huang and Meng

Finally, we consider a dilute Bose-condensed gas of dipolar bosons subjected to Gaus-

sian correlation at zero temperature loaded in a quasi-two-dimensional bilayer setup where

dipoles are aligned perpendicularly to the layers and in same /opposite directions in dif-

ferent layers. We calculate analytically and numerically the condensate depletion, the one-

body density-matrix, and the superfluid fraction in the framework of the Bogoliubov-

Huang-Meng theory. Our analysis not only provides fascinating new results do not exist

in the literature but also shows that the competition between the disorder, the interlayer

coupling and the polarization orientation may lead to localize/delocalize the condensed

particles results in the transition from the Bose-glass to the superfluid phase and vice versa.

For a pure short-range interaction and vanishing interlayer distance, we recover the results

found for a single layer system. Our results pave the way for the experimental realization

of three-dimensional disordered dipolar Bose gases with pure three-body interactions, and

of dirty bosons in a quasi-two-dimensional bilayer configuration.

Résumé

Les interactions faibles de gaz de Bose dans un environnement désordonné sont depuis

longtemps un sujet difficile dans le domaine de la physique de la matière condensée en

raison de l’interaction intrigante entre la superfluidité et la localisation. Dans cette thèse,

nous effectuons des études théoriques et numériques approfondies des gaz dipolaires de

Bose dans des potentiels aléatoires. À cette fin, nous étudions la théorie de Bogoliubov-

Huang-Meng pour un condensat de Bose-Einstein avec des interactions faibles dans un
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environnement aléatoire, puis nous la cernons dans les interactions dipolaires et le disordre

corrélé gaussien. Ce modèle fournit une description raisonnable des interactions faibles de

gaz de Bose dans des potentiels aléatoires. Dans un premier temps, nous étudions un gaz de

Bose condensé dipolaire à trois dimensions en présence des interactions à trois corps dans

un potentiel désordonné avec corrélé-guassien à températures nulles et finies. Plus impor-

tant, nous constatons qu’à température finie, le condensat coexiste avec le verre de Bose et

les composants thermiques. Les corrections dues aux quantifications, les fluctuations ther-

miques et désordonnées de la déplétion des condensats, de la fonction de corrélation de

densité uni-corps, de l’équation d’état et de l’énergie de l’état fondamental sont correcte-

ment calculées. Nous montrons que l’effet du désordre, de l’interaction dipôle-dipôle et

de l’interaction à trois corps joue un rôle fondamental dans la physique du système. Le

plus intéressant, nous constatons que les interactions à trois corps libèrent des atomes lo-

calisés dans les minima respectifs du potentiel aléatoire. L’augmentation de la force des

interactions à trois corps conduit a diminution de la matrice de densité à un seul corps. De

plus, nous calculons le potentiel chimique en négligeant les divergences ultraviolettes par

l’utilisation de la méthode de renormalisation appropriée. Les effets combinés des interac-

tions dipôle-dipôle, des interactions à trois corps et de la température affectent de manière

cruciale le potentiel chimique et l’énergie de l’état fondamental. En l’absence de DDI et

des interactions à trois corps, nous reproduisons les résultats séminaux de Huang et Meng.

Enfin, nous considérons un gaz de Bose-condensé dilué de bosons dipolaires soumis à

une corrélation gaussienne à température nulle maintenue dans une configuration bicouche

quasi-bidimensionnelle où les dipôles sont alignés perpendiculairement aux couches et

dans des directions identiques / opposées dans les autres couches. Nous calculons analyti-

quement et numériquement l’épuisement des condensats, la matrice de densité à un corps

et la fraction superfluide dans le cadre de la théorie de Bogoliubov-Huang-Meng. Notre

analyse fournit non seulement de nouveaux résultats fascinants qui n’existent pas dans la

littérature, mais il montre également que la compétition entre le désordre, le couplage inter-
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couche et l’orientation de polarisation peut conduire à localiser / délocaliser les particules

condensées, ce qui entraı̂ne la transition du verre de Bose à la phase superfluide et vice

versa. Pour une interaction à courte portée pure et une distance inter-couche négligeable,

nous récupérons les résultats trouvés pour un système monocouche. Nos résultats ouvrent

la voie à la production expérimentale du gaz de Bose dipolaires désordonnés tridimension-

nels avec des interactions pures à trois corps, et de bosons sales dans une configuration

bicouche quasi bidimensionnelle.
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INTRODUCTION

The experimental realization of a Bose-Einstein condensate (BEC) of alkali atoms

at JILA, MIT and Rice University in 1995 [1, 2] initiated new areas of atomic, molecular

and optical physics. The BEC, first theorized by A. Einstein in 1925 [3], was the coldest

matter known in the universe, and was the fruitful result of years of experimental and theo-

retical progress in the field of optical and magnetic cooling and trapping [4]. The BEC

did, and still does, offer a tool with which to study a plethora of ultracold phenomena,

including superfluidity and superconductivity and their manifestations in quantum matter.

Additionally, the realization of ultracold temperatures allows for atoms and molecules to

be trapped by purely optical means, which facilitates experimental control over the magne-

tic substates of these systems and allows for trapping in optical lattice potentials. Atoms

and molecules in optical lattices can be used, for example, for quantum computing [5, 6].

Possible applications include metrology and ultra-precise clocks.

The experimental achievement of BEC of 52Cr [7], 164Dy [8], 168Er [9] and recently

with a degenerate Fermi gas of 161Dy [10] atoms with large magnetic dipolar interaction

(6 µB, 10µB and 7µB, respectively) has opened fascinating prospects for the observation

of novel quantum phases and many-body phenomena [6, 7, 11, 12]. Polar molecules which

have much larger electric dipole moments than those of the atomic gases have been also

produced in their ground rovibrational state [13, 14]. What render such dipolar systems

particularly intriguing is that the atoms interact via a dipole-dipole interactions (DDI) that

is both long ranged and anisotropic and it can be also attractive and repulsive. By virtue of

this interaction, dipolar gases are expected to open fascinating prospects for the observa-

tion of interesting quantum phases in ultracold atomic gases such as Wigner crystal [15],

unconventional superfluids of fermionic polar molecules [16-18], droplet state [19-32], su-

persolidity [33-35] and rotonic stripe phase [36]. On the other hand, the long range cha-
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racter of the dipolar interaction leads to scattering properties that are radically different

from those found on the usual short-ranged potentials of quantum gases and therefore, all

of the higher-order partial waves contribute equally to the scattering at low energy [11].

At zero temperature, there have been a number of theoretical studies on dipolar BEC in

particular on the expansion dynamics [7], the ground state [37-40], elementary excitations

[41, 42], superfluid properties [43, 44], solitons and soliton-molecule [45-47] and optical

lattices [48, 49]. Additionally, the DDI is partially attractive and exhibits a roton-maxon

structure in the spectrum and may enhance the quantum and thermal fluctuations [50, 51].

At finite temperature, the behavior of dipolar BECs have been investigated using the mean

field Hartree-Fock-Bogoliubov (HFB) theory [52-55], perturbation approach [56, 57], and

path-integral Monte Carlo simulations [58]. Effects of the three-Body interactions (TBI)

on weakly interacting dipolar Bose gases in a pencake trap at finite temperature have been

analyzed for the first time by Boudjemaa [59].

Disorder is ubiquitous in nature and plays an important role in condensed-matter

systems. Usually, our understanding of solid-state physics starts from the concepts of crys-

talline order, Bloch bands, and metallic conduction. However, Anderson, Mott and others

have shown that disorder might be a fundamental aspect to consider, as it may cause a

phase transition from metal to insulator in solids because of a localization of the electronic

wave functions in space. This effect, known as Anderson localization, was originally put

forward for non-interacting electrons. Indeed, the interplay of disorder and interactions is

a long-standing question of condensed-matter physics, which has become acute with the

discovery that disorder may destroy superconductivity or superfluidity due to localization

effects. Ultracold atomic gases offer appealing possibilities to study the physics of disor-

dered quantum systems, as many parameters, including disorder and interactions, may be

controlled and well characterized. In addition, the interacting Bose gas in a weak random

external potential represents an interesting model for studying the relation between BEC

and superfluidity and it has been the subject of many theoretical investigations in the past
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two decades.

Experimentally, the dirty boson problem was first studied with superfluid helium in

aerosol glasses (Vycor) [60-62]. Recently, several groups have loaded ultracold atoms into

optical potentials and studied BECs in the presence of disorder [63-64]. The random po-

tential can be created using different techniques, one of which is the static laser speckle,

where the potential felt by atoms is proportional to the speckle intensity with the sign being

determined by the detuning from the atomic transition [65, 66]. Laser speckles, produced

by passing an expanded laser beam through diffusive plates, are special in that they have

(i) exponential, i.e. strongly non-Gaussian, intensity distribution and (ii) finite support of

their power spectrum. Recent progress in different experimental realizations of laser spe-

ckle disorder is reported in Refs. [67, 68]. Wire traps represent magnetic traps on atomic

chips where the roughness and the imperfection of the wire surface generate a disorder

potential [69, 70]. Another possibility to create a random potential is to trap one species of

atoms randomly in a deep optical lattice, which serves as frozen scatterers for a second ato-

mic species [71, 72]. In addition, incommensurable lattices provide also a useful random

environment [73, 74].

From the theoretical side, addressing the problem of disorder in interacting systems

represents a considerable challenge. One of the first quantitative studies of the so-called

dirty boson problem was introduced by Huang and Meng in 1992 within a Bogoliubov

theory [75]. Later on this approach was extended by others within either the original fra-

mework of second quantization [76, 77] or the replica method [78, 79] and applied to the

case of superfluid helium in porous media. For a delta-correlated disorder, it turned out that

condensate depletion occurs due to the localization of bosons in the respective minima of

the external random potential which is present even at zero temperature. Furthermore, it

was found that superfluidity persists despite quenched randomness and that its depletion

is generically larger than the condensate depletion as the fragmented BECs in the disorder

landscape represent randomly distributed obstacles for the motion of the superfluid. A ge-
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neralization to the corresponding situation, where the disorder correlation function falls off

with a characteristic correlation length as, for instance, a Gauss function [80, 77, 81] , laser

speckles[82, 83], or a Lorentzian [84] is straightforward and yields decreasing condensate

and superfluid depletions with increasing correlation lengths.

A more complicated situation arises, for BEC with DDI are studied in a random

environment. Dipolar bosons moving in a disordered environment may open fascinating

prospects for the observation of non-trivial quantum phases, because it connects two cen-

tral ideas of the condensed matter theory : disorder and dipolar interaction. The interplay of

these two ingredients is important for accurately exploring the anisotropy of superfluidity.

The anisotropic disorder landscape makes the superfluid density an anisotropic quantity

which means that it acquires a characteristic direction dependence, i.e. the number of par-

ticles per volume participating in a superfluid motion varies with the chosen direction [77,

81, 82, 84]. This peculiar phenomenon, which is not present at zero temperature in the

absence of disorder, has the experimentally detectable consequence that also the sound ve-

locity possesses a direction dependence due to disorder. Note that the anisotropy of the DDI

has been recently measured experimentally for a pure dipolar BEC by Bismut et al. [41].

This shows not only that tuneable disorder allows to control and shape superfluid proper-

ties, but also contributes to a deeper understanding of the localization phenomenon as such.

Namely for a sufficiently strong disorder anisotropy it turns out that in some particular di-

rection the depletion of the superfluid density becomes even smaller than the condensate

depletion. This represents a counterintuitive result, as particles of the fragmented BECs,

which are supposed to be localized in the respective minima of the random potential, seem

then to contribute to the superfluid motion. Thus, due to the strong disorder anisotropy, the

locally condensed particles can only be localized for a certain time scale. For longer time

periods, this suggests that an exchange of the localized particles occurs with the nonloca-

lized particles, thus allowing for a superfluid density in a particular direction that is larger

than the condensate density. This supports the finding of Ref. [85], in which such a finite
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localization time for fragmented BECs was calculated within a Hartree-Fock theory of dirty

bosons.

For increasing disorder strength the macroscopic occupation of the ground state de-

creases more and more, so that the fragmented BECs in the minima of the frozen random

potential increase. Whereas the coherence of the superfluid is described by a globally fixed

phase of the condensate wave function, the respective phases of the tiny BECs fluctuate. For

a sufficiently strong disorder the condensate is completely depleted and a phase transition

occurs from a superfluid to a Bose-glass, which only consists of fragmented BECs. In the

literature this Bose-glass phase is usually characterized by its properties as, for instance,

an exponential decay of spatial correlations or a non-vanishing density of states at vani-

shing energy [60]. In order to allow for a quantitative characterization of the emergence of

the Bose-glass phase within the general theory of critical phenomena [86, 87], a separate

Bose-glass order parameter was introduced in Ref.[85] in addition to the superfluid order

parameter. To this end, the well-established Edwards-Anderson order parameter for spin

glasses [88, 89] was transferred to the Bose glass. The applicability of this new Bose-glass

order parameter concept was demonstrated by working out a Hartree-Fock theory for disor-

dered bosonsRef. [87]. Within this treatment, and in accordance with other non-perturbative

approaches [90, 91], this allows to determine the location of the Bose-glass phase relative

to the superfluid and the normal phase, and to investigate in detail its respective thermody-

namic properties.

In quasi-2D geometry, it has been found that both BEC and superfluidity are de-

pressed due to the competition between disorder and the rotonization induced by the DDI

yielding, the transition to an unusual quantum phase [92, 93]. On the other hand, the im-

pacts of the Lee-Huang-Yang (LHY) quantum corrections on a dirty dipolar Bose gas have

been analyzed very recently by Dr. Boudjemaa [94] using a perturbative theory. These LHY

quantum fluctuations lead to reduce the disorder effects inside the condensate preventing

the formation of the Bose glass state.
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This thesis

In this thesis, we examine the properties of weakly interacting dipolar Bose gases

with a Gaussian disorder correlation function at both zero and finite temperatures in 3D and

2D geometries, a subject which is currently attracting a great deal of interest. Our study

is based on the Bogoliubov-Huang-Meng theory Our study is based on the Bogoliubov-

Huang-Meng theory which was first applied to the case of superfluid helium in porous

media [73], and extended later by others [66, 95]. This theory allows us to go beyond the

zero-temperature Gross-Piteavskii (GP) equation solved with perturbative approach [68,

70]. It gives detailed insights into the interplay of thermal fluctuations and disorder effects

in the anisotropy of superfluidity which is not the case for GP equation with perturbative

treatment. In the Bogoliubov-Huang-Meng approach, the disorder, the quantum and the

thermal fluctuations are assumed to be so small.

The first emphasis is set the role of the three-body interactions (TBI) in disordered

dipolar Bose gases. The TBI play a key role in a wide variety of interesting physical pheno-

mena, and provide a new physics not existed in systems with two-body interactions. Inelas-

tic three-body processes, including observations of Efimov quantum states and atom loss

from recombination have been reported in Refs [96-100]. It has been shown that weakly

interacting Bose and Fermi gases with competing attractive two-body and large repulsive

TBI form a droplet phase [101]. Effects of TBI in ultracold bosonic atoms loaded in an

optical lattice or a superlattice were also studied in [102-105]. The presence of the TBI in

Bose condensate may singnificantly modify the collective excitations [106-108], the tran-

sition temperature, the condensate depletion and the stability of a BEC [109, 110]. In the

context of ultracold atoms with DDI, it has been revealed that the combined effects of TBI

and DDI lead to the formation of a stable supersolid state [111] and a quantum droplet state

[16, 29], [19-21]. Very recently, we have shown that the TBI may shift the density profiles,

the condensed fraction and the collective modes of a dipolar condensate at finite tempera-
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ture [59]. The core questions are therefore : How do the TBI affect disordered dipolar Bose

gases? How does the interplay of DDI, TBI and the disorder potential alter the localization

of bosons?

An interesting 2D arrangement of dipoles is the bilayer dipolar system where the

particles are confined in two paralel planes separated by a fixed distance. In this thesis, we

investigate the properties of 2D bilayered dipolar Bose condensed gases in a weak random

at zero temperature, where the dipoles are oriented perpendicularly to the layers and in

parallel/antiparallel configurations. Over the past decade, ultracold dipolar gases in layered

structures have attracted considerable attention [16-18], [112-124]. Unlike single layers,

these bilayered configurations in quasi-2D geometry exhibit many interesting phenomena

namely : the formation of conventional and unconventional superfluids of polar molecules

[16, 17, 94, 112], [114-119], soliton molecules [120] and the enhacement of the roton

instability [113, 122] due to the interlayer effects. Here we unveil the intriguing role of the

disorder, the interlayer coupling and the polarization orientation in the localization scenario

of particles and the superfluidity. Within the Bogoliubov-Huang-Meng theory, we calculate

analytically and numerically the condensate depletion, the one-body density-matrix, and

the superfluid fraction. The validity criterion of such a theory is also discussed.

Outline

This thesis is organized as follows.

Chapter 1 shows a review of basic elements of the theory of dipolar BEC. We present

the DDI emphasizing its main features, the anisotropy and the long-range character.

By means of a mean-field theory a dipolar condensate is described with the non-local

Gross-Piteavskii equation. As part of the chapter discusses the general phenomenon of

a nondipolar Bose gas. We introduce Bogoliubov theory for dipolar BEC, which is a

theory beyond mean-field and takes into account the fluctuations of the order parameter,
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write the effective Hamiltonian, discuss its diagonalization by means of the Bogoliubov

transformation. We derive useful expressions for the noncondensed and anomalous

densities in d-dimentional case, and calculate the corrections of the ground state energy

arising from the quantum fluctuations. The one-body density matrix and superfluid density

are also discussed. In the last section of this chapter, the Bogoliubov theory is applied to

dipolar Bose gases in 3D case.

Chapter 2 is devoted to an introductory presentation of the weakly interacting Bose

gases in random potentials, and provides the technical tools to be used in this thesis.

We first present the main statistical properties of disordered potentials and their different

forms. We expose the Bogoliubov-Huang-Meng approach for arbitray interaction and

disorder potentials. Corrections to the ground state energy and to the condensate fraction

due to the external random potential are accurately computed. We also investigate the

behavior of the one-body density matrix and the superfluid density. The last section

discusses the role of a Gaussian-correlated disorder potential in the 3D dipolar BEC.

Then, chapters 3 and 5, constitute the core of this manuscript, examine the influence

of a disorder Gaussian-correlated function on the behavior of dipolar Bose gases in two

different cases.

In chapter 3 we dwell on the impacts of a weak disorder potential with a 3D Gaussian-

correlated functions on the properties of a homogeneous dipolar Bose gas in the presence

of the TBI at finite temperatures. We give a detailed description of the problem and explain

how to obtain the excitations spectrum using the Bogoliubov-Huang-Meng approach. Our

results show that the TBI are relevant in reducing the influence of the disorder potential in

BEC. Corrections to the fluctuations, coherence and the thermodynamics of the condensate

due to the disorder and the TBI are also highlighted. We compare our findings against

previous theoretical works.
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The results presented in this chapter have been the object of the following paper : Keltoum

Redaouia and Abdelaali Boudjemaa, Eur. Phys. J. D 73,115 (2019)[125].

Chapter 4 is dedicated to the properties of a quasi-2D dipolar Bose gas subjected to

a weak random potential with Gaussian correlation by using the Bogoliubov-Huang-Meng

theory. In the first part of the chapter, we show that dipolar systems in a quasi-2D geometry

are a very active research field from both, theoretical and experimental sides, and review

their main features. We then describe the two-body DDI, briefly introduce the Bogoliubov

theory, and discuss the appearance of a roton mode in the excitation spectrum. It is shown

that the rotonization may strongly enhance quantum and thermal fluctuations as well as the

the normal density of the superfluid. The validity criterion of the Bogoliubov approach is

well established. In the second part of the chapter, effects of a weak Gaussian-correlated

disorder on BEC and on superfluidity in a dilute quasi-2D dipolar Bose gas are studied with

a combined numerical and analytical schemes. Our analysis signifies a more pronounced

effect of disorder in such a system when the roton is approaching zero with enhancing

quantum fluctuations, one-body density-matrix, equation of state, and depleting superfluid

density.

Chapter 5 considers the case of a disordered quasi-2D bilayered dipolar BEC with

dipoles are oriented perpendicularly to the layers and in same (i.e parallel) /opposite (i.e

antiparallel), directions in different layers. The Bogoliubov-Huang-Meng theory is used

to quantitatively examine the effects of varying polarization direction and interlayer DDI

on the collective excitations, glassy fraction, one-body density matrix and the superfluid

fraction. We find that in the parallel configuration, the interlayer DDI causes delocalization

of particles enabling the transition to the superfluid phase. Surprisingly, in the antiparallel

arrangement, the bosons strongly fill the potential wells formed by disorder fluctuations

depressing both the condensate and the superfluidity due to the intriguing interplay of the

disorder and the interlayer DDI. The last part deals with a discussion on how the tempera-

ture and the polarization direction modify the superfluid fraction.
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The most relevant results of this Chapter are published in : Abdelaali Boudjemaa, and Kel-

thoum Redaouia, Chaos, Solitons, 109543 (2019) [126].

The thesis ends with the main conclusions and perspectives for the future.
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CHAPITRE 1

DIPOLAR BOSE EINSTEIN CONDENSATES

1.1 Bose Einstein condensation

Over the past three decades, experimental physicists made tremendous effort

to cool and trap neutral atoms [4]. They were motivated by Einstein’s prediction in 1925

that at ultralow temperatures, dilute gases of bosonic atoms exhibit a novel type of phase

transition : below a critical temperature atoms may become indistinguishable by occupying

the the same quantum state and form a so-called Bose-Einstein condensate (BEC) [3]. The

dilute gas BEC was first confirmed experimentally in 1995 by remarkable experiments

with rubidium [1] (see Fig. 1.1), lithium [127] and sodium [2], around 70 years after

the prediction by Bose and Einstein. The low temperatures required were achieved by a

combination of laser cooling and subsequent evaporative cooling [128, 129]. The 1997

Nobel Prize in Physics was awarded to C. Cohen-Tannoudji, S. Chu and W. D. Phillips

for their work in the development of laser cooling techniques. Only 4 years later, Carl

Wieman, Eric Cornell and Wolfgang Ketterle were awarded the 2001 Nobel prize in

physics for their pioneering work on the physics of BEC, a new state of matter. These

experiments were followed by demonstrations of some other atomic species to form

BEC : hydrogen (H) [130], potassium (K) [131], helium (He) [132], cesium (Cs) [133],

ytterbium (Yb) [134], strontium (Sr) [135, 136], and calcium (Ca) [137]. BEC was also

achieved by some homonuclear molecules including Rb2, Cs2, Li2[138, 139], K2 [140].

Nowadays, ultra-cold atomic and molecular will find highly nontrivial applications in

quantum information (quantum simulators) or quantum metrology (see for reviews [141,

142, 136]).
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FIGURE 1.1: The first gaseous BEC produced using 87Rb atoms at the NIST-JILA lab.
The trapping potential was turned off and the BEC allowed to expand before imaging,
consequently these figures are representative of the initial velocity distribution. From left
to right the temperatures are just above, at and just below the critical BEC temperature Tc.
The sharp peak to the right provides evidence of BEC. (Copyright (2002) by The American
Physical Society [1]

At zero and very low temperatures the only interactions considered are those

of short-range s-wave scattering, which for the aforementioned experiments is sufficient to

produce BEC. The interaction potential used to model these scattering effects is given by

VC(r− r′) = g2δ(r− r′) =
4πh̄2a

m
δ(r− r′), (1.1)

where a is the s-wave scattering length, a parameter describing the strength and nature of

the effective interactions ; a > 0 describes repulsive interactions, whereas a < 0 describes

attractive interactions. In the presence of the repulsive interactions BEC is always stable,
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whereas attractive interactions give rise to unstable condensate as long as the number of

particles is above a critical value, below which the condensate is in a metastable state and

m is the particle mass . In 1998 Ketterle’s group observed that the s-wave scattering length

can be tuned in sodium through Feshbach resonances [143].

1.2 Dipolar Bose Einstein condensate

1.2.1 The dipole-dipole interaction

Advances in the cooling and trapping of polar molecules have given rise to in-

vestigation of dipolar gases [144]. The first successful experimental realization in this

direction was, due to its large magnetic dipole moment [7] , the BEC of chromium ( 52Cr)

in 2005 with a combination of magneto-optical, magnetic, and optical trapping techniques

[145] and with a different all-optical method in 2008 [146]. Recently, condensates of

erbium (168Er) [9] and dysprosium (164Dy) [8] have been observed which show larger

dipole moments. The dipolar interaction has introduced spectacular features via its

anisotropic and long range character while its contact counterpart is isotropic and short

range. Anisotropy and long-range character of dipolar interaction allows one to control

interparticle interactions by means of tuning the external field using Feshbach resonances

or readjusting the trap anisotropy.

In contrast to contact interactions, the sign and strength of the dipolar interaction heavily

depend on the trap geometry. The advent of quantum degenerate dipolar gases opens

the door to a wide range of scientific explorations. Precision measurements, quantum-

controlled chemical reactions and novel phases of matter are among a few prominent

examples provided by an ultracold gas of polar molecules.

In this section we examine the relevant two-body interactions in a dipolar BEC.

We introduce the interactions between two dipoles which, in contrast to the interactions
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considered in the preceding subsection, cannot be described by the pseudo contact interac-

tion potential due to the long-range nature of the DDI potential.

The DDI potential takes the form :

Vd(r− r′) =
µ0µ

2
m

4π

1− 3 cos2 θ

|r− r′|3
(1.2)

where µ0 = 4π.10−7Tm/A is the permeability in free space, µm is the permanent magnetic

dipole moment and θ is the angle between the polarization direction and the relative po-

sition of the dipoles r, as illustrated in Fig. 1.2 (a). We consider the case r > 0 which is

important, because Vd diverges when r tends to zero.

FIGURE 1.2: Dipole-dipole interaction (DDI) : (a) Two dipoles polarized by an external
magnetic field B along the zdirection. The separation r = |r| and the angle θ enter the
DDI potential given by Eq. (1.2). (b) The interaction between two dipoles is attractive in a
head-to-tail configuration (θ = 0), repulsive in a side-by-side configuration (θ = π/2) and
vanishes at the magic angle θ = θm.

As we stated above, the dipolar interaction having either electric or magnetic dipole mo-
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ment has two properties that are radically different from contact interactions :

— The anisotropy of this interaction implies that it could be either repulsive or at-

tractive depending on the relative orientation of the two dipoles. Side by side

particles interact with repulsive DDI, see figure 1.2, while a head-to-tail confi-

guration correspond to an attractive one, see figure 1.2. For the special value

θ = arccos(1/
√

3) ∼ 54.7◦, the so-called ”magic-angle”, the dipole-dipole interac-

tion vanishes. Such an anisotropic interaction leads to a series of interesting pheno-

mena even in classical physics, a fascinating example is the Rosensweig instability.

For dipolar quantum gases the DDI is related to the observation of a maxon-roton

spectrum and to the stability property of the system.

— In opposite to the short-range interactions, DDI are long-ranged in 3D

systems[145], which means that in dipolar systems the scattering properties are

radically different compared to the other systems.

The full pseudo-potential describing binary contact and dipolar interactions reads

V (r− r′) = g2δ(r− r′) +
µ0µ

2
m

4π

1− 3 cos2 θ

|r− r′|3
. (1.3)

To describe the physics of dipolar BECs, we now define some key parameters. In analogy

to scattering length a, we define a characteristic dipolar length

r∗ = add =
µ0µ

2
mm

12πh̄2 , (1.4)

and the dipolar coupling stength

gdd =
4πh̄2

m
add =

µ0µ
2
m

3
. (1.5)

We stress here that the dipolar length r∗ does not correspond to a finite interaction radius

of the dipolar interactions. We define the relative strength which is the ratio of the dipolar
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and the contact coupling strengths,

εdd =
gdd
g2

=
r∗
a

=
µ0µ

2
mm

12πh̄2a
. (1.6)

For a BEC to be dominated by dipolar effects, the dipolar interaction needs to be at least as

strong as the contact interaction giving εdd ≥ 1. From the angular dependence in Eq.(1.6)

it is clear the anisotropic nature of DDI.

In Table 1.1 we show these quantities for all of the bosonic isotopes experimentally created

to date. Rubidium features on this table, with a value of εdd = 0.007, highlighting that it is

safe to neglect dipolar interactions for modelling this species. The only dominantly dipolar

species are the dysprosium isotopes, although through reducing the scattering length of

166Er one could access the dominantly dipolar regime, like what has been seen in 52Cr

[147]. It is worth mentioning here that the equivalent value for εdd of alkali dimers is at

least one order of magnitude larger than seen in Table 1.1. For example, the molecule KRb

has εdd = 37, whereasNaRb boasts a value of εdd = 229 [148].

Species as(a0) µm(µB) add(a0) εdd References
87Rb 100.4(1) 1 0.7 0.007 [149]
52Cr 102.5(4) 6 15.1 0.15 [150]

162Dy 122(10) 9.93 129.2 1.06 [151]
164Dy 92(8) 9.93 130.8 1.42 [151, 152]
166Er 72(13) 6.98 65.5 0.91 [153]
168Er 137(1) 6.98 66.2 0.48 [154]
170Er -221(22) 6.98 67.0 -0.3 [153]

TABLE 1.1: Dipole strengths-darker shade of gray indicates strength.Lengths here are pre-
sented in units of the Bohr radius, a0 = 5.3 10−10m.

29



1.2.2 Non-local Gross-Pitaevskii equation

Let us consider a gas of dipolar bosons. The second-quantized Hamiltonian of the

system reads :

Ĥ =

∫
dr ψ̂†(r)

[
− h̄2

2m
∆ + Vext(r)− µ

]
ψ̂(r) +

1

2

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r),

(1.7)

where ψ̂† and ψ̂ are the particle creation and annihilation operators, which fulfill the usual

bosonic commutation relations,

[ψ̂(r), ψ̂†(r′)] = δ(r′ − r), [ψ̂†(r), ψ̂†(r)] = [ψ̂(r), ψ̂(r′)] = 0, (1.8)

and Vext(r) is the trapping potential, and µ is the chemical potential. The interaction po-

tential V (r) may be approximated by the pseudo-potential (1.3), and then our Hamiltonian

becomes :

Ĥ =

∫
drψ̂†(r)

[
− h̄2

2m
∆ + Vext(r)− µ+

1

2
g2ψ̂

†(r)ψ̂(r)

]
ψ̂(r)

+
1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)Vd(r− r′)ψ̂(r′)ψ̂(r). (1.9)

We may then obtain easily the Heisenberg equations for the dynamics of the field operators,

by employing the bosonic commutation rules. Since we are interested in the case of BECs

far from the critical condensation temperature, we may introduce the usual Bogoliubov

approximation ψ̂(r) = ψ(r). In this way we obtain that the Heisenberg equation transforms

into the following equation for the dynamics of the condensate wavefunction :

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∆ + Vext(r)− µ+ g2 |ψ(r, t)|2 +

Cdd
4π

∫
dr

1− 3 cos2 θ

|r′ − r|3
|ψ(r′, t)|2

]
ψ(r, t).

(1.10)
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Note that this equation is a modified version of the well-known Gross-Pitaevskii equation

(GPE), or equivalently the non-linear Schrödinger equation. In the absence of DDI the

nonlinearity is given by the term g |ψ(r, t)|2, and hence it is a local nonlinearity similar

to that found in many Kerr media in nonlinear optics. On the contrary the nonlinearity

introduced by the DDI is non-local, i.e. the wavefunction in r depends on the wavefunction

in r′ through a kernel given by Vdd(r− r′).

1.3 Bogoliubov theory

In 1947, Bogoliubov suggested an important theory to compute the excitation spec-

trum of weakly interacting Bose gases. Such a theory predicts a linear excitation spectrum

and provides expressions for the thermodynamic functions which are valid in the dilute

limit.

1.3.1 Bogoliubov excitations

Let us consider a uniform gas of interacting bosons occupying a d-dimensional vo-

lume Ld. The second quantized Hamiltonian of the system is written as :

Ĥ=
∑
k

h̄2k2

2m
â†kâk+

1

2Ld

∑
k,q,p

f(p)â†k+pâ
†
q−pâqâk, (1.11)

where â†k, âk are the creation and annihilation operators of particles satifying to the usual

Bose commutaion rules
[
âk, â

†
k′

]
= δk,k′ and

[
â†k, â

†
k′

]
= [âk, âk′ ] = 0. In Hamiltonian

(1.11), the first term is the single-particle part corresponds to the kinetic energy of particles

and the second term describes the two-body interaction Hamiltonian of the dipolar force.

According to the Bogoliubov’s idea, the average number of particle in the Bose conden-

sate Nc in the k = 0 state is close to the total number of particles in the gas N and the
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zero-momentum operators â†0 and â0 operating on the ground state satisfy the relations

â†0|Nc〉 =
√
Nc + 1|Nc + 1〉 and â0|Nc〉 =

√
Nc|Nc − 1〉. Therefore, for Nc � 1, it is

possible to write
√
Nc + 1 ≈

√
Nc and replace each of the operators â†0 and â0 by the c-

number
√
Nc which leads to [â0, â

†
0] = 0. The application of perturbation theory means that

the last term in (1.11) should be decomposed in powers of the small quantities â†k and âk,

with k 6= 0. Therefore, the Hamiltonian (1.11) separates into three distinct parts classified

according to the number of the operators â†k and âk in the products Ĥ =
∑2

n=0 Ĥ
(n).

The zero-order term does not contain ak :

H(0) =
1

2V
a†0a

†
0a0a0Ṽ (0). (1.12)

Using the normalization relation :

a†0a0 = Nc = N −
∑
k 6=0

â†kâk ⇒ (a†0a0)2 ≈ N2 − 2N
∑
k 6=0

â†kâk,

the Hamiltonian (1.12) becomes :

H(0) =
1

2
nNṼ (0)− nṼ (0)

∑
k 6=0

â†kâk. (1.13)

The first-order term is zero :

H(1) = 0. (1.14)

The second-order term is given by :

Ĥ(2) =
∑
k 6=0

[
Ek + ncṼ (k) + ncṼ (0)

]
â†kâk +

1

2
nc
∑
k 6=0

Ṽ (k)
[
â−kâk + â†kâ

†
−k

]
, (1.15)

where nc = Nc/V is the density of condensed atoms. Here we have used the momentum

conservation k = −k.

The physical interpretation of these components is :
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— Ṽ (0)â†kâk represents the Hartree energy which arises from the direct interaction of

particle in the state k with Nc atoms in the condensate.

— Ṽ (k)â†kâk is the exchange term, often known as Fock term, in which an atom in the

state k is scattered into the zero momentum state, while at the same time the second

is scattered from the condensate to the state k. Note that the contact interaction

disguises the presence of the direct and exchange contributions (see below).

— Ṽ (k)(â−kâk + â†kâ
†
−k) represents the scattering of two atoms in the condensate to

states with ±k in vice versa.

The Bogoliubov approach assumes that the depletion is small i.e. Nc ≈ N or nc ≈ n

and retains in interaction only the second order terms H2. Summing (1.13) with (1.15), the

Hamiltonian (1.11) is reduced to a quadratic one in terms of operators â†k and âk :

Ĥ =
1

2
nNṼ (0) +

∑
k 6=0

[(
Ek + nṼ (k)

)
â†kâk +

1

2
nṼ (k)

(
â−kâk + â†kâ

†
−k

)]
. (1.16)

In order to calculate the energy levels of the system one has to diagonalize the Hamiltonian

(1.16). This can be done by employing the canonical Bogoliubov transformations :

â†k = ukb̂
†
k − vkb̂−k, âk = ukb̂k − vkb̂†−k, (1.17)

where b̂†k and b̂k are operators of elementary excitations which have to satisfy the same

commutation rules as the operators â†k and âk.

[
b̂k, b̂

†
k′

]
= δk,k′ = δk,k′ ,

[
b̂†k, b̂

†
k′

]
=
[
b̂k, b̂k′

]
= 0. (1.18)

From the commutation rules (1.18) one can show that the coefficients must satisfy the

condition : u2
k − v2

k = 1. Setting to zero the coefficient of the term proportional to b̂kb̂k or
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b̂†kb̂
†
k, one obtains for he Bogoliubov functions uk, vk

uk, vk = (
√
εk/Ek ±

√
Ek/εk)/2, (1.19)

where Ek = h̄2k2/2m is the energy of free particle, and the Bogoliubov excitations energy

is given by

εk =
√
E2
k + 2µ0(θk)Ek, (1.20)

where µ0 = nc lim
k→0

V (k) is the chemical potential defined in the first order of perturbation

theory [153]. The spectrum (1.20) is a gapless. One can check that the Hugenholtz-Pines

theorem is well satisfied. For small momenta k → 0, the Bogoliubov dispersion law (1.20)

is linear in k and well approximated by the phonon-like linear dispersion form

εk = h̄cs k, (1.21)

where cs =
√
nṼ (0)/m is the sound velocity.

In the limit of large momenta, the Bogoliubov dispersion law (3.3) reduces to the free-

particle form :

εk = Ek, (1.22)

which corresponds to vk = 0, uk = 1, and the distribution function Nk reduces to the

ordinary Bose distribution.

Thus, the Hamiltonian (1.11) reduces to the diagonal form :

Ĥ = E0 +
∑
k

εkb̂
†
kb̂k, (1.23)

where

E0 =
1

2
nṼ (0)N +

1

2

∑
k 6=0

(
εk − Ek − nṼ (k)

)
, (1.24)

is the ground-state energy.
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From the Hamiltonian (1.23 ) and the commutation rules (1.18) one can identify b̂†k

and b̂k as the creation and annihilation operators of quasiparticles with energy εk. The

ground state energy is given by E0 which is the energy of the “vacuum” of quasiparticles

Ĥ|0〉 = E0|0〉, where the “vacuum” state is defined as b̂k|0〉 = 0 for any value of k 6= 0.

The excited states are given by |k〉 = b̂k|0〉 and have energy E(k) and momentum k.

1.3.2 Noncondensed and anomalous densities

The noncondensed and the anomalous densities are defined, respectively as

ñ =
1

∨
∑
k

〈â†kâk〉, (1.25)

and

m̃ =
1

∨
∑
k

〈âkâ−k〉. (1.26)

where ∨ is a quantization volume. Then invoking for the operators ak the transformation

(1.17), setting 〈b̂†kb̂k〉 = δk′kNk and putting the rest of the expectation values equal to

zero, where Nk = [exp(εk/T ) − 1]−1 are occupation numbers for the excitations. As we

work in the thermodynamic limit, the sum over k can be replaced by the integral
∑

k ≡

Ld
∫
ddk/(2π)d and using the fact that 2N(x) + 1 = coth(x/2), we obtain :

ñ =
1

2

∫
ddk

(2π)d

[
Ek + Ṽ (k)nc

εk
− 1

]
+

1

2

∫
ddk

(2π)d
Ek + Ṽ (k)nc

εk

[
coth

( εk
2T

)
− 1
]
,

(1.27)

and

m̃ = −1

2

∫
ddk

(2π)d
Ṽ (k)

εk
− 1

2

∫
ddk

(2π)d
Ṽ (k)

εk
coth

( εk
2T

)
. (1.28)

First terms in Eqs.(1.27) and (1.28) are the zero-temperature contribution to the nonconden-

sed ñ0 and anomalous m̃0 densities, respectively. Second terms represent the contribution

of the so-called thermal fluctuations and we denote them as ñT and m̃T , respectively.
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Expressions (1.27) and (1.28) must satisfy the equality [156-158]

Ik = (2ñk + 1)2 − |2m̃k|2 = coth2
( εk

2T

)
. (1.29)

Equation (1.29) clearly shows that m̃ is larger than ñ at low temperature, so the omission of

the anomalous density in this situation is principally unjustified approximation and wrong

from the mathematical point of view.

The expression of I allows us to calculate in a very useful way the dissipated heat

Q = (1/n)
∫
EkIkd

dk/(2π)d for d-dimensional Bose gas [158, 159], where n = nc + ñ

is the total density. Indeed, the dissipated heat or the superfluid fraction (see below) are

defined through the dispersion of the total momentum operator of the whole system. This

definition is valid for any system, including nonequilibrium and nonuniform systems of

arbitrary statistics. In an equilibrium system, the average total momentum is zero. Hence,

the corresponding heat becomes just the average total kinetic energy per particle.

1.3.3 One body correlation function

Another interesting result that can be obtained from Bogoliubov theory is the one-body

correlation function which is defined as :

ñ(r, r′, t, t′) = g(1)(r, r′, t, t′) = 〈Ψ̂†(r, t)Ψ̂(r′, t′)〉. (1.30)

At equal times, t = t′, we have g(1) is independent of t and we may put, t = t′ = 0. In uni-

form case g(1) depends only on the difference |r− r′| = r and we may set r′ = 0. Using the

decomposition, expressing the noncondensed field operator as ˆ̄ψ = (1/V )
∑

k[ukb̂ke
ik.r −

vkb̂
†
ke
−ik.r], and then taking into account that |Φ(r, t)| = √nc. We thus, obtain

g(1)(r) = g
(1)
0 (r) + g

(1)
th (r) =

∫
dk

(2π)3
v2
k eik.r +

∫
dk

(2π)3
(u2

k + v2
k)Nk eik.r. (1.31)
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The first term of (1.31) represents the zero temperature contribution to the correlation

function, and the second term accounts for the thermal contribution to one-body density

matrix.

1.3.4 Superfluid fraction

We consider a fluid at zero temperature, in which all particles are in the ground state and

flowing along a capillary at constant velocity. If the fluid is viscous, the motion will produce

dissipation of energy via friction with the capillary wall and decrease of the kinetic energy.

We assume that such dissipative processes take place through the creation of an elementary

excitation, which is the Bogoliubov quasi-particle εk for the case of an interacting Bose

gas. The Landau’s criteria of superfluidity satisfies the following condition [160, 161]

vc = minp
εP
|P |

, (1.32)

where
−→
P = h̄

−→
k the minimum is calculated over all the values of P . If instead the fluid ve-

locity v is smaller than (1.32), then no elementary excitation will be spontaneously formed.

Thus, the Landau’s criterion of superfluidity is summarized as the relative velocity between

the fluid and the capillary is smaller than the critical value vc ≤ v.

By a general definition, the superfluid density is the partial density appearing as a res-

ponse to a velocity boost,

ns =
1

3mv
limv→0

∂

∂V

〈
P̂v

〉
v
, (1.33)

where the average of the system momentum P̂v = P̂ + NmV . In order to calculate the

superfluid fraction we follow the following steps : The superfluid fraction can be given in
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d-dimensional case as [57] :

ns
n

= 1− 2Q

dT
, (1.34)

where ns is the superfluid density, n is the total density and Q is the dissipated heat, having

for an equilibrium system. It is given :

Q =
〈P 2〉
2mN

, (1.35)

passing to Fourier transform, we have 〈P 2〉 =
∑

k,p kp 〈n̂kn̂p〉, where n̂k = â†kâk and

n̂p = â†pâp. In the Hatree-Fock-Bogoliubov approximation

〈n̂kn̂p〉 = 〈â+
k âkâ

+
p âp〉 = 〈â+

k âk〉〈â
+
p âp〉+ 〈â†kâp〉〈âkâ

†
p〉+ 〈âkâp〉〈â†kâ

†
p〉. (1.36)

Using the fact that âkâ†p = â†pâk + δkp and âkâp = m̃kp

〈
â†kâp

〉
= ñkp, we obtain

〈n̂kn̂p〉 = ñkñp + m̃kp2δkp + ñk(1 + ñk)δkp. (1.37)

Thus,

〈P 2〉 =
∑
k,p

kp[ñkñp + m̃kp2δkp + ñk(1 + ñk)δkp]

=
1

∨
∑
k

h̄2k2[ñk(1 + ñk)− m̃2
k], (1.38)

puting (1.38) into (1.35), the dissipated heat becomes

Q =
1

n

∫ ∞
0

ddk

(2π)d
Ek(ñ

2
k + ñk − m̃2

k). (1.39)
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From the equality (1.29)

Q =
1

n

∫ ∞
0

ddk

(2π)d
2h̄2

Tmn

[
kikj

4 sinh2(εk/2T )

]
, (1.40)

where the quantity represents the normal fraction of the Bose-condensed gas (liquid).

Thus, we finally arrive at the following expression for the normal density 2Q/dT which

has a tensor structure [82]

nijs
n

= δij −
2

Tn

∫
d3k

(2π)3

[
h̄2

2m

kikj

4 sinh2(εk/2T )

]
. (1.41)

It is worth stressing that if in expression (1.41) m̃ were omitted, then the related integral

would be divergent leading to the meaningless value ns → ∞. This indicates that the

presence of the anomalous density is crucial for the occurrence of the superfluidity in Bose

gases [50, 162] which is in fact understandable since both quantities are caused by atomic

correlations.

1.4 Three-dimensional homogeneous dipolar Bose gases

The Fourier transform of the DDI simplifies the calculation of the integral appearing

in the long-range interaction term of the energy. In 3D case, it can be written as :

Ṽ (k) = g2[1 + εdd(3 cos2 θk − 1)], (1.42)

where εdd = Cdd/3g is the dimensionless relative strength which describes the interplay

between the DDI and the short-range interaction.

The Bogoliubov excitations energy is given by

εk =
√
E2
k + 2µ0d(θ)Ek, (1.43)
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where µ0d(θ) = n lim
k→0

Ṽ (k) is the zeroth order chemical potential. For k → 0, the ex-

citations are sound waves εk = h̄csd(θ)k, where csd(θ) = cs
√

1 + εdd(3 cos2 θ − 1) with

cs =
√
g2n/m is the sound velocity without DDI. Due to the anisotropy of the dipolar

interaction, the sound velocity acquires a dependence on the propagation direction, which

is fixed by the angle θ between the propagation direction and the dipolar orientation. This

angular dependence of the sound velocity has been confirmed experimentally [41].

1.4.1 Condensate depletion and anomalous density

At zero temperature, the quantum depletion can be obtained from the integral (1.27)

ñ

nc
=

8

3

√
nca3

π
Q3(εdd). (1.44)

The contribution of the DDI is expressed by the function Q3(εdd), which is special case

j = 3 of Qj(εdd) = (1 − εdd)
j/2

2F1

(
− j

2
, 1

2
; 3

2
; 3εdd
εdd−1

)
, where 2F1 is the hypergeometric

function. Note that functions Qj(εdd) attain their maximal values for εdd ≈ 1 and become

imaginary for εdd > 1.

Equation (1.44) is formally similar to the that obtained from the zeroth order of perturba-

tion theory [163]. The density nc of condensed particles which constitutes our corrections,

appears as a key parameter instead of the total density n.

Now if we use the integral in Eq.(1.28) directly by summing over all states, we find

that the expression for m̃ diverges as we take the sum over higher and higher states i.e. the

so called ultraviolet divergence. The price to be paid to circumvent this divergence is to

introduce the Beliaev-type second order coupling constant [163, 164]

gR(k) = V (k)− m

h̄2

∫
d3q

(2π)3

V (−q)V (q)

2Eq
. (1.45)

After the subtraction of the ultraviolet divergent part, the renormalized anomalous den-
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sity is given [165]

m̃R = −nc
∫

d3k

(2π)3
Ṽ (k)

[
1

2εk
coth

( εk
2T

)
− 1

2Ek

]
. (1.46)

In contrast to m̃ in (1.28), m̃R has no ultraviolet divergence from large k contributions. The

authors of [166] have pointed out that the self-consistent ladder diagram approximation for

the T -matrix can be expressed in terms of m̃R.

To obtain an estimate value of m̃, we note that the quasi-particle energy goes over to the

free particle energy for εk > gnc. At zero temperature (m̃ = m̃0), we find

m̃

nc
= 8

√
nca3

π
Q3(εdd). (1.47)

One should mention at this level that this expression has never been obtained before in the

literature.

Equation (1.47) is important in several respects : first of all, it shows that the anomalous

density is three times larger than the noncondensed density whatever the type of the interac-

tion. Second, m̃ has a positive value in argreement with the case of uniform Bose gas with

pure contact interaction [158, 159]. Likewise, the anomalous density obtained in Eq.(1.47)

leads us to reproduce exactly the Lee-Huang-Yang (LHY) corrected equation of state [167].

Remarkably, we see from expressions (2.28) and (2.29) that the noncondensed and the

anomalous densities increase monotocally with εdd. For a condensate with pure contact

interactions (Q3(εdd = 0) = 1), ñ and m̃ reduce to their usual expressions. While, for

maximal value of DDI i.e. εdd ≈ 1, they are 1.3 larger than their values of pure contact

interactions which means that the DDI may enhance fluctuations of the condensate at zero

temperature.
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1.4.2 Thermodynamics quantities

The presence of quantum fluctuations leads also to corrections of the chemical potential

which are given by [55, 158, 165].

δµ =
∑
k

f(k)[vk(vk − uk)] =
∑
k

V (k)(ñ+ m̃). (1.48)

Inserting the definitions (1.27) and (1.28) into the expression of δµ, we find after integra-

tion :

δµ =
32

3
gnc

√
nca3

π
Q5(εdd). (1.49)

The total chemical potential is then written as µ = µ0(θk) + δµ. For nc ≈ n and for

a condensate with pure contact interaction (Q5(εdd = 0) = 1), the obtained chemical

potential excellently agrees with the famous LHY quantum corrected equation of state

[167].

By integrating the chemical potential correction with respect to the density, one obtains

beyond mean field the ground state energy as

E = E0(θk) +
64

15
∨ gn2

c

√
nca3

π
Q5(εdd), (1.50)

where E0(θk) = µ0(θk)Nc/2 with Nc is the number of condensed particles.

Note that our formulas of the equation of state (1.49) and the ground state energy (1.50)

constitute a natural extension of those obtained in Ref [163].

At T = 0, the inverse compressibility is equal to κ−1 = n2∂µ/∂n. Then, using

Eq.(1.49), we get
κ−1

n2
=
µ0(θk)

nc
+ 16g

√
nca3

π
Q5(εdd). (1.51)

One can also show that the shift of the sound velocity is 16g
√
nca3/πQ5(εdd), which is

consistent with the change in the compressibility mc2
s = n∂µ/∂n [166] associated with the
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LHY correction in the equation of state (1.49). Expanding the square root of the obtained

formula with εdd = 0 in powers of the gas parameter nca3, we recover easily the Beliaev

sound velocity of Bose gas with pure contact interaction δcs/cs ≈ 8
√
nca3/π [155, 166].

What is noticeable is that the chemical potential, the energy and the compressibility are

increasing with dipole interaction parameter. For εdd ≈ 1, these quantities are 2.6 larger

than their values of pure contact interaction which means that DDI effects are more signi-

ficant for thermodynamic quantities than for the condensate depletion and the anomalous

density.

The Bogoliubov approach assumes that fluctuations should be small. We thus conclude

from Eqs. (2.28) and (2.29) that at T = 0, the validity of the Bogoliubov theory requires

the inequality √
nca3Q3(εdd)� 1. (1.52)

For nc = n, this parameter differs only by the factor Q3(εdd) from the universal small

parameter of the theory,
√
na3 � 1, in the absence of DDI.

We now generalize the above obtained results for the case of a spatially homogeneous

dipolar Bose-condensed gas at finite temperature.

At temperatures T � gnc, the main contribution to integrals (1.27) and (1.28) comes

from the region of small momentum where εk = h̄csdk. After some algebra, we obtain

the following expressions for the thermal contribution of the noncondensed and anomalous

densities[51] :

ñT
nc

= −m̃T

nc
=

2

3

√
nca3

π

(
πT

gnc

)2

Q−1(εdd). (1.53)

Equation (1.53) shows clearly that ñ and m̃ are of the same order of magnitude at low tem-

perature and only their signs are opposite.

Comparing the result of Eq. (1.53) with the zero-temperature noncondensed ñ0 and ano-

malous m̃0 densities following from Eqs. (2.28) and (2.29) we see that at temperatures
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T � gnc, thermal contributions ñT and m̃T are small and can be omitted when calcula-

ting the total fractions. The situation is quite different at temperatures T � gnc, where

the main contribution to integrals (1.27) and (1.28) comes from the single particle exci-

tations. Hence, ñT ≈ (mT/2πh̄2)3/2ζ(3/2), where ζ(3/2) is the Riemann Zeta function.

The obtained ñT is nothing else than the density of noncondensed atoms in ideal Bose gas.

Moreover, the anomalous density being proportional to the condensed density, tend to zero

together and hence their contribution becomes automatically small.

Another important remark is that for εdd ≈ 1, thermal fluctuations (1.53) are 10.7 greater

than their values of pure short range interaction. This reflects that the DDIs may strongly

enhance fluctuations of the condensate at finite temperature than at zero temperature (see

figure.1.3).
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FIGURE 1.3: Functions Q3 (solide line), Q−1 (red dashed line) and Q−5 (blue dotted
line), which govern the dependence of the condensate depletion, the anomalous fraction
correction and superfluid fraction vs. the dipolar interaction parameter εdd [56].

Thermal fluctuations corrections to the chemical potential and the energy can be also

obtained easily through expressions (1.53).
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The Bogoliubov approach requires the conditions ñT � nc and m̃T � nc. Therefore,

at temperatures T � gnc, the small parameter of the theory turns out to be given as

T

gnc

√
nca3Q−1(εdd)� 1. (1.54)

The appearance of the extra factor (T/gnc) originates from the thermal fluctuations correc-

tions.

1.4.3 Superfluid fraction

Depending on the boost direction, we have two different superfluid fractions in the

directions parallel or perpendicular to the dipole polarization.

In the parallel direction, the superfluid fraction reads

n
‖
s

n
= 1− 2π2h̄

45mncs

(
T

h̄cs

)4

Q‖−5(εdd), (1.55)

where the function Q‖j(εdd) = 1
3
(1 − εdd)j/22F1

(
− j

2
, 5

2
; 3

2
; 3εdd
εdd−1

)
, have the following pro-

perties : Q‖j(εdd = 0) = 1/3 and imaginary for εdd > 1 [56].

In the perpendicular direction, the superfluid fraction (4.23) takes the form

n⊥s
n

= 1− π2h̄

45mncs

(
T

h̄cs

)4

Q⊥−5(εdd), (1.56)

where the function Q⊥j (εdd) = Qj(εdd)−Q‖j(εdd).

The second terms in (1.55) and (1.56) represent the thermal contribution of n⊥s and n‖s.

These thermal terms are calculated at low temperatures T � ng. Whereas, at T � ng,

there is copious evidence that both thermal terms of ns concide with the noncondensed

density of an ideal Bose gas. Furthermore, we read off from Eqs.(1.55) and (1.56) that for

εdd ≤ 0.5, the thermal contribution of n⊥s is smaller than that of n‖s, whereas the situations

is inverted for εdd > 0.5 [51].
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CHAPITRE 2

DIPOLAR BOSE GAS WITH WEAK DISORDER :

BOGOLIUBOV-HUANG-MENG THEORY

In real systems, disorder is always present to some extent. It has been shown

that even a small amount of disorder can dramatically alter the physics. Disordered BEC

is nowadays a field of intense research both theoretically and experimentally. What hap-

pens to a homogeneous BEC if a weak random external potential is switched on? Indeed,

the presence of a disordered potential may lead to decrease both BEC and superfluidity.

Furthermore, one of the intriguing features of disordered Bose gas is the appearance of

the so-called Anderson localization [168] in the non-interacting case. This phenomenon

which originally put forward for non-interacting electrons, can be understood as the effect

of multiple reflections of a plane wave by random scatterers or random potential barriers,

has recently attracted a great deal of interest [74, 64].

Random potentials find areas of application even far from its physical origins. For

example, the transport in random media and diffusion-controlled reactions can be modeled

by random walks in random trapping environments [64]. The dynamics of stock markets

have also been modeled as a tracer in a Gaussian random field [169]. Furthermore, the

behavior of polymer chains in random media is strongly connected to this field [170]. Di-

sorder appears either naturally as, e.g., in magnetic wire traps [171], where imperfections

of the wire itself can induce local disorder, or it may be created artificially and controllably

as, e.g., by the use of laser speckle fields [172]. The speckle effect is an interesting disor-

der problem. It is a result of the interference of many waves of the same frequency, and

different phases and amplitudes, which add together to give a resultant wave whose ampli-

tude and intensity is constant over time, but varies randomly in space [173], see Fig. 2.1.
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FIGURE 2.1: (a) Schematic representation of speckle formation and (b) typical speckle
pattern [176]

Recent progress in different experimental realizations of laser speckle disorder is reported

in Refs.[174, 175]. The random external potential is characterized by a strength, which is

the average height of its maxima and depth of its minima, as well as a correlation length,

which represents the average width of its maxima and minima, see Fig.2.2.

FIGURE 2.2: One realization of a disorder potential, which shows a random distribution of
maxima and minima [176]
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In this chapter, we first introduce fundamental statistical properties of the random

potentials which we use in this thesis with ultracold atoms. We then study the impact of a

weak disorder potential with Gaussian autocorrelation function on the properties of a homo-

geneous dipolar Bose gas in 2D and 3D geometries. Within the Bogoliubov-Huang-Meng

theory we calculate in particular the corrections to the condensed depletion, the anomalous

fraction, the ground state energy, the equation of state and the superfluid fraction due to

the external random potential. In noninteracting systems, this model is important to fully

understand the interplay of disorder and interactions. In 3D case, we show that the aniso-

tropy of the DDI may enhance quantum, thermal and disorder fluctuations as well as the

superfluid fraction.

2.1 Statistical properties of random potentials

One studies bosons moving in a one-particle potential U(r) we consider a different

physical situation, where the one-particle potential U(r) is fluctuating at each space point

r i.e. for each point r, U(r) is a random variable. A random potential is characterized

by n-point probability distributions P (r). To completely describe a random potential, it is

however sufficient to know all the n-point correlation functions :

Rn(r1, r2, · · · , rn) = 〈U(r1)U(r2) · · ·U(rn)〉 , (2.1)

where 〈· · · 〉 denotes statistical averaging (i.e. ensemble averaging over all realizations of

the potential).
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2.1.1 General properties

Homogeneity

A random potential is assumed to be spatially homogeneous, which means that its sta-

tistical properties are translation-invariant i.e the one-point probability distribution is inde-

pendent of the position). As a consequence, one has

Rn(r1 + ρ, r2 + ρ, · · · , rn + ρ) = 〈U(r1)U(r2) · · ·U(rn)〉 , (2.2)

and depend only on n− 1 relative coordinates.

Correlation functions

One of the key assumption of the random potential is the disappearance of statistical

correlations between values of the potential at points with infinitely large separation.

In the following we assume for the disorder potential that it is homogeneous after the

disorder ensemble average, i.e., after having performed the average 〈〉 over all possible

realizations. Thus, the average value of the disorder potential, without loss of generality,

will be assumed to vanish

〈U(r)〉 = 0. (2.3)

Due to the homogeneity, the disorder ensemble average 〈U(x)〉 represents a constant,

which can be absorbed into the chemical potential within a grand-canonical description.

Furthermore, a homogeneous disorder potential has a correlation function, which depends

on the difference of the space points :

R(r, r′) = 〈U(r)U(r′)〉 . (2.4)
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The assumption of homogeneity implies the symmetries :

R(r) = R(−r)

and

R(k) = R(−k),

where the Fourier transform of the two-point correlation function, also referred to as the

power spectrum of the disorder, is defined by R(k) =
∫
ddrR(r)e−ik.r.

In many cases, the disorder is further assumed to be isotropic, which means thatR(r) =

R(r) is a radial function (and so is its Fourier transform).

2.1.2 Standard forms

Disorder may take different shapes. Below, we present some examples of random po-

tentials which are the most relevant.

White-noise disorder

A white-noise (or uncorrelated) disorder is a Gaussian disorder whose autocorrelation

function is delta-correlated,

R(r− r′) = Rδ(r, r′), (2.5)

where δ is the d-dimensional Dirac function, and parametrizes the strength of the potential.

Note that R has dimension (energy)2(length)d, where d is the spatial dimension. White-

noise disorders are widely used in the case of the “weak” disorder regime which is of

interest here, mostly because at low-energy, many continuous random potentials can

be replaced by a white-noise potential.
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Speckle disorder

Speckle fields typically arise as a result of the reflection or transmission of a

coherent wave on a rough surface (see Fig.(2.1)). Experimentally, an isotropic 3D

speckle, can be produced as the interference pattern of many wavevectors inside a

closed optical cavity [177]. Another realization of 3D disordered speckle configuration

was proposed in Ref [83], where the speckle is formed in the focal point of an empty

ellipsoidal optic cavity.

The autocorrelation function of the 3D isotropic laser speckle is given by R(r) =

R|CA(r)|2 [83], where

CA(y) =
∣∣(3/y3

)
(sin y − y cos y)

∣∣2 , (2.6)

where y = πr/σ.

Another form of the autocorrelation function for the 3D isotropic speckle has been

proposed in [177]

CA(r) = sinc(r/σ). (2.7)

Speckle potentials are easily tuned in amplitude, geometry and correlation length.

Gaussian correlated disorder

The statistical properties of a Gaussian random potential are hence entirely de-

termined by the two-point correlator. In d spatial dimensions, it takes the form

R(r, r′) = R
e−(r−r′)2σ2/2

(2πσ2)d/2
, (2.8)

where its correlation length σ can be identified with the average extension [80]. In the

limit of a vanishing correlation length σ, we obtain a qualitative model for disordered

bosons with a delta correlation of Eq.(2.5).
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Throughout this thesis we use the Gaussian correlated disorder. This model of

disorder is particularly convenient since it can be easily treated analytically within

the Bogoliubov theory of a dilute Bose gas.

2.2 Interaction and disorder

The question of disorder in interacting systems is one of the most challenging pro-

blems. It is important to stress that in the presence of a random potential, there are

different quantum states can be occured namely : the Lifshits glass, the Bose glass and

the disordered BEC phase. In absence of interactions, bosons in disordered environ-

ments will condense into the lowest-energy state, which is a localized state. This phase

is known as the Lifshits glass which is an insulating and non-compressible phase. A

repulsive interaction among the particles causes them to delocalize and hence, leads

to the disordered BEC phase [60]. The Bose glass is a highly inhomogeneous phase of

matter. It characterizes by a finite compressibility, the absence of a gap in the single

particle spectrum, and a nonvanishing density of states at zero energy. Note that the

non-interacting Bose gas is extremely sensitive to external random potentials.

2.3 Bogoliubov-Huang-Meng theory

In order to study the properties of the so-called dirty boson problem, Huang and

Meng in 1992 generalized the Bogoliubov theory of ultracold Bose gases in random

potentials. Here, we use the Bogoliubov-Huang-Meng theory [75] to investigate disor-

dered dipolar Bose gases at finite temperature in both 3D and 2D geometries. This

theory allows us to go beyond the zero-temperature GP equation solved with pertur-

bative approach [81, 84]. This extension gives detailed insights into the interplay of

thermal fluctuations and disorder effects in the anisotropy of superfluidity which not

the case for GP equation with perturbative treatment.
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We consider the effects of an external random field on a dilute 3D dipolar Bose

gas with dipoles oriented perpendicularly to the plane. Let us write the Hamiltonian

(1.11) of chapter.1 in the form

Ĥ=
∑
k

h̄2k2

2m
â†kâk+

1

∨
∑
k,p

Uk−pâ
†
kâp +

1

2∨
∑
k,q,p

V (p)â†k+qâ
†
k−qâk+pâk−p, (2.9)

where we have included the external potential U , and the interaction potential in

momentum space is given by [55]

V (k) = g[1 + εdd(3 cos2 θk − 1)], (2.10)

here εdd = Cdd/3g is the dimensionless relative strength which describes the interplay

between the DDI and the short-range interaction.

Assuming the weakly interacting regime where r∗ � ξ with ξ = h̄/
√
mgn being

the healing length and n is the total density, we may use the Bogoliubov approach.

Recalling that the Bogoliubov prescription assumes â†0 = â0 =
√
Nc, and âk for k 6= 0

as small perturbations. To second order in â†k and âk, the external potential term can

be evaluated as

∑
k,p

Uk−pâ
†
kâp = NcU0 +

√
Nc

∑
k

(
â†kUk + âkU−k

)
. (2.11)

The term NcU0 must be calculated in the second Born approximation. In the absence

of the external potential, the Hamiltonian (2.9) can be diagonalized by the standard

Bogoliubov transformation (1.17).

In order to diagonalize the full Hamiltonian (2.9), we apply the Huang-Meng trans-

formations [75] :

âk = ukb̂k − vkb̂†−k − βk, â†k = ukb̂
†
k − vkb̂−k − β

∗
k, (2.12)
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where b̂†k and b̂k are operators of elementary excitations. The transformation (2.12)

does not change the commutation rules and the quasiparticle operators b̂†k and b̂k

satisfy the usual bosonic commutation relations.

The Bogoliubov functions uk, vk are expressed in a standard way : uk, vk = (
√
εk/Ek±√

Ek/εk)/2 where Ek = h̄2k2/2m is the energy of a free particle, and

βk =

√
n

∨
Ek
ε2
k

Uk. (2.13)

The Bogoliubov excitations energy is given by

εk =
√
E2
k + 2µ0d(θ)Ek, (2.14)

where µ0d = n lim
k→0

f(k) is the zeroth order chemical potential.

Importantaly, the spectrum (2.14) is independent of the random potential. This inde-

pendence holds in fact only in zeroth order in perturbation theory ; conversely, higher

order calculations render the spectrum dependent on the random potential due to the

contribution of the anomalous terms (see below). For k → 0, the excitations are sound

waves εk = h̄csd(θ)k, where csd(θ) = cs
√

1 + εdd(3 cos2 θ − 1) with cs =
√
gn/m is

the sound velocity without DDI. Due to the anisotropy of the dipolar interaction,

the sound velocity acquires a dependence on the propagation direction, which is fixed

by the angle θ between the propagation direction and the dipolar orientation. This

angular dependence of the sound velocity has been confirmed experimentally [41].

Therefore, the diagonal form of the Hamiltonian of the dirty dipolar Bose gas (2.9)

can be written as

Ĥ = E +
∑
~k

εkb̂
†
kb̂k, (2.15)

where E = E0d + δE + ER,
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E0d(θ) = µ0d(θ)N/2 with N being the total number of particles.

δE =
1

2

∑
k

[εk − Ek − nf(k)], (2.16)

is the ground-state energy correction due to quantum fluctuations.

ER = −
∑
k

n〈|Uk|2〉
Ek
ε2
k

= −
∑
k

nRk
Ek
ε2
k

, (2.17)

gives the correction to the ground-state energy due to the external random potential.

The condensate depletion can be obtained utilizing the definition (1.25)

ñ = ñ0 + ñth + nR, (2.18a)

=
1

2

∫
dk

(2π)3

[
Ek + V̄ (k)nc

εk
− 1

]
(2.18b)

+
1

2

∫
dk

(2π)3

Ek + V̄ (k)nc
εk

[
coth

( εk
2T

)
− 1
]

(2.18c)

+ nc

∫
dk

(2π)3
Rk

E2
k

ε4
k

. (2.18d)

The leading term (2.18b) denotes the zero temperature contribution to the noncon-

densed density. The subleading term (2.18c) stands for thermal fluctuation correc-

tions to the noncondensed density. Whereas the third term (2.18d) represents the

contribution of the random potential known also as glassy fraction is analog to the

Edwards-Anderson order parameter of a spin glass [84, 89, 159]. It originates from

the accumulation of density near the potential minima and density depletion around
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the maxima. The anomalous density reads

m̃ = m̃0 + m̃th + nR, (2.19a)

− 1

2

∫
dk

(2π)3

V̄ (k)nc
εk

(2.19b)

− 1

2

∫
dk

(2π)3

V̄ (k)nc
εk

coth
( εk

2T

)
(2.19c)

+ nc

∫
dk

(2π)3
Rk

E2
k

ε4
k

. (2.19d)

The zero temperature term (2.19b) in the anomalous density is ultraviolet divergent.

This divergency comes from the contact interactions. To overcome such a problem

one should use the dimensional regularization which is valid for very dilute gases, and

gives for the integral
∫∞

0
dx(x/

√
1 + x2) = −1 [50, 160, 168]. The second term (2.19c)

accounts for thermal contributions to the anomalous density.

2.4 Superfluid fraction

In the presence of an external disorder potential, the normal density of the suepr-

fluid which only exists in the zero-temperature limit, reads as [84]

nijR = n
2h̄2

m

∫
ddk

(2π)d
Rkkikj

Ek[Ek − 2nV (k)]2
. (2.20)

Equation (2.20) is valid for arbitrary disorder correlation function R(k), and effec-

tive two-particle interaction V (k). For a system possessing cylindrical symmetry, say

around the z-axis, hence the integral of Eq.(4.22) over the azimuthal angle ϕ gives

sin θ

∫ 2π

0

dϕ eke
T
k =π


sin θ sin2 θ 0 0

0 sin θ sin2 θ 0

0 0 2 sin θ cos2 θ

 , (2.21)
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where θ is the polar angle.

The superfluid fraction (1.41) evaluated in chapter 1 is then written

nijs
n

= δij − 4

∫
d3k

(2π)3

h̄2

2m

nRkkikj
Ek[Ek − 2nf(k)]2

− 2

Tn

∫
d3k

(2π)3

[
h̄2

2m

kikj

4 sinh2(εk/2T )

]
.

(2.22)

The tensorial superfluid fraction separates into a parallel and a perpendicular part

defined respectively, as

n
‖
s

n
= 1− 4

∫
dk dθ

(2π)2

k4R(k)[
Ek + 2V̄ (k)n

]2 sin θ cos2 θ, (2.23)

and

n⊥s
n

= 1− 4

∫
dk dθ

8π2

k4R(k)[
Ek + 2V̄ (k)n

]2 sin θ sin2 θ. (2.24)

In the absence of the dipolar interaction, the superfluid density and the disorder

correlation become isotropic i.e. V (k) and R(k) are θ independent. signaling that

the superfluid fraction in both directions reduce to the standard result of Huang and

Meng ns/n = 1 − 4nR/3n [75]. This indicates that the normal component of the

superfluid is 4/3 times larger than the condensate fluctuations due to the disorder

effects nR.

2.5 Three-dimentional dipolar Bose gas in a random po-

tential

In the context of the present chapter, we wish to understand the ground-state

properties and superfluidity of disordered dipolar Bose gas in 3D case.

To proceed further in practical calculations, we must specify the type of random

potential. For this purpose, we take the case of a spatially decaying disorder correla-
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tion R(r). Therefore, in what follows, we restrict ourselves to the case of a Gaussian

correlation with the Fourier transform [80, 81]

R(k) = Re−σ
2k2/2, (2.25)

where R with dimension (energy) 2 (length)3 and σ characterize the strength and the

correlation length of the disorder, respectively. Equation (2.25) makes the macroscopic

wave function of BEC not sensitive to disorder in and between pores, but instead

depends on the disorder averaged over the coherence length. Hence the ensemble-

averaged system can become nearly uniform [80].

2.5.1 Fluctuations and thermodynamic quantities

Substituting (2.25) in Eq.(2.18d), we obtain for the condensate fluctuation due to

the disordered potential

nR =
m2R

8π3/2h̄4

√
n

a
h(εdd, α), (2.26)

where

h(εdd, α) =

∫ π

0

dθ sin θF(α)

2
√

1 + εdd(3 cos2 θk − 1)
, (2.27)

is depicted in Fig.2.3.

The function F(α) = e2α(4α + 1)
[
1− erf(

√
2α)
]
− 2

√
2α/π with α = σ2[1 +

εdd(3 cos2 θ−1)]/ξ2, has the following asymptotics for small α : F(α) = 1−4
√

2α/π+

6α − (32/3)α
√

2α/π + 10α2 + O
(
α5/2

)
. Equation (2.26) is in good agreement with

that obtained using the mean field theory [81].

We observe from Fig.2.3 that for a small disorder correlation length σ < ξ, the

contribution of the DDI on the disorder fluctuation is not important whereas in the

case of σ > ξ, the DDIs tend to enhance the disorder fluctuation.
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FIGURE 2.3: Behavior of the disorder function h(εdd, σ/ξ) from Eq.(2.27), as a function of
σ/ξ. Black line : εdd = 0 (pure contact interaction), blue line : εdd = 0.15 (Cr atoms), red
line : εdd = 0.38 (Er atoms), green line : εdd = 0.7 and brown line : εdd = 1 [77].

On the other hand, for σ/ξ → 0, we get from Eq.(2.27) that h(εdd, 0) = Q−1(εdd).

Thus, the disorder fluctuation (2.26) becomes identical to that obtained in 3D di-

polar BEC with delta-correlated disorder [178] nR = (m2R/8π3/2h̄4)
√
n/aQ−1(εdd),

where the contribution of the DDI is expressed by the functions Qj(εdd) = (1 −

εdd)
j/2

2F1

(
− j

2
, 1

2
; 3

2
; 3εdd
εdd−1

)
, where 2F1 is the hypergeometric function. Note that func-

tionsQj(εdd) attain their maximal values for εdd ≈ 1 and become imaginary for εdd > 1

[41, 55].

For σ/ξ → 0 and εdd = 0, we read off from Eq.(2.27) that one obtains h(εdd, α)→ 1.

Therefore, we should reproduce the Huang and Meng result [75] for the disorder

fluctuation in this limit.

Upon calculating the integral in Eq.(2.18), we get for the noncondensate depletion

ñ

n
=

8

3

√
na3

π
Q3(εdd) +

2

3

√
na3

π

(
πT

gn

)2

Q−1(εdd) + 2πR′
√
na3

π
h(εdd, α), (2.28)
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where R′ = R/g2n is a dimensionless disorder strength. The condensed fraction can

be calculated employing nc/n = 1− ñ/n.

The integral in Eq.(2.19) is ultraviolet divergent. A general way of treating such

integrals is to introduce the Beliaev-type second order coupling constant (1.45). This

gives for the anomalous fraction

m̃

n
= 8

√
na3

π
Q3(εdd)−

2

3

√
na3

π

(
πT

gn

)2

Q−1(εdd) + 2πR′
√
na3

π
h(εdd, α). (2.29)

The leading terms in Eqs.(2.28) and (2.29) represent the qunatum fluctuation[55].

The subleading terms which represent the thermal fluctuation[55], are calculated at

temperatures T � gn, where the main contribution to integrals (1.27) and (1.28)

comes from the region of small momenta (εk = h̄csdk). The situation is quite different

at higher temperatures i.e. T � gn, where the main contribution to integrals (1.27)

and (1.28) comes from the single particle excitations. Hence, the thermal contribution

of ñ becomes identical to the density of noncondensed atoms in an ideal Bose gas

[55], while the thermal contribution of m̃ tends to zero since the gas is completely

thermalized in this range of temperature [55, 159, 167]. The last terms in (2.28) and

(2.29) describe the effect of disorder on the noncondensed and on the anomalous

densities.

Equation (2.29) clearly shows that at zero temperature, the anomalous density

is three times larger than the noncondensed density for any range of the dipolar

interaction as well as for any value of the strength and the correlation length of the

disorder as it has been anticipated above. Moreover, m̃ changes its sign with increasing

temperature in agreement with uniform Bose gas with a pure contact interaction [55].

For εdd = 0, Qj(εdd) = 1 and thus, Eqs.(2.28) and (2.29) reproduce the short-range

interaction results. Furthermore, the DDI enhances the condensate depletion and the

anomalous fraction for increasing εdd.
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The energy shift due to the interaction and the quantum fluctuations (2.16)

are ultraviolet divergent. The difficulty is overcome if one takes into account the

second-order correction to the coupling constant (1.45). A straightforward calcula-

tion yields[42, 55]

δE =
64

15
∨ gn2

√
na3

π
Q5(εdd). (2.30)

However, the energy shift (2.17) due to the external random potential (2.25) is not

divergent and it can be evaluated as

ER
E0

= 16πR′
√
na3

π
h1(εdd, α), (2.31)

where E0 = Ngn/2, and

h1(εdd, α) =
1

2

∫ π

0

dθ sin
√

1 + εdd(3 cos2 θk − 1)F1(α), (2.32)

is displayed in Fig.2.4.

The function F1(α) = e2α[1− erf(
√

2α)]−
√

1/2πα has the asymptotics behavior for

small α : F1(α) = 1− (4 + π)
√
α/2π + 2α− (8/3)

√
2/πα3/2 + 2α2 +O

(
α5/2

)
.

As is seen from Fig.2.4 that for σ < 2ξ, the energy correction due to the disorder

effect (2.31) is negative which leads to lower the total energy of the system. Note that

this result still valid for any value of εdd < 1. Another important remark is that the

energy decreases with increasing εdd.

For a condensate with a pure contact interaction (Q5(εdd = 0) = 1) and in the ab-

sence of disordered potential (R = 0), the obtained energy excellently agrees with the

seminal Lee-Huang-Yang quantum corrected ground state energy [167].

For, σ/ξ → 0, the energy shift due to the external random potential (2.25) becomes

ultraviolet divergent. Again, by introducing the renormalized coupling constant (1.45)

one gets : ER/E0 = 16πR′
√
na3/πQ1(εdd) which well coincides with the result obtai-
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ned with delta-correlated disorder of Ref [178].
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FIGURE 2.4: Behavior of the disorder energy function h1(εdd, σ/ξ), from Eq. (2.32) as a
function of σ/ξ for same values of εdd as in Fig.2.3 [77].

2.5.2 Validity condition of the Bogoliubov theory

The Bogoliubov approach assumes that fluctuations should be small. We thus

conclude from Eqs. (2.28) and (2.29) that at T = 0, the validity of the Bogoliubov

theory requires the following inequalities

√
na3Q3(εdd)� 1, R′

√
na3h(εdd, α)� 1. (2.33)

For R′ = 0, this parameter differs only by the factor Q3(εdd) from the universal

small parameter of the theory,
√
na3 � 1, in the absence of DDI. At T � gn, the

Bogoliubov theory requires the condition (T/gn)
√
na3Q−1(εdd)� 1. The appearance

of the extra factor (T/gn) originates from the thermal fluctuations corrections.
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2.5.3 Superfluid fraction

Equation. (2.22) yields a superfluid density that depends on the direction of the

superfluid motion with respect to the orientation of the dipoles. In the parallel di-

rection and at low temperatures where εk = h̄csdk, the superfluid fraction can be

obtained from Eq.(2.23).

n
‖
s

n
= 1− 4πR′

√
na3

π
h‖(εdd, α)− 2π2T 4

45mnh̄3c5
s

Q‖−5(εdd), (2.34)

where the function

h‖(εdd, α) =

∫ π

0

dθ
sin θ cos2 θF(α)

2
√

1 + εdd(3 cos2 θ − 1)
, (2.35)

is decreasing with increasing εdd and vanishing for large σ/ξ as is depicted in Fig.2.5.a.

And the functions Q‖j(εdd) = 1
3
(1 − εdd)

j/2
2F1

(
− j

2
, 5

2
; 3

2
; 3εdd
εdd−1

)
, have the properties

Q‖j(εdd = 0) = 1/3 and become imaginary for εdd > 1 (see Fig.2.6). Therefore,

Eq.(2.34) reveals that DDI effects are more significant for condensate fracion (2.28)

than for the parallel superfluid fraction.

Again at low temperatures, the perpendicular direction of the superfluid fraction

(2.24) takes the form

n⊥s
n

= 1− 2πR′
√
na3

π
h⊥(εdd, α)− π2T 4

45mnh̄3c5
s

Q⊥−5(εdd), (2.36)

where the functions

h⊥(εdd, α) =

∫ π

0

dθ
sin θ(1− cos2 θ)F(α)

2
√

1 + εdd(3 cos2 θ − 1)
= h(εdd, α)− h‖(εdd, α),

and Q⊥j (εdd) = Qj(εdd)−Q‖j(εdd), are displayed in Figs.(2.5.b), and (2.6), respectively.

Expressions (2.34) and (2.36) constitute a natural extension of those obtained in [81]
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FIGURE 2.5: Behavior of the disorder functions h‖(εdd, σ/ξ) (a) and h⊥(εdd, σ/ξ) (b) as a
function of σ/ξ for same values of εdd as in Fig.2.3 [77].

since they contain the temperature correction (third terms). At T � ng, it is evident

that both thermal terms of ns coincide with the noncondensed density of an ideal

Bose gas. Figure (2.6) shows that the thermal contribution of n⊥s is smaller than that

of n
‖
s for εdd ≤ 0.5, while the situation is inverted for εdd > 0.5.

For σ/ξ → 0 and εdd = 0, both components of the superfluid fraction (2.34) and

(2.36) reduce to ns/n = 1 − 4nR/3n, which well recove earlier results of Refs [75,

76, 79] for isotropic contact interaction. For σ/ξ → 0, we have h‖(εdd, 0) = Q‖−1(εdd)

and h⊥(εdd, 0) = Q⊥−1(εdd). Consequently, the disorder correction to superfluid fraction
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function of εdd [77].

(2.26) becomes identical to that obtained in 3D dipolar BEC with delta-correlated di-

sorder [178]. We should stress also that for increasing εdd, h
‖(εdd, α) decreases, whereas

h(εdd, α) increases for fixed σ/ξ. Therefore, this reveals that there exists a critical va-

lue εcdd beyond which the system has the surprising property that the disorder-induced

depletion of the parallel superfluid density is smaller than the condensate depletion

even at T = 0. This can be attributed to the fact that the localized particles cannot

contribute to superfluidity and, hence, form obstacles for the superfluid flow. For a

large disorder correlation length i.e. σ � ξ, εcdd decreases indicating that the locally

condensed particles are localized in the respective minima for the disorder potential

for a finite localization time [86].

The superfluid fraction can be either larger or smaller than the condensate fraction

nc/n, depending on temperature, the strength of interactions, and on the strength of

disorder. Increasing R′ leads to the simultaneous disappearance of the superfluid and

condensate fractions. So for any value of na3 and of εdd there exists a critical strength

of disorder

R‖c =
4

π

Q3(εdd)

h‖(εdd, α)
, R⊥c =

2

π

Q3(εdd)

h⊥(εdd, α)
, (2.37)
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for which n
‖
s/n < nc/n and n⊥s /n < nc/n.

When σ/ξ → 0, R
‖
c = (4/π)[Q3(εdd)/Q‖−1(εdd)] and R⊥c = (2/π)[Q3(εdd)/Q⊥−1(εdd)]

. In the case of Er atoms (εdd = 0.38), R
‖
c ≈ 6.74 and R⊥c ≈ 0.78. For Cr atoms

(εdd = 0.15), R
‖
c ≈ 4.96 and R⊥c ≈ 0.86. This clearly shows that R

‖
c is decreasing with

εdd, while R⊥c is increasing with εdd.

Therefore, the Bogoliubov approach should satisfy the condition :R′ < Rc. However, it

is not clear whether these results are still valid forR′ > Rc in a range of densities where

the difference between ns/n and nc/n can be significant and hence, the system yields

a transition to a new quantum regime. The response to these questions requires either

a non-perturbative scheme or numerical Quantum Monte Carlo simulation, which are

out of the scope of the present work.
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CHAPITRE 3

DIPOLAR BOSE GAS WITH THREE-BODY INTERACTIONS IN WEAK

DISORDER

The interplay of disorder and interactions may trigger transitions to new

quantum phases which cannot exist in clean systems. Because of to the complexity of

the problem, there are still many open questions. In the following sections, we exa-

mine the role of both statistical correlations of the disorder potential and interactions

on the ground state properties and superfluidity of dipolar ultracold Bose gases in

the presence of the three-body interactions (TBI) These latter play a key role in a

wide variety of interesting physical phenomena, and provide a new physics not exis-

ted in systems with two-body interactions. Inelastic three-body processes, including

observations of Efimov quantum states and atom loss from recombination have been

reported in Refs [96-100]. Weakly interacting Bose and Fermi gases with competing

attractive two-body and large repulsive TBI may form droplets [101]. Effects of TBI

in ultracold bosonic atoms loaded in an optical lattice or a superlattice were also

studied in [10-105]. It was shown also that the TBI in Bose condensate may singni-

ficantly modify the collective excitations [106-108], the transition temperature, the

condensate depletion and the stability of a BEC [109, 110]. In the context of ultracold

atoms with DDI, it has been revealed that the combined effects of TBI and DDI may

lead to the formation of a stable supersolid state [111] and a quantum droplet state

[16-29 ], [19-21]. Very recently, we have shown that the TBI may shift the density

profiles, the condensed fraction and the collective modes of a dipolar condensate at

finite temperature [98].

Disordered dipolar Bose gases with TBI present a different physical picture

and may open prospects to achieve a stable superfluid. In the present chapter we study,
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for the first time to the best of our knowledge, effects of a weak disorder potential

with Gaussian correlation function (2.25) on the properties of BEC with two-body

interactions and TBI. To this end, we use the Bogoliubov-Huang-Meng theory which

includes an additional TBI term in the momentum space. Our results show that the

TBI are relevant in reducing the influence of the disorder potential in BEC. We deeply

discuss impacts of the disorder potential and the TBI on the fluctuations, coherence

and the thermodynamics of the condensate.

3.1 Hatree Fock Bogoliubov with TBI

We consider the effects of an external random potential U(r) on a dilute 3D

dipolar Bose gas with contact two- and three-body interactions. Assuming that dipoles

are oriented along z-axis. The Hamiltonian of the system reads :

Ĥ =

∫
dr ψ̂†(r)

[
− h̄2

2m
∆ + U(r)

]
ψ̂(r) +

1

2

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r)

+
g3

6

∫
dr ψ̂†(r)ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)ψ̂(r), (3.1)

where ψ̂† and ψ̂ denote, respectiveiy the usual creation and annihilation field opera-

tors, m is the particle mass. The two-body interactions is described by the potential

V (r−r′) = g2δ(r−r′)+Vd(r−r′), where g2 = 4πh̄2a/m with a being the s-wave scatte-

ring length is assumed to be positive. The DDI term Vd(r) = µ0µ
2
m(1−3 cos2 θ)/4πr3.

The three-body coupling constant g3 is in general a complex number with Im(g3)

describing the three-body recombination loss and Re(g3) quantifying the three-body

scattering parameter. Here, we will assume that the imaginary part of g3 is negligible

[21, 98, 107, 179, 180] which means that the loss rate is sufficiently small and hence,

the system is stable. This well coincides with the experimental conditions reported in

Ref.[19]. Note that the strength of the three-body coupling g3 is related to the atomic

species and can be adjusted by Feshbach resonance [20, 181]. It is therefore, hard to
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predict the exact value of g3 (see e.g. [101, 179, 182]). The disorder potential must

satisfy the conditions (2.3) and (2.4).

In the frame of the Boguliubov formalism, the Bose-field operator can be written

as

ψ̂(r, t) = Φ(r, t) + ˆ̄ψ(r, t), (3.2)

where Φ is the condensate wavefunction, and ˆ̄ψ stands for the field of the nonconden-

sed thermal atoms. Working in Fourier space, the condensate wavefunction is taken as

Φ(r, t) =
√
nc with nc being the condensate density, and the field operator of noncon-

densed atoms can be expanded in terms of plane waves ˆ̄ψ = (1/
√
V )
∑

k ake
ik.r. The

DDI potential in momentum space is given by : Vd(k) = (µ0µ
2
m/12π)(3 cos2 θk − 1),

where the vector k represents the momentum transfer imparted by the collision.

Now we deal with a weakly interacting system and assume that the disorder is

sufficiently weak. Then it is possible to use the Bogoliubov-Huang-Meng approach

[75] which suggests the transformations (2.12). This gives the Bogoliubov excitations

energy

εk =
√
E2
k + 2ncEkV̄ (k), (3.3)

where

V̄ (k) = g2(1 + g3nc/g2)[1 + γ(3 cos2 θk − 1)]

with γ = εdd/(1 + g3nc/g2).

For k → 0, the excitations are sound waves εk = h̄cs(θk)k, where

cs(θk) = c0

√
(1 + g3nc/g2)[1 + γ(3 cos2 θk − 1)] with c0 =

√
g2nc/m being the

sound velocity without DDI and TBI.

The diagonal form of the Hamiltonian (3.1) can be written as Ĥ = E+
∑
k

εkb̂
†
kb̂k.
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The total energy E = E0(θ) + δE + ER, where the zeroth order term

E0(θ) = V̄ (θ)ncNc/2, (3.4)

which should be computed in the limit k → 0 since it accounts for the condensate

(lowest state). The ground-state energy shift due to quantum fluctuations is

δE =
1

2

∑
k

[εk − Ek − ncV̄ (k)], (3.5)

and ER = −
∑
k

ncRk
Ek
ε2
k

gives the correction to the ground-state energy due to the

external random potential.

3.2 Condensate fluctuations

After having inserting the expression (2.25) of Gaussian disorder into Eq.(2.18d),

one obtains for the glassy fraction [125]

nR = nHM(1 + g3nc/g2)−1/2h(γ, σ/ξ), (3.6)

where nHM = [m2R0/8π
3/2h̄4]

√
nc/a is the usual Huang-Meng result [75]. The aniso-

tropic disorder function is given as

h(γ, σ/ξ) =

∫ π

0

dθ
sin θS(α)

2
√

1 + γ(3 cos2 θ − 1)
, (3.7)

where the function S(α) = e2α(4α + 1)
[
1− erf(

√
2α)
]
− 2

√
2α/π, and α =

σ2[εdd/γ(1 + γ(3 cos2 θ − 1))]/ξ2 with ξ = h̄/
√
mncg2 being the healing length. In

the absence of the DDI (εdd = 0), and in the limit σ/ξ → 0 and g3 = 0, one has

h(γ, α) → 1, thus, one recovers the well-known Hang and Meng result (nR = nHM)
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[75].

The effects of both correlation length and effective interaction parameter γ on

the behavior of the disorder function are presented in Fig.3.1. We observe that the

function h(γ, α) is decreasing with g3nc/g2 indicating that the TBI lead to reduce the

disorder fluctuations (glassy fraction) inside the condensate even in the limit σ < ξ. As

is expected, the disorder fraction becomes significant for large DDI in contrast to the

case of a disordered dipolar BEC with Lee-Huang-Yang (LHY) quantum corrections

[50]. The main difference between the TBI and the LHY corrections is that these

latter are valid only in the regime of weak disorder, since they are computed within

the local density approximation which assumes that the external random potential

should vary smoothly in space on a length scale comparable to the healing length or

the characteristic correlation length of the disorder [18]. Whereas, the TBI still remain

applicable for both weak and strong disorder potentials. For σ > ξ, the disorder effects

is not important (see Fig.3.1.b).
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FIGURE 3.1: Disorder function h(γ, σ/ξ), as a function of g3nc/g2 for several values of
εdd for σ/ξ = 0.4 (a) and σ/ξ = 1.2 (b) [125].

For delta-correlated disorder where σ/ξ → 0, the function h(γ, 0) = Q−1(γ) and

nR = nHMQ−1(γ), where the contribution of the DDI is expressed by the functions
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Qj(x) =
∫ 1

0
dy(1 − x + 3xy2)j/2 [18, 20],[70-73]. Note that the functions Qj(x) tend

to unity for γ = 0 (Qj(0) = 1), and become imaginary for γ > 0.

Now, we focus ourselves to calculate quantum and thermal depletion in a disor-

dered BEC. Integrals (2.18b) and (2.18c) yield, respectively

ñ0

nc
=

8

3

√
nca3

π
(1 + g3nc/g2)3/2Q3(γ), (3.8)

and

ñth
nc

=
2

3

(
πT

ncg2

)2
√
nca3

π
(1 + g3nc/g2)−1/2Q−1(γ). (3.9)

The anomalous density can be obtained via (2.19) with the help of the renormalization

developped in [59]. After some algebra, we get

m̃0

nc
= 8

√
nca3

π

(
εdd
γ

)3/2

Q3(γ) (3.10)

and

m̃th

nc
= −2

3

(
πT

ncg2

)2
√
nca3

π

√
γ

εdd
Q−1(γ). (3.11)

For εdd = 0 and g3 = 0, we recover the standard expressions for ñ0, ñth, m̃0 and m̃th.

When g3 = 0, the expressions (3.8)-(3.11) reduce to that obtained in a dipolar BEC

without TBI [57].

3.3 One-body density matrix

The one-body density matrix (first-order correlation function) is defined as

g(1)(r, r′, t, t′) = 〈ψ̂†(r, t)ψ̂(r′, t′)〉. In uniform case it depends only on the difference

|r− r′| = r. Using the decomposition (3.2), expressing the noncondensed field ope-
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rator as ˆ̄ψ = (1/V )
∑

k[ukb̂ke
ik.r − vkb̂

†
ke
−ik.r], and then taking into account that

|Φ(r, t)| = √nc. We thus, get

g(1)(r) = nc + g
(1)
R (r) +

∫ ∞
0

dk

(2π)d
[
v2
k + (u2

k + v2
k)Nk

]
eik·r, (3.12)

The second term g
(1)
R (r) =

∫
(dk/(2π)3)〈|βk|2〉 eik.r represents the disorder effects on

the first order correlation function. The behavior of g
(1)
R (r) is displayed in Fig.3.2.
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FIGURE 3.2: One-body density matrix due to the disorder corrections, g
(1)
R (r), for σ/ξ =

0.2 (a)-(b) and σ/ξ = 1.2 (c)-(d).[125].

We observe that for small disorder correlation length (σ/ξ = 0.2), g
(1)
R (r) is de-
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creasing with increasing the TBI and the DDI (see Fig.3.2. a-b ). The same behavior

holds for large σ. Importantly, g
(1)
R (r) vanishes at large distance r in both cases si-

gnaling the non-existence of mini condensates formed by the localized particles in the

respective minima of the external random potential. This does not mean that the

long-range order of the whole system is destroyed.

The last term in Eq.(3.12) accounts for the quantum and thermal contributions

to the one-body correlation function. One can easily show that this term decays at

r → ∞ and thus, g(1)(r) tends to nc, revealing the existence of the long-range order

(true condensate). Note that the DDI, the TBI and the temperature can also shift

the one-body correlation function.

3.4 Thermodynamic quantities

In this section, we calculate disorder corrections to some thermodynamic quan-

tities such as the chemical potential and the ground state energy.

Within the realm of the HFB theory, the chemical potential can be written as

µ = µ0 + δµ+ 2µR, (3.13)

where

µ0 = V̄ (0)nc, (3.14)

is the first-order chemical potential [18].

Corrections to the chemical potential due to the disorder effects are given as [125]

µR = g2nHM(1 + g3nc/g2)1/2H(γ, σ/ξ), (3.15)
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where

H(γ, σ/ξ) =
1

2

∫ π

0

dθ sin θ
√

1 + γ(3 cos2 θ − 1)S(α), (3.16)

Corrections to the chemical potential due to the quantum and thermal fluctuations

are defined as : δµ =
∑
k

V̄ (k) [vk(vk − uk) + (vk − uk)2Nk] [30, 51]. Nevertheless, this

chemical potential cannot be evaluated straightforwardly since the zero-temperature

term is ultraviolet divergent. Such a problem can be worked out either by using the

dimensional regularization which is valid for very dilute gases [18, 56, 103] or by

renormalizing the contact interaction through the T− matrix approach [104]. After

some algebra, the resulting corrections to the chemical potential read [125]

δµ

g2nc
=

32

3

√
nca3

π
(1 + g3nc/g2)5/2Q5(γ)

+
2

3

(
πT

ncg2

)2
√
nca3

π
(1 + g3nc/g2)1/2Q1(γ). (3.17)

Importantly, for g3 = 0, the total chemical potential (3.13) reduces to that obtained

in[18]. For a cleaned (R0 = 0) condensate with two-body contact interactions

(g3 = εdd = 0), the obtained corrections to the chemical potential coincide with the

seminal Lee-Huang-Yang quantum corrected equation of state [55].

The energy shift (2.17) due to the disorder effects is finite and it can be evaluated

as

ER
N

=
2mR0

h̄2 (1 + g3nc/g2)1/2

√
nca

π
h1(γ, σ/ξ), (3.18)

where the function

h1(γ, σ/ξ) =
1

2

∫ π

0

dθ sin θ
√

1 + γ(3 cos2 θ − 1)S1(α), (3.19)
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FIGURE 3.3: Disorder energy function h1(γ, σ/ξ) versus g3nc/g2 for σ/ξ = 0.5. Black
line : εdd = 0.16, blue line : εdd = 0.4, and red line : εdd = 0.8 [125].

and the function S1(α) = e2αerfc(
√

2α) −
√

1/2α. The disorder energy function

h1(γ, σ/ξ) is decreasing with g3 as is seen in Fig.3.3 indicating that the TBI lead

to lower the energy due to the disorder fluctuations which is in agreement with the

above results. We observe also that for g3nc/g2 ≤ 0.7, the DDI effects on the energy

are more pronounced.

In conclusion, we investigated in this chapter the properties of dipolar Bose gas

with TBI subjected to a correlated Gaussian disorder. We showed that the DDI

may lead to arrest transport of atoms under disorder augmenting the glassy fraction

inside the condensate, while the presence of the TBI may lead to a diffusive motion of

particles. The combined effects of the DDI, TBI, and temperature found to crucially

affect the chemical potential and the ground state energy of the system.
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CHAPITRE 4

TWO-DIMENTIONAL DIPOLAR BOSE GAS IN WEAK DISORDER

POTENTIAL

In past two decade, the experimental progress of the ultracold gases in 2D

[183-190] has attracted much attention. The properties of these fluids are radically

different from those in 3D. The famous Mermin-Wagner-Hohenberg theorem [191,

192] states that long-wavelength thermal fluctuations destroy long-range order in a

homogeneous 1D Bose gas at all temperatures and in a homogeneous 2D Bose gas

at any nonzero temperature, preventing formation of condensate. Since the earlier

works of Schick [193] and Popov [194], several theoretical studies of fluctuations,

scattering properties, and the appropriate thermodynamics have been performed in

[156], [195-201] .

In the last years, 2D or quasi-2D dipolar gases have attracted a great deal of in-

terest due to their intriguing scattering properties. Interesting structural properties

emerge in such systems is the presence of the low-lying roton minimum in the excita-

tion spectrum [38, 50] and the possibility of the crystallization of solid bubble into a

lattice superstructure, resulting in a global supersolid phase [50, 115, 202]. The ap-

pearance of the roton-maxon character in the excitation spectrum of pancake dipolar

condensates has been predicted first by Santos et al.[111] where it has been shown

that upon further decreasing the confining trap frequency the roton energy drops to

zero triggering a dynamical instability. Since that time, there has been a number of

recent theoretical studies proposing schemes to detect rotons and characterize their

effects on the properties of dipolar Bose-Einstein condensate (BEC) (e.g., see [43,

52, 154],[203-208]). The experimental observation of the roton modes has been repor-

ted very recently in Ref.[209] using momentum-distribution measurements in dipolar
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quantum gases of highly-magnetic Er atoms.

The roton-maxon character of the Bogoliubov spectrum was originally observed

in 4He superfluid and arises due to the strong isotropic repulsion between the atoms

in the liquid [210-214]. However, the nature of the roton in the context of quasi-2D

dipolar BECs is radically different. In these dilute systems, the roton is originated

from the anisotropy of the DDI interaction. It was found that the presence of the

roton minimum in 2D dipolar bosons leads to reduce the condensed fraction even at

zero temperature [215-217]. Finite temperature Monte Carlo simulations [58] have

revealed that the rotonization of the spectrum can decrease the Kosterlitz-Thouless

superfluid transition temperature. As for the pancaked dipolar BEC, it has been

pointed out that the roton modes serve to change the sign of the anomalous density

near the trap center for large values of DDI [51].

The study on dirty dipolar boson systems is still inadequate. In this chapter,

we investigate the properties of a quasi-2D dipolar Bose gas subjected to a weak

random potential with Gaussian correlation by using the Huang-Meng-Bogoliubov

theory which marked an important step towards a quantitative description of dirty

dipolar Bose systems as we have seen in previous Chapters. Before doing so, we first

review the main features of a cleaned homogeneous dipolar Bose gases in a quasi-2D

geometry. We derive analytical expressions for the condensate fluctuations and ther-

modynamic quantities such as the chemical potential, the ground state energy and

the sound velocity for Gaussian correlated disorder potential in the roton regime. We

analyze the behavior of noncondensed and anomalous densities in terms of the tem-

perature and the interaction strength. Moreover, we calculate the corrections to the

sound velocity due to the correlated disorder and the superfluid fraction with respect

of the system parameters. It is found that the presence of a disordered potential in

the regime where the roton develops in the excitations spectrum strongly enhances
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the fluctuations, the thermodynamics and the superfluidity.

4.1 Cleaned two-dimensional homogeneous dipolar Bose

gases

We consider a dilute Bose-condensed gas of dipolar bosons tightly confined in

the axial direction z by an external potential V (r) = m2z2/2 and assume that in the

x, y plane the translational motion of atoms is free. The dipole moments d are oriented

perpendicularly to the x, y plane. In the ultracold limit kr∗ � 1, where r∗ = md2/h̄2

is a characteristic range of the DDI, the momentum representation of the two-body

interaction potential V (r− r′) is given as [50]

V (k) = g2D(1− C|k|), (4.1)

where C = 2πd2/g2D, g2D = g3D/
√

2l0 is the 2D contact interaction coupling constant

which strongly depends on the strength of the transverse confinement l0 =
√
h̄/m,

and g3D = 4πh̄2a/m with a being the s-wave scattering length (a > 0 throughout this

section). Another model for the effective quasi-2D potential was proposed in Ref.[218]

V (k) = g2D[1−Ckl0 exp(k2l20/2)Erfc(kl0/
√

2)], where Erfc is the complementary error

function. Expanding this potential which can be obtained by integration of the full

3D dipolar interaction over the transverse harmonic oscillator at small momenta leads

to V (k) = g2D(1−Cl0k), with l0 adjusts the scale for the strength of the linear term

and can be set to unity since the ratio between the dipolar length and the trap length

is the most important. Therefore, both potentials require a high momentum cut-off

when calculating the beyond-mean field corrections. The large momentum behavior

of both potentials is different, the potential of Ref.[218] is constant (−
√

2/π) for large

k, while the potential (4.1) is linear in k.

Applying the standard Bogoluibov theory presented in chapter 1, we obtain for
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the excitations spectrum [50]

εk =
√
E2
k + 2ng2DEk(1− Ck) (4.2)

To zero order the chemical potential is µ = ng2D. For small momenta the excitations

are sound waves, εk =
√
ng2D/mk. The dependence of εk on k remains monotonic

with increasing k if C ≤
√

8ξ/3 (see Fig. 4.1). For the constant C in the interval

√
8

3
ξ ≤ C ≤ ξ, (4.3)

the excitation spectrum has a roton-maxon structure. It is then convenient to re-

present εk in the form :

εk =
h̄2k

2m

√
(k − kr)2 + k2

∆, (4.4)

where kr = 2C/ξ2 and k∆ =
√

4/ξ2 − k2
r . If the roton is close to zero, then kr is the

position of the roton, and

∆= h̄2krk∆/2m=2ng2DC

√
mng2D/h̄

2 − C2(mng2D/h̄
2)2 (4.5)

is the height of the roton minimum (see Fig 4.1). For C = ξ the roton minimum

touches zero, and at larger C the uniform Bose condensate becomes dynamically

unstable.

It should be noted that the coupling constant g2D can be tuned by using Fe-

shbach resonances or by modifying the frequency of the tight confinement. There-

fore, although the range of C given by Eq.(4.3) is rather narrow, it can be rea-

ched without serious difficulties. The condition C = 2πd2/g2D = ξ is reduced to

(mg2D/2πh̄
2) = a/

√
2l0 ' 2πnr2

∗. For dysprosium atoms we have the dipole-dipole

distance r∗ ' 200 Å, and at 2D densities ∼ 109 cm−2 the roton-maxon spectrum is

realized for the 3D scattering length a of several tens of angstroms at the frequency
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of the tight confinement of 10 kHz leading to the confinement length l0 about 1000

Å.
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FIGURE 4.1: Excitation energy εk of the quasi-2D dipolar BEC as a function of momentum
k for several values of kr. The solid curve (krξ = 1.84) shows a monotonic dependence εk,
the dotted curve (krξ = 1.96) is εk with the roton-maxon structure, and the dashed curve
(krξ = 2.08) corresponds to dynamically unstable BEC [50].

4.1.1 Condensed depletion

At zero temperature, the evaluation of the integral (1.27) in 2D geometry requires

special care due to the crucial contribution to the beyond mean field terms of the

transverse trap modes of the contact interactions. The large-momentum divergence

originating from the dipolar term −g2DCk (valid only for k � 1/r∗) is another issue

of the integral

δµLHY =
1

2

∫
dk

2π)2
Vk

[
Ek
εk
− 1

]
. (4.6)

One possibility to solve this problem is to work with an arbitrary Λ-cutoff. In the case

of contact interactions, the potential (4.1) takes the form V (k) = g2D for k < Λ, and

0 otherwise. Then, if Λ is larger than typical momenta in the gas, the obtained LHY

corrections are cutoff-independent and in good agreement with the existing literature

(see e.g. [156],[219-221]). Now if one applies this method to the dipolar interaction
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case, it turns out that the resulting corrections to the equations of state are cutoff-

dependent (the cutoff is not larger than the roton momentum) due to the special

character of the DDI (see e.g [222]). Another possible route to compute the LHY

corrections (4.6) is to take into account the full transverse structure. Obtaining rea-

sonable stable corrections within this technique is also a tedious and time-consuming

task (diagonalizing the Bogoliubov-De Gennes equations is extremely difficult both

analytically and numerically) [50].

To circumvent this problem, a high-momentum cutoff is considered here which

is valid in the ultracold regime k � 1/r∗ [50]. Despite it gives qualitative correct

results, it renders much simpler the calculations and captures the main features of

the system at hand [50]. The choice of this momentum cutoff is not only motivated

by computational convenience, but also the obtained corrections will be insensitive

to the cutoff in contrast to the Λ-cutoff method. This leads [50]

ñ

n
=
mg2D

4πh̄2

[
1−krξ−

3(krξ)
2

4
+

(krξ)
2

2
ln

(
ξ

r∗(2−krξ)

)]
. (4.7)

In the absence of the dipole-dipole interaction (r∗ = 0 and kr = 0) we recover the usual

result for the 2D BEC with short-range interparticle repulsion, ñ = n(mg2D/4πh̄
2).

For ∆� ng2D we have (2− krξ) ' (k∆ξ)
2/4 and Eq.(4.7) transforms to

ñ

n
' mg2D

πh̄2 ln

(
2ng2D

∆
ζ

)
; ∆� ng2D, (4.8)

where ζ =
√

2πh̄2/e2mg2D.

As we see from Eq. (4.8), for the roton minimum close to zero a small condensate

depletion and small fluctuations of the density require the inequality

mg2D

πh̄2 ln

(
2ng2D

∆

)
� 1. (4.9)
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It differs only by a logarithmic factor ln(2ng2D/∆) from the small parameter of the

theory, (mg2D/2πh̄
2)� 1, in the absence of the roton.
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FIGURE 4.2: Non-condensed fraction as a function of krξ for mg2D/4πh̄
2 = 0.01 (ξ/r∗ =

100/krξ) [50].

We thus conclude that at T = 0 the validity of the Bogoliubov approach is gua-

ranteed by the presence of the small parameter (4.9). For the dysprosium example

given after Eq.(4.5) we have ng2D about 5 nK, and the criterion (4.9) is satisfied for

the roton energy above 2 nK.

4.1.2 Equation of state

Using the same high-momentum cutoff scheme, the LHY corrections is obtained

in[50]

δµLHY

E0

= (4π3/2/b2)2nr2
∗

{
1− 2b(nr2

∗)
1/2 − 3b2nr2

∗ + 2b2nr2
∗ ln
[
1/2(1− b

√
nr2
∗)
]}

,

(4.10)

where E0 = h̄2/mr2
∗ and b =

√
2π3/2l0/a. In the absence of the DDI, Eq.(4.10)

excellently agrees with the usual short-range 2D Bose gas (see e.g. [156, 221]).

When the roton minimum is close to zero i.e. C = ξ, one has δµLHY/E0 '
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(8π3/2/b2)2nr2
∗ ln
[
1/
√
b2nr2

∗(1− b2nr2
∗)
]
. The quantum corrections (4.10) are impor-

tant to halt the collapse of the system when the roton touches zero (roton instability)

conducting to a stable droplet state [31].

4.1.3 Fluctuations at finite temperatures

As we have stated in the introduction, in 2D at finite temperatures, long-wave

fluctuations of the phase destroy the condensate [191, 192, 194]. There is the so-called

quasicondensate, or condensate with fluctuating phase. In this state fluctuations of

the density are suppressed but the phase still fluctuates. The transition from a non-

condensed state to quasi-BEC is of the Kosterlitz-Thouless type and it occurs through

the formation of bound vortex-antivortex pairs [20]. Somewhat below the Kosterlitz-

Thouless transition temperature the vortices are no longer important, and in the

weakly interacting regime that we consider the phase coherence length lφ is exponen-

tially large. Thermodynamic properties, excitations, and correlation properties on a

distance scale smaller than lφ are the same as in the case of a true BEC. Moreover,

for realistic parameters of quantum gases, lφ exceeds the size of the system [221], so

that one can employ the ordinary BEC theory.

At finite temperature, the LHY thermal fluctuations reads

δµth
LHY =

∫
V (k)

Ek
εk

[exp(εk/T )− 1]−1 dk

(2π)2
. (4.11)

In contrast to the zero temperature case, integral (4.11) is finite (convergent). At low

T , the main contribution to Eq.(4.11) comes from the phonon branch. This yields [31]

δµth
LHY

E0

=
b2

4π3/2

[
ζ(3)√

2
(nr2
∗)
−2

(
T

E0

)3

− b

120π2
(nr2
∗)
−5/2

(
T

E0

)4 ]
, (4.12)

where ζ(3) is the Riemann Zeta function. Notice that at T > µ0, the leading term for
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the chemical potential coincides with that of an ideal gas.

Assuming now that the roton energy ∆ is very small (at least ∆� T ), Eq.(4.12)

turns out to be given as [50] :

δµ

µ
' 2mg2D

h̄2

T

∆
; ∆� T. (4.13)

Equation (4.13) clearly shows that the rotonization of the spectrum can strongly

increase thermal fluctuations of the density and destroy the Bose-condensed state

even at very low T .

We now calculate the density of the normal component in the presence of the

roton. If the roton minimum is close to zero and ∆� T , then the momenta near the

roton minimum are the most important, and the integration over dk yields [50] :

nT
n

=
2mg2D

h̄2

T

∆
. (4.14)

The employed approach requires the condition nT � n because we used the spectrum

of excitations obtained by the Bogoliubov method. Again, at temperatures T <
∼

∆ we

should have the inequality (2mg2D/h̄
2)T/∆� 1.

One can conclude that at finite temperatures, the Bogoliubov approach requires

the inequality

mg

h̄2

(
2ng2D

∆

)2
T

∆
� 1, (4.15)

whereas for T <
∼

∆ it is sufficient to have criterion (4.9).

4.2 Two-dimentional dipolar Bose gas with weak disorder

In this section we study the effects of a weak disorder potential on a dipolar

Bose gas quasi-2D in the regime where rotons develop. We report on the behavior

of a number of key quantities that characterize the system, including the condensate
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depletion, the ground-state energy, the sound velocity and superfluid fraction.

4.2.1 Fluctuations and Thermodynamics

In what follows, we consider the case of a weak external random potential with

Gaussian correlation which can be written in the momentum space as Eq. 2.25. Indeed,

this type of disorder potential makes our study substantially more detailed, general

and rigorous since uncorrelated random potentials are usually crude approximations

of realistic disorder, for which σ can be significantly large.

Assuming now that the roton is close to zero and the roton energy is ∆ � µ,

we have the coefficient C close to ξ, and kr ' 2/ξ. Then, using Eq.(2.25) for the

contribution of momenta near the roton minimum at T = 0, we obtain :

nR
n

=
mg2D

4h̄2

(
2µ

∆

)3

Re−2σ2/ξ2 ; ∆� µ, (4.16)

where R = R0/ng
2
2D is a dimensionless disorder strength.

For σ/ξ → 0, the disorder fluctuation (4.16) reduces to that of dipolar BEC with

δ-correlated disorder [92].

Integrals (2.18) and (2.19) are logarithmically divergent at large momenta because

of the dipolar contribution to the interaction strength −g2DCk [50]. To overcome this

problem, we can resort to a high momentum cut-off 1/r∗. Inserting the resulting

expressions in (2.18) and (2.19), we obtain for the condensate depletion and the

anomalous fraction :

ñ

n
≈ m̃

n
' mg2D

πh̄2

[
ln

(
2µ

∆
ζ

)
+
π

4

(
2µ

∆

)3

Re−2σ2/ξ2

]
, (4.17)

The leading term in Eq.(4.17) was first obtained in the recent work [50], while the

second term represents the disorder correction to the noncondensate and anomalous
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fractions [93]. For σ/ξ � 1, the disorder effects become negligible and hence, the

condensed fraction takes the form nc/n ' 1 − (mg2D/πh̄
2) ln(2µζ/∆). Furthermore,

equation (4.17) clearly shows that the anomalous density and the condensate depletion

are comparable in the roton branch.
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FIGURE 4.3: Quantum depletion of dirty dipolar condensate, as a function of µ/∆ and σ/ξ
for mg2D/4πh̄

2 = 0.01 and R = 0.1.[93]

Figure.4.3 shows that in the absence of the random external potential i.e. R = 0,

the noncondensed fraction grows logarithmically (see Eq. (2.18)) when the roton

energy ∆ goes to zero yielding the transition to a supersolid state [50, 111, 202]. In

the presence of the disorder potential the ratio of the correlation length and the healing

length σ/ξ decreases the condensate depletion according to the function e−2σ2/ξ2 .

The Bogoliubov approach assumes that the condensate depletion should be small.

We thus conclude from Eq. (2.18) that at T = 0 and for the roton minimum close

to zero, the validity of the Bogoliubov approach is guaranteed by the inequalities(
mg2D/πh̄

2
)

ln(2µ/∆ζ) � 1, and
(
mg2D/h̄

2
)

(2µ/∆)3Re−2σ2/ξ2 � 1. For R = 0

and in the absence of the roton, this condition differs only by the logarithmic factor

ln(2ng2D/∆) from the universal small parameter of the theory,
(
mg2D/πh̄

2
)
� 1.

However, the situation changes in the calculation of the correction to the ground-

state energy due to the external random potential. When the roton minimum is
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approaching to zero, we get from (2.17)

ER
E0

= −2mg2D

h̄2

(
2µ

∆

)
Re−2σ2/ξ2 ; ∆� µ. (4.18)

Equation (4.18) shows that ER linearly depends on ng2D/∆, and decreases with in-

creasing σ/ξ. Furthermore, the correction (4.18) is negative which means that the

random potential leads to lower the total energy of the system.

The correction to the chemical potential due to disorder effects is then obtained easily

through ∂ER/∂N

µR
µ

= −mg2D

h̄2

(
2µ

∆

)3

Re−2σ2/ξ2 ; ∆� µ. (4.19)

The shift of the ground-state energy due to quantum fluctuations can be given as

E ′

E0

' 1 +
2mg2D

πh̄2 +
2mg2D

πh̄2 ln

(
2µ

∆

)
; ∆� µ. (4.20)

Note that quantum fluctuations correction to the chemical potential can be calculated

straightforwardly using ∂E ′/∂N (see e.g. [50]).

The correction to the sound velocity can be simply calculated via mc2
s = n∂µ/∂n

[50, 56, 166] as

c2
s

c2
s0

= 1 +
mg2D

πh̄2

[
2 ln

(
2µ

∆

)
+

(
2µ

∆

)2
]

(4.21)

+
mg2D

h̄2

[(
2σ2

ξ2
+

3

2

)(
2µ

∆

)3

− 3

2

(
2µ

∆

)5
]
Re−2σ2/ξ2 ,

where cs0 =
√
µ/m is the zeroth order sound velocity. The second and the third

terms originate from quantum fluctuations while the last term comes from the disor-

der contribution. For σ/ξ → 0, the sound velocity (4.21) becomes identical to that

obtained in quasi-2D dipolar BEC with delta-correlated disorder [92].
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Equation (4.21) shows that the main correction to the sound velocity due to the

disorder potential is negative ∼ −(2µ/∆)5Re−2σ2/ξ2 .
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FIGURE 4.4: Sound velocity as a function of µ/∆ and σ/ξ. Parameters are the same as in
Fig.4.3 [93].

We see from Fig.(4.4) that for σ � ξ, cs is practically constant in the range

0 < ∆ ≤ µ, while it reduces and vanishes at ∆ ' µ/2. This value can be changed

with increasing or decreasing the disorder strength R. For σ > ξ, cs rises with rising

µ/∆.

It is worth stressing that, in 3D disordered BECs with a pure contact interaction,

the sound velocity has been calculated with different approaches leading to different

predictions. For instance, standard perturbation theory predicts an increased cs in

Bose gas with an uncorrelated disorder [76, 223]. On the other hand, the extended

Bogoliubov approach developed in [224, 225] and the mean field theory of Ref [159]

provide a reduced sound velocity.

4.2.2 Superfluid fraction of quasi-2D bose gas

In the context of the liquid helium, it has been shown that the position of

the roton minimum influences the phenomenon of superfluidity [226]. Here we look
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how the interplay of the rotonization and external disorder potential can affect the

superfluid fraction of a quasi-2D Bose gas with DDI.

The superfluid fraction ns/n can be found from the normal fraction nn/n which is

determined by the transverse current-current correlator ns/n = 1 − nn/n. We apply

a Galilean boost with the total momentum of the moving system P̂v = P̂ + mvN ,

where P̂ =
∑

k h̄k â
†
kâk and v is the liquid velocity. In the d-dimensional case, the

superfluid fraction reads

ns
n

= 1− 2

dTn

∫
ddk

(2π)d

[
Ek

4sinh2(εk/2T )
+
nRkE

2
k

ε3
k

coth
( εk

2T

)]
. (4.22)

At very low temperature we can put coth(εk/2T ) = 2T/εk. Thus, Eq. (4.22) reduces

to

ns
n

= 1− 4

d

nR
n
− 2

dTn

∫
ddk

(2π)d

[
Ek

4sinh2(εk/2T )

]
. (4.23)

Equation.(4.23) clearly shows that the ratio between the normal fluid density and the

corresponding condensate depletion increases to 2 in 2D and to 4 in 1D, in contrast

to the familiar 4/3 in 3D geometry obtained earlier in [75, 76, 78]. Remarkably, the

superfluid density (4.23) is a scalar quantity contrary to the 3D case where it has

been found that ns is a tensorial quantity[82, 178] due to the anisotropy of the DDI.

Assuming now that the roton minimum is close to zero, then the momenta near

the roton minimum are the most important, this yields at T = 0 :

ns
n

= 1− mg2D

2h̄2

(
2µ

∆

)3

Re−2σ2/ξ2 ; ∆� µ. (4.24)

This equation shows that for σ/ξ � 1, ns ∼ n in contrast to nc where this latter

remains small even for σ/ξ � 1 owing to the quantum fluctuation described by the

logarithmic term.

Now we turn to analyze numerically the normal fraction of the superfluid as a
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function of the ratio σ/ξ and the strength of disorder for different positions of the

roton minimum using the standard Monte Carlo method. The results are depicted in

Fig.4.5.

We observe that for σ ≥ ξ, the normal fraction vanishes and thus, the system

becomes completely superfluid for any value of the disorder strength and the roton

position. The reason is that when the healing length of the BEC is smaller than the

correlation length of the disorder potential, the kinetic energy term is small and the

BEC density simply follows the spatial modulations of the potential and hence, the

condensed particles will not localize [227]. This result excellently coincides with our

analytical predictions (4.24). Whereas, for σ < ξ, nn/n is increasing with R and C/ξ.

One can observe from the same figure that when the roton minimum is very close to

zero (C ∼ ξ) and for a large value of R, the normal fraction is significant which makes

it possible to destroy superfluidity even at very low temperature (see Fig.4.5.c). This

is attributed to the fact that the particles are localized in the respective minima

of the external random potential and thus form distributed randomly obstacles for

the motion of the superfluid. However this localization is different from Anderson

localization of Bogoliubov quasiparticles observed by Lugan et al. [228, 229]. The

Bogoliubov quasiparticles experience a randomness mediated by the inhomogeneous

condensate background, which responds nonlinearly and nonlocally to an effective

potential that is different from the usual bare disorder [225, 228, 229, 230]. Therefore,

the localization properties are changed compared to bare particles although the

general symmetry class is the same [229, 230].
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FIGURE 4.5: Normal fraction from Eq.(4.22), as a function of σ/ξ for R = 0.05 (Blue
dashed), R = 0.1 (Red dotted) and R = 0.15 (Green dotdashed). Parameters are : T/µ =
0.2 and mg/4πh̄2 = 0.01. Black lines represent analytical solutions [93].

In conclusion, we have investigated a dilute 2D dipolar Bose gas with dipoles

oriented perpendicularly to the plane subjected to a weak Gaussian correlated disorder

potential in the roton regime. Using the Bogoliubov-Huang-Meng approach, we have

derived analytical expressions for the condensate depletion, the ground state energy,

the equation of state, the sound velocity and the superfluid fraction. Our analysis

signifies that in the limit σ/ξ → 0, the disorder potential strongly enhances the

fluctuations and the thermodynamic quantities. This may lead to the transition of

a non-trivial quantum phase (disordered supersolid state). We have pointed out also

that the peculiar interplay of rotonization induced by DDI and disorder may lead to

strongly depress the superfluid density in the roton’s region due to the localization of

the particles in the respective minima of the external random potential.

The findings of this chapter open up new prospects for investigating effects of a

disorder potential on 2D dipolar BEC in a bilayer system, the subject of the next

chapter.
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CHAPITRE 5

EFFECTS OF WEAK DISORDER ON TWO-DIMENSIONAL BILAYERED

DIPOLAR BOSE-EINSTEIN CONDENSATES

Ultracold dipolar gases in layered structures have attracted considerable at-

tention [15-18, 84, 112-123]. Unlike single layers, bilayered configurations in quasi-2D

geometry, the dipolar interaction between particles in different layers shows attrac-

tive regions that makes possible the formation of dimers. These setups exhibit many

interesting phenomena namely : the formation of conventional and unconventional

superfluids of polar molecules [15-18, 112, 114, 116, 117, 119], soliton molecules [120]

and the enhacement of the roton instability [113, 122] due to the interlayer effects.

The Fermi-polaron problem has been also discussed in such a bilayer system [123].

However, the contemporary problem of disordered ultracold dipolar bosons in bi-

layer systems has never been analyzed in the literature. Due to the availability of

creating this bilayered configuration experimentally by means of a 1D subwavelength

lattice, it is then instructive to study disordered BEC with DDI in bilayer arrange-

ments. Such systems enable us to unveil the intriguing role of disorder, the interlayer

effects and the dipolar interactions.

In this chapter, we investigate the problem of a disordered quasi-2D bilayered

dipolar BEC with dipoles are oriented perpendicularly to the layers and in same (i.e

parallel, denoted ↑↑) /opposite (i.e antiparallel, denoted ↓↑), directions in different

layers (see Figs.5.1). To this end, we use the Bogoliubov-Huang-Meng theory [77].

Many studies have confirmed recently the effectiveness of this method in treating dirty

dipolar Bose gases [74, 56, 16, 96, 57, 131]. We quantitatively examine the effects of

varying polarization direction and interlayer DDI on the excitations spectrum, glassy

fraction, one-body density matrix and the superfluid fraction. Importantly, we find

93



FIGURE 5.1: Schematic representaion of the dipolar bilayer systems under consideration :
(left) dipoles oriented in same directions in different layers (parallel configuration, ↑↑).
(right) dipoles oriented in opposite directions in different layers (antiparallel configuration,
↓↑)[126].

that in the parallel configuration, the interlayer DDI causes delocalization of particles

enabling the transition to the superfluid phase. Surprisingly, in the antiparallel arran-

gement, the bosons strongly fill the potential wells formed by disorder fluctuations

depressing both the condensate and the superfluidity due to the intriguing interplay

of the disorder and the interlayer DDI. Our results reveal also that beyond a certain

temperature depending on the polarization direction, the superfluid fraction vanishes.

5.1 Model

We consider a dilute Bose-condensed gas of dipolar bosons subjected to an

external random potential loaded in a quasi-2D bilayer setup. Assuming vanishing

hopping between layers and dipole moments d are aligned perpendicularly to the plane

of motion (cf. Figs 5.1). In a quasi-2D bilayer, the secondly quantized Hamiltonian
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(2.9) truns out to be given as :

Ĥ=
∑
j

[∑
k

Ekâ
†
jkâjk+

1

S

∑
k,p

Uj,k−pâ
†
jkâjp +

1

2S

∑
k,q,p

Vjj(|q−p|)â†j,k+qâ
†
j,k−qâj,k+pâj,k−p,

+
1

2S

∑
j′

∑
k,q,p

Vjj′(|q−p|)â†j,k+qâ
†
j′,k−qâj′,k+pâj,k−p

]
, (5.1)

where j = ±1 is the layer index, S is the surface area, Ek = h̄2k2/2m is the energy of

free particle, â†k, âk are the creation and annihilation operators of particles, and U is

the disorder potential which is described by vanishing ensemble averages 〈U(r)〉 = 0

and a finite correlation of the form 〈U(r)U(r′)〉 = R(r, r′). In quasi-2D geometry,

at large interparticle separations r the intralayer interaction reads Vjj(r) = d2/r3 =

h̄2r∗/mr
3 [13], where r∗ = md2/h̄2 is the characteristic dipole-dipole distance, d is the

dipole moments, and m is the particle mass. In momentum space it can be written

as [122]

Vjj(k) = g(1− C|k|), (5.2)

where g = g3D/
√

2l0 is the 2D short-range coupling constant, l0 =
√
h̄/m, and is the

confinement frequency, and C = 2πh̄2r∗/mg.

The interlayer interaction potential (j 6= j′) is given by [94, 121, 101, 231]

Vjj′(r) = V↑↑,↓↑(r) = ± d2 r2 − 2λ2

(r2 + λ2)5/2
. (5.3)

The potential Vjj′(r) is attractive at large/short distances r depending on the dipoles

orientation leading to the formation of an interlayer bound state. The corresponding

Fourier transform is given by V↑↑,↓↑(k) =
∫
drV↑↑,↓↑(r)e

−ikr. After some algebra, we

obtain for the two configurations [126] :

V↑↑,↓↑(k) = ∓2πh̄2

m
r∗|k|e−|k|λ, (5.4)
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For kλ � 1, V (k) = (2πh̄2/m) r∗k. This linear dependence on k originates from the

so-called anomalous contribution to scattering [231]. Now, we address the regime of

weak interactions i.e. mg/2πh̄2 � 1 and r∗ � ξ, with ξ = h̄/
√
mng being the healing

length, and sufficiently weak external disorder potential. The Hamiltonian (5.1) can

be diagonalized using the Bogoliubov-Huang-Meng transformation [84] : âk = ukb̂k −

vkb̂
†
−k − βk, where b̂†k and b̂k are operators of elementary excitations. The Bogoliubov

functions uk, vk are expressed in a standard way : uk, vk = (
√
εk/Ek ±

√
Ek/εk)/2,

βk =
√
n/SUkEk/ε

2
k, where S is the surface area. The Bogoliubov excitations energy

reads [126]

εk ↑↑,↓↑ =
√
E2
k + 2ngEk(1− Ck ∓ Cke−kλ), (5.5)

For kλ � 1, the interlayer DDI vanishes and thus, the spectrum (5.5) reproduces

analytically the roton-maxon structure seen in the 2D ordinary dipolar BEC (i.e.

single layer) [50].

For kλ � 1, one has εk ↑↑ =
√
E2
k + 2ngEk(1− 2Ck) which is similar to the single

layer spectrum, while εk ↓↑ =
√
E2
k + 2ngEk is equivalent to the spectrum of a

nondipolar BEC. One can conclude that for a bilayer system of dipoles with the

antiparallel polarization of dipolar moments in two layers, the interlayer effects is

important only for large enough interlayer distance λ in stark contrast with the

parallel configuration. At low momenta k → 0, the excitations are linear in k (phonon

regime) εk = h̄csk, where cs =
√
ng/m is the sound velocity, it does not depend

neither on the interlayer DDI nor on the intralayer DDI regardless the value of λ and

the polarization directions (see Fig.5.2). At higher momenta, it becomes quadratic

as in the nondipolar case (see Fig.5.2) for any interlayer distance. The dispersion

relation changes it behavior and exhibits roton-maxon structure at intermediate k as

is shown in Figs.5.2.(a) and (b). The position and the energy of the roton strongly

depend on the effect of varying polarization orientation and interlayer DDI. For

instance, the roton can be formed in the dispersion spectrum for very small λ in
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the configuration ↑↑, while in the arrangement ↓↑, the roton can be observed only

for large λ. The roton instability can be identified by dεk/dk|k=kr = 0. The roton

minimum touches zero at kr = 0 leading to roton instability. Another feature of the

spectrum (5.5) is that it is independent of the random potential.
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FIGURE 5.2: The Bogoliubov excitations spectra (a) εk ↑↑ and (b) εk ↓↑ from Eq.(5.5) for
several values of λ. Solid line : λ = 0.05. Dashed line : λ = 0.2. Dotted line : λ = 1.1
[126].

5.2 Noncondensed density

At zero temperature, the noncondensed density is defined as ñ = ñ0 + nR, where

ñ0 =
1

2

∫
dk

(2π)2

[
Ek + gn(1− Ck ∓ Cke−kλ)

εk
− 1

]
, (5.6)

accounts for the quantum fluctuations contribution to the noncondensed density. For

vanishing λ, the ñ0 reduces to that of a single layer system. The glassy fraction reads
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nR = n

∫
dk

(2π)2
Rk

E2
k

ε4
k

, (5.7)

Let us now complete this work by looking at the disorder relevant regime, focussing

on correlated Gaussian environment. We try to understand the interplay of interlayer

DDI, disorder effects, and polarization direction. As in the case of a single layer, inte-

grals (5.6) and (5.7) over infinite momentum space are logarithmically divergent and

require a special care. Therefore, to be quantitative, we solve them numerically using

the standard Monte Carlo method [96] in the limit k � 1/r∗. Figure.5.3 shows that in

the setup ↑↑, the glassy fraction nR is decreasing with λ indicating that the interlayer

effects lead to tune the disorder fluctuations ensuring the existence of the condensate

even for relatively large disorder strength. Conversely, in the arrangement ↓↑, when

the two layers are well separated (λ/ξ <
∼

0.7), nR substantially increases results in

the disappearance of the condensate. The disorder fraction becomes important when

the roton minimum is close to zero (diverges at kr = 0) yielding the transition to a

novel quantum phase [50] (see right panels). For σ > ξ, the disorder effects is not

important in both configurations regardless the polarization directions.

We observe also that in the absence of the random external potential i.e. R = 0,

the total noncondensed density, ñ↑↑, lowers for λ/ξ <
∼

0.2 and then grows logarithmi-

cally for λ/ξ > 0.2, where the condensate becomes completely depleted due to the

DDI (see bottom panel left). However, the situation is inverted in the configuration

↓↑ (see bottom panel rigth). The presence of the disorder potential augments the

condensate depletion notably for large λ as is seen in the same figure.5.3(bottom

panel).
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2 [126].
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5.3 One-body density matrix

At zero temperature, the one-body density matrix is defined as [125] g1(r) =

nc+
∫
ñ eik.rdk/(2π)2, where nc is the condensed density. The numerical simulation of

this integral reveals that when C/ξ is small, the first order correlation functions g↑↑1 (r)

and g↓↑1 (r) decay at large distance and go to their constant value n (see Fig.5.4 left

panels). This is a genuine signature of the existence of a true BEC at zero temperature

in quasi-2D geometry. In such a case the interlayer distance and the polarization

direction play a minor role ; they only slightly shift g↑↑1 (r) and g↓↑1 (r) near the center.

For large C/ξ (i.e. when the roton minimum close to zero) and depending on the

interlayer space, g↑↑1 (r) and g↓↑1 (r) display oscillations at small distances (see right

panels figure 5.4). This signals the destruction of the off-diagonal long-range order

(i.e., BEC). One can conclcude that below a certain critical intralayer coupling λc

which relies on the polarization direction, the BEC remains stable. For λ > λc, the

system undergoes instability opening the door to a new phase transition.
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tion λ. Parameters are : mg/4πh̄2 = 0.01 and σ/ξ = 0.2[126].

5.4 Superfluidity in a quasi-2D bilayer

Quasi-2D superfluidity can be well understood in the framework of the Berezinskii-

Kosterlitz-Thouless theory [158, 194, 232]. The relation between the disorder po-

tential, DDI and the superfluidity in quasi-2D geometry has been explained in de-

tails in our recent papers [158, 194, 232]. The superfluid fraction ns/n is defined as
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ns/n = 1− nn/n− nthR /n [29], where

nn
n

=
2

dTn

∫
ddk

(2π)d
Ek

4sinh2(εk/2T )
, (5.8)

is the normal fraction of the superfluid.

And

nR th
n

=
2

dTn

∫
ddk

(2π)d
nRkE

2
k

ε3
k

coth (εk/2T ) , (5.9)

represents the disorder thermal contribution to the superfluid fraction. At tempera-

tures T → 0, it reduces to nR th/n = 4nR/dn. In quasi-2D one has nR th = 2nR which

leads to considerably lower the superfluid fraction. Another important remark is that

the superfluid fraction is no longer a tensorial quantity in opposite to the 3D dirty

dipolar Bose gas case [16, 57, 76, 84, 94, 96, 125, 178] since the dipoles are assumed

to be perpendicular to the plane. However, in the case of dipolar BECs with tilted

dipoles, the superfluid becomes anisotropic.

Figure.5.5 shows that nR th is increasing with temperature in both configurations. We

see also that n↑↑R th lowers with λ at any temperatures. For instance, at temperatures

T/ng < 0.1, n↑↑R th ≈ n at λ ≥ ξ which means that the whole system becomes

practically superfluid. Whereas, in the configuration ↓↑, n↓↑R th augments with both

temperature and interlayer spacing. For example, at T/ng > 3 and for λ > 1.2 ξ, the

superfluid fraction vanishes. This implies that the condensed particles are localized

prohibiting the superfluid flow results in the formation of the so-called Bose glass

phase.
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5.5 Conclusion

In this chapter we studied the implications of varying polarization orientation and

interlayer DDI on the propertites of quasi-2D bilayered dipolar Bose gases in a ran-

dom environment at zero temperature. We calculated analytically and numerically

the dispersion relation, the condensate depletion, the first-order correlation function

and the superfluidity using the Bogoliubov theory. Our analysis revealed that the

competition between the disorder potential and the interlayer DDI may significantly

enhance the rotonization and the glassy fraction inside the condensate. In the pa-

rallel configuration, interlayer coupling may lead to delocalize atoms rising both the

condensed and the superfluid fractions. However, the situation is completely different

in the antiparallel arrangement where the condensate and the superfluid fraction are
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decreased. This important result has never been addressed before in the literature.

We showed in addition that in the roton regime, the long-range order is distroyed

and hence, the condensate and the superfluidity disappear in both configurations.

Whereas, for small values of DDI, the coherence of the BEC remains insensitive to

interlayer distance. It was found also that a true BEC exists up to certain critical

temperature which depends on the interlayer distance and the polarization direction.

We believe that our results provide new insights to understand these exotic systems,

and opening new prospects for realizing dirty dipolar Bose gases.
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CONCLUSIONS AND PERSPECTIVES

In this thesis, we systematically studied dipolar Bose gases in weak disorder

potential in various contexts which led to an original and fascinating physics in each

case. To this end, we used both analytical and numerical methods based on the

Bogoliubov-Huang-Meng theory. This formalism provides a successful quantitative

description of the homogeneous dipolar BEC in weak disorder.

In chapter 1, we briefly discussed the main ingredients of weakly interacting

dipolar BEC and introduced the Bogoliubov theory that allows us to model such

systems at both zero and finite temperatures. We assessed the quantum and thermal

fluctuations and various thermodynamic quantities.

In chapter 2, we studied the properties of a dipolar Bose gas in the presence

of a weak random potential with a Gaussian correlation at finite temperature.

During this journey we took the opportunity to review some statistical properties

of a disorder potential. Within the Bogoliubov-Huang-Meng approach, we derived

useful analytical expressions for the condensate fluctuations due to disorder, as

well as the corresponding corrections to the noncondensed and the anomalous

densities, the ground state energy and the superfluid fraction in the homogeneous

case. Furthermore, we pointed out that the interplay of the DDI and the external

random potential makes both the BEC and the superfluidity anisotropic. Such

an anisotropy is found to be weak in the parallel component of the superfluid

density while it becomes strong in the perpendicular component. We also de-

monstrated that for a strong disorder strength the system introduces an unusual

quantum regime where the superfluid fraction is smaller than the condensate fraction.

Until now, there has been very little work for ultracold disordered dipolar
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gases with TBI. With this in mind, in chapter 3 we extended the Bogoliubov-Huang-

Meng theory applicable to the dipolar bosonic gas with TBI subjected to a correlated

Gaussian disorder at both zero and finite temperatures. We showed that the intriguing

interplay of the disorder, DDI and TBI plays a fundamental role in the physics of the

system. We pointed out in particular that the DDI may lead to arrest transport of

atoms under disorder augmenting the glassy fraction inside the condensate, while the

presence of the TBI may lead to a diffusive motion of particles. Our results revealed

that the one-body density matrix is a decreasing function with the TBI. We calculated

in addition the chemical potential of a disordered dipolar BEC and ultraviolet diver-

gences are removed by means of dimensional regularization. The combined effects of

the DDI, TBI, and temperature found to crucially affect the chemical potential and

the ground state energy of the system. In the absence of the TBI, we recovered the

results obtained for disordered BEC with two-body interactions.

In chapter 4, we presented a detailed study of the physics of a quasi-2D di-

polar BEC. By lowering the interparticle contact interaction, we bring the system

into a new finite-momentum minimum which is called roton. We showed that such

a rotonization may strongly enhance the fluctuations and suppress the superfluidity

leading to uncover a novel quantum phase transition. On the other hand, we investi-

gated a dilute 2D dipolar Bose gas with dipoles oriented perpendicularly to the plane

subjected to a weak Gaussian correlated disorder potential in the roton regime. Our

analysis signifies that when the strength and the correlation length of the disorder

is very small, the disorder potential strongly enhances the fluctuations and the ther-

modynamic quantities. In contrast to the 3D case, the superfluid density is isotropic

and found to be strongly depressed in the roton’s region results in the localization of

the particles in the respective minima of the external random potential due to the

peculiar interplay of rotonization induced by DDI and disorder.

Finally in chapter 5, we studied the implications of varying polarization orien-
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tation and interlayer DDI on the propertites of quasi-2D bilayered dipolar Bose gases

in a random environment at zero temperature. Here the dipoles are oriented per-

pendicularly to the layers and in parallel/antiparallel configurations. We calculated

analytically and numerically the dispersion relation, the condensate depletion, the

first-order correlation function and the superfluidity. Our analysis revealed that the

competition between the disorder potential and the interlayer DDI may significantly

enhance the rotonization and the glassy fraction inside the condensate. In the pa-

rallel configuration, interlayer coupling may lead to delocalize atoms rising both the

condensed and the superfluid fractions. However, the situation is completely different

in the antiparallel arrangement where the condensate and the superfluid fraction are

decreased. This important result has never been addressed before in the literature.

We showed in addition that in the roton regime, the long-range order is distroyed

and hence, the condensate and the superfluidity disappear in both configurations as

in the case of a disordered single component BEC. Whereas, for small values of DDI,

the coherence of the BEC remains insensitive to interlayer distance. It was found

also that a true BEC exists up to certain critical temperature which depends on the

interlayer distance and the polarization direction.

Promising candidates for the experimental realization of such dirty dipolar

BECs are atomic species with highly magnetic dipolar interaction such as Dy (ma-

gnetic moment 10µB) [10] or polar heteronuclear molecules such as KRb (magnetic

moment 0.6 Debye)[13].

Outlook

There is significant scope for future work in disordered dipolar Bose gases. One

promising appplication of our work would be the study of the role of the TBI in the

Anderson localization of Bogoliubov quasi-particles. Experimentally, the Anderson lo-
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calization of Bogoliubov quasi-particles should be observable with Bragg-spectroscopy

techniques. Our results open new prospects for understanding transport properties

which could be studied by a direct numerical simulation of the time-dependent nonlo-

cal GP equation in a disordered potential. Another promising avenue we are pursuing

is the implementation of a disorder potential in the droplet state. Finally, an impor-

tant extension of our work would be to analyze the possible formation of the superglass

state in 2D disordered weakly-interacting dipolar Bose gas loaded in optical lattices

by developping beyond-mean-field approach. The study of the effects of weak disor-

der in 2D dipolar gas with tilting angle where the interaction in the plane becomes

anisotropic is also an interesting avenue that could be explored in the future.
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[30] A. Boudjemâa, Phys. Rev. A 98, 033612 (2018).
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[216] H. P. Büchler et al., Phys. Rev. Lett. 98, 060404 (2007).

[217] G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405(2007).

[218] R. Nath, P. Pedri, and L. Santos, Phys. Rev. Lett. 102, 050401 (2009).

[219] L. Salasnich and F. Toigo, Phys. Rep. 640, 1 (2016).

[220] P. Zin, M. Pylak, T. Wasak, M. Gajda, Z. Idziaszek, Phys. Rev. A98, 051603

(2018).

[221] D.S. Petrov, D.M. Gangardt, and G.V. Shlyapnikov, J. Phys. IV (France) 116,

5 (2004).

[222] K. Jachymski and R. Odziejewski, Phys. Rev. A 98, 043601 (2018).

[223] G. M. Falco, A. Pelster, and R. Graham, Phys. Rev. A 75, 063619 (2007).

[224] C. Gaul, N. Renner, and C. A. Müller, Phys. Rev. A 80, 053620 (2009).

[225] C. Gaul and C. A. Müller, Phys. Rev. A 83, 063629 (2011)

[226] P. Nozières, J. Low temp. phys.142, 91 (2006) : ibid 156 (2009)

[227] L. Sanchez-Palencia, Phys. Rev. A 74, 053625 (2006).

[228] P. Lügan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Phys.

Rev. Lett. 99, 180402 (2007).

[229] C. Gaul, P. Lugan, C.A. Müller, Ann. Phys. (Berlin) 527, 531 (2015).

[230] C.A. Müller, Phys. Rev. A91, 023602 (2015).

[231] A. Griffin. Phys. Rev. B 53, 9341 (1996).

[232] D.S. Petrov, D.M. Gangardt, and G.V. Shlyapnikov, J. Phys. IV (France) 116,

5 (2004).

122


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Dipolar Bose Einstein condensates 
	Bose Einstein condensation 
	 Dipolar Bose Einstein condensate 
	 The dipole-dipole interaction
	Non-local Gross-Pitaevskii equation

	Bogoliubov theory
	Bogoliubov excitations
	Noncondensed and anomalous densities
	One body correlation function
	Superfluid fraction

	Three-dimensional homogeneous dipolar Bose gases
	Condensate depletion and anomalous density 
	Thermodynamics quantities
	Superfluid fraction


	Dipolar Bose gas with weak disorder: Bogoliubov-Huang-Meng theory 
	Statistical properties of random potentials
	General properties
	Standard forms

	Interaction and disorder
	Bogoliubov-Huang-Meng theory
	Superfluid fraction
	Three-dimentional dipolar Bose gas in a random potential
	Fluctuations and thermodynamic quantities
	Validity condition of the Bogoliubov theory
	Superfluid fraction


	Dipolar Bose gas with three-body interactions in weak disorder
	Hatree Fock Bogoliubov with TBI
	Condensate fluctuations
	One-body density matrix 
	Thermodynamic quantities

	 Two-dimentional dipolar Bose gas in weak disorder potential 
	Cleaned two-dimensional homogeneous dipolar Bose gases
	Condensed depletion
	Equation of state
	Fluctuations at finite temperatures

	Two-dimentional dipolar Bose gas with weak disorder
	Fluctuations and Thermodynamics
	Superfluid fraction of quasi-2D bose gas


	Effects of weak disorder on two-dimensional bilayered dipolar Bose-Einstein condensates
	Model
	Noncondensed density
	One-body density matrix
	Superfluidity in a quasi-2D bilayer
	Conclusion

	Conclusion

