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Abstract: 

Hydrocarbon’s transportation is a very significant aspect of the economic where it must be used 

with much efficacy. Pipelines are used to transport the aggressive fluids with large volumes over 

great distance. The structural integrity of piping system is very essential in order to guarantee 

the transportation continue of energy resources from production fields to their locations of 

exportation. Pipe elbow is a main component in the piping networks which considers as a critical 

and sensitive tool due to their stress intensification and the effect of bend curvature. They are 

more exposed to different corrosion failure modes than straight pipes. The aim of this thesis was 

to investigate the causes of cracks and defects that occur in the critical positions of piping 

systems. This work was divided in two axes; numerical investigation and inspection analysis. 

The numerical axis was performed in two sections; (i) effect of semi-elliptical cracks on the 

degradation of pipe elbow, and (ii) assessment validity of the international mathematical 

standards on the pipe bends. A rectangular corrosion defect at the intrados section was done and 

compared to different codes for calculating limit pressure. Moreover, the area with the corrosion 

cracks and defects with different relative defect depth to wall thickness ratios was FEM modeled 

at the intrados section of the pipe elbow where the highest hoop stress exists. The second axis 

was focused on a real case of pipe elbow which occurred to the erosion-corrosion phenomenon. 

Different inspection methods such as; (i) optical visualization, (ii) scanning electron microscope 

(SEM), (iii) X-ray diffraction (XRD) and (iv) X-ray fluorescence (XRF) test, were used to 

discover the main factors which were responsible for this failure. The obtained results proved 

that the critical position can be located in different zones according to the boundary and 

additional service conditions. The numerical results proved that the critical position was found 

at 72° of intrados side based on the value of Von-Mises stress and SIFs. In fact, the critical 

position could change with the presence of butterfly valve before the elbow. In addition, the 

increase percentage of Silicon (Si) on the corroded structure explained that the sand particles 

were responsible to the erosion-corrosion phenomenon.   
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 ملخص: 

يعتبر نقل المواد الهيدروكربونية أمراً ضروريًا من الناحية الاقتصادية حيث يجب استخدامه بفعالية كبيرة. تسُتخدم خطوط  

الأنابيب لنقل السوائل العدوانية بكميات كبيرة ولمسافات طويلة. تعد السلامة الهيكلية لنظام الأنابيب غاية في الأهمية من أجل  

الطاقة من حقول الإنتاج إلى مواقع تصديرها. يعتبر كوع الأنبوب مكونًا رئيسيًا في شبكات الأنابيب  ضمان استمرار نقل موارد  

والذي يعتبر أداة حرجة وحساسة بسبب تركز الاجهادات وتأثير الانحناء على الهيكل الصلب. تعتبر الأكواع أكثر عرضة 

ن هذه الاطروحة هو التحقيق في أسباب التشققات والعيوب التي لأنماط الفشل والتآكل مقارنة بالأنابيب المستقيمة. الهدف م

العددي   التحليل  الأول ركز على  المحور  إلى محورين.  العمل  تقسيم هذا  تم  الأنابيب.  الحرجة لأنظمة  المواضع  في  تحدث 

( تأثير الشقوق شبه 1والمحور الثاني استخدم أدوات التحقيق وطرق الفحص المخبرية. تم تنفيذ المحور العددي في قسمين ؛ )

( تقييم صلاحية المعايير الرياضية الدولية على انحناءات الأنابيب. تم إنشاء عيب  2الإهليلجية على تدهور كوع الأنبوب ، و )

 فإن المنطقة  ذلك،  إلىالحدي. علاوة  تآكل مستطيل في الجزء الداخلي للكوع ومقارنته بأكواد هندسية مختلفة لحساب الضغط  

  الجزء الداخلي في    محاكاة رقميةالتي بها شقوق التآكل والعيوب ذات عمق عيب نسبي مختلف إلى نسب سمك الجدار تم نمذجة  

أعلى   يوجد  حيث  الأنبوب  كوع  على  إجهادمن  الثاني  المحور  ركز  حالة.  أنبوب    دراسة  -erosionظاهرة  ب  متأثرلكوع 

corrosion  .  ( مسح المجهر الإلكتروني  2( التصور البصري، )1المختلفة مثل؛ )طرق الفحص  تم استخدام(SEM)  ( ،3  )

( ، لاكتشاف العوامل الرئيسية التي كانت مسؤولة XRFمضان الأشعة السينية )و ( اختبار  4( و )XRDحيود الأشعة السينية ) 

عن هذا الفشل. أثبتت النتائج التي تم الحصول عليها أنه يمكن تحديد الموقع الحرج في مناطق مختلفة وفقًا للحدود وشروط 

بناءً على قيمة   intradosدرجة من جانب    72الخدمة الإضافية. أثبتت النتائج العددية أنه تم العثور على الموضع الحرج عند 

. في الواقع ، يمكن أن يتغير الوضع الحرج بوجود صمام الفراشة قبل الكوع. بالإضافة إلى ذلك SIFsو    Von-Misesإجهاد  

 ( السيليكون  نسبة  زيادة  فإن   ،Si  المتآكل الهيكل  على  ظاهرة    يؤكد(  عن  مسؤولة  كانت  الرمل  جزيئات  -erosionأن 

corrosion .
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INTRODUCTION 
 

1 

1. INTRODUCTION 

Nowadays, the energy becomes a necessary parameter for many industry fields. The use of 

modern technologies is also required for whole world in different processes including the oil 

and natural gas treatment and their transport. The transport of corrosive liquids (simple or 

complexes) can be achieved using different ways such as; pipeline, pipeline offshore, cargo 

tanks for chemical tankers, storage tank, road tankers, rail tank wagons and many other 

solutions [1-3]. With the increasing high demand for hydrocarbons of oil and natural gas around 

the world, pipeline applications with higher strength are required. The processes of oil and 

natural gas treatment and their transport depend on the piping systems especially the elbow 

which is one of among important parts. Indeed, the piping system is still the best tool and safest 

way to transport the corrosive liquids such as carbon dioxide (CO2), hydrogen, methanol, 

hydrogen sulfide (H2S), hydrochloric acid (HCl), sulfuric acid (H2SO4) and ammonia (NH3) [4-

8]. 

Various hazardous phenomena, such as cracking, fatigue, and corrosion of pipelines allow 

increasing the risk of leaks or even bursting, are now critical cases to be considered. Many 

problems when analyzing a pipe with an under internal pressure, the detecting effect of the 

pressure and the poorly defined geometry permit a presence of a local defect [9-12]. The effect 

of corrosion phenomenon on the global energy, environment and humanity is considered as a 

major problem which take the attention and efforts of researches around the world. The global 

economy faces a lot of dangerous due to this issue in the transportation networks and storage 

units. Depending on the statistic reports of the National Association of Corrosion Engineering 

(NACE), the corrosion problem costs about 2.5 trillion of dollars per year for the global 

economy which is almost 3.3 % of global GDP (Gross Domestic Product) [13,14]. In addition, 

the cost of these challenges is greater than all natural disasters losses such as; hurricanes, storms, 

floods, fires and earthquakes [15].  

2. PROBLEMATIC 

The Fluid-Structure Interaction (FSI) in the pipeline components may lead to the chemical 

reactions in the elbow. Pipe elbows are considered critical pressurized components in the piping 

systems and pipelines due to their stress intensification and the effect of bend curvature. They 

are prone and hence more exposed to different corrosion failure modes than straight pipes. Late 
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detection of such elbow damages can lead to different dangerous and emergency situations 

which cause environmental disasters, pollution, substantial consumer losses and a serious threat 

to human life. Adverse but common chemical side reactions such as hydrogen evolution [16-

19], microbial reactions [20], oxidation [21,22], and sulfidation of materials could provoke 

pipelines deterioration, particularly elbows, due to severe corrosion attack [5, 23-24]. Also, hard 

solid particles may cause strong erosion attack on the internal surface of the pipe elbow upon 

the transport of solid-liquid or gas-solid mixtures, an internal erosion-corrosion attack, and the 

erosion of external surfaces due to impact of sand particles [25-28]. Furthermore, corrosion in 

the energy plants such as desalination station or oilfield is increased due to the presence of CO2 

in the fluid flow. In addition, the small particles of sand (high concentration of Silicon) in the 

fluid flow may cause the erosion phenomenon in the piping system as the case study which will 

present in the chapter IV. 

3. OBJECTIVES OF THIS STUDY 

A comprehensive safety and reliability assessment of pipe elbows, including continuous 

maintenance and usage of different inspection methods, can provide significant increases in the 

service life of pipelines. The main aim of this thesis is to study the critical positions of pipe 

elbows. Furthermore, this thesis is investigated to discover the main causes of pipeline 

degradation especially in the elbow part. In addition, international standards of limit pressure 

will be evaluated and developed using numerical analysis. In order to perform the objectives of 

this thesis, both experimental and numerical techniques are used to assess the influence of 

various aspects on the performance of pipeline under service. In numerical analysis, Finite 

Element (FE) and Finite Volume (FV) methods are combined to generate a tool capable of 

predicting the service life of piping system components using Failure Assessment Diagram 

(FAD). In the experimental investigation, real corroded elbows will be inspected to detect the 

main causes of corrosion-erosion phenomenon. 

4. THESIS OUTLINE 

This thesis is divided into four chapters. The first chapter shows the pipeline incidents which 

occurred around the world. In addition, the inspection techniques and protection methods which 

used in the engineering industrial are presented.  

The second chapter presents the integrity assessment of corroded pipelines indicated to the 
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mathematical equations of fracture mechanics, power law, international standards. Furthermore, 

the international standards which are used for calculating the failure and limit pressure on the 

straight pipes is discussed. In particular, the pipe elbows are critical elements in the piping 

network due to their curvature where the known standards are not applicable on them. Few 

researchers evaluate and modified the engineering codes in order to measure the limit pressure 

on pipe bends and prevent the burst. 

In the third chapter, two main sections which explain the crack phenomenon and corrosion 

defect in API X52 pipe elbows were simulated. First section focuses on the critical position of 

elbow bends using by finite volume method (FVM) and finite element analysis (FEA). In order 

to analyze this section which is divided into four main parts: the first part concentrated on 

analyzing and comparing the results which appear the effect of bending radius of elbow on the 

maximum values of Von-Mises stress for each radius taking into account the characteristics of 

mechanical including the yield stress of the elbow material. The second part concentrated on the 

creation of a semi-elliptical crack for different locations along the elbow to define the critical 

position by using the stress intensity factors. In the third part, the semi-elliptical crack angle 

orientation was studied at the critical position to indicate the critical angle which allows 

evaluating the effect of crack during the transporting of energy. The last part is focused on the 

check of the elbow safety where the failure assessment diagram (FAD) is one of most technique 

to analyze the damage of piping systems to show the critical crack depth ratios at a critical 

position and a critical angle. The second section reserved to evaluate the integrity assessment of 

elbows damaged of API 5L X52 steel which was carried out in the framework of numerical 

study by using the finite element method (FEM) and finite element analysis (FEA). To evaluate 

the damage, the FEM is used to simulate this phenomenon taking into consideration the limit 

pressure in the elbow containing a rectangular shaped corrosion defect at the intrados side. This 

study was accurately performed and compared to literature studies which have been carried out 

by different codes for calculating limit pressure.  

The last chapter IV, an investigation on the probably failure of two pipe elbows which transport 

an aggressive fluid will be presented. The microstructure and the composition of the surface 

films on the surface of the corroded specimen were investigated using scanning electron 

microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) test. 

Finally, this thesis is concluded by principal conclusions and recommendations. 
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I.1 INTRODUCTION 

The hydrocarbon transportation including the emulsions (crude oil-gas-water or crude oil-gas) 

is one of the challenging operations which face many petroleum companies around the world 

due to the nature of piping systems, operating conditions, the origin of the oil, and the nature of 

the geological layers of wells (aggressive components). To exploit the hydrocarbons, the piping 

systems are still suitable tools for transmission and distribution with different geometries 

(pipelines, and elbows) taking into account the grade of materials such as (X42, X52, X60, X65, 

X70, X80, .., X120). 

In the last decades, piping systems are considered as the principal engine of the global economy 

especially after increasing the demand for energy due to the increase of population and the 

decrease of the energy sources. Despite the use of high technology in order to control the piping 

systems, many catastrophic incidents have increased in the worldwide. Piping system aging, 

long term usage, neglecting and irregular maintenance, crude oil nature (with/without corrosive 

components) and the environmental severe conditions are serious parameters which face the 

energy transport companies, where these reasons are directly influence on the universal 

economy such as the price of the barrel. To continue the development of energy in all fields of 

life, the objective consists of avoiding catastrophic accidents and preserving human health. 

There are great challenges to avoid the catastrophic explosions, preserve human health and the 

maintain the environmental climate which is the main goal of each company. 

The aim of this chapter is to concentrate on the piping system incidents that involved two periods 

including straight pipes and pipe elbows. There are many factors to investigate any incident 

which has direct/indirect relationship with the hydrocarbons transport, where these accidents 

can classify through the degree of dangerous on the human life and environment on the one 

hand, and their effects on the infrastructure of energy on long-term, on the other hand. The 

dangerous degree of incident is classified on the basis of: degree and nature of accident 

(explosion or corrosion), kind of material, form of pipeline (straight line or elbow), critical 

location (joint, welding position, elbow, repaired surface) and service period taking into account 

the operating conditions such as pressure, temperature and piping geometry (pipeline or 

elbow) [1,2]. 

Depending on the analyses of the previous incidents in the piping system, the inspection method 

is one of the effective plans to know the reasons of problems, where it must take all aspects 
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physic-chemical into considerations which allow obtaining the appropriate and permanent 

solutions. This chapter is divided into five parts to show the most steps related to the analyses 

of piping systems accidents, where it includes the reasons and solutions to avoid dangerous 

accidents. The important points which can take into consideration to understand this 

phenomenon: 

➢ Accident sources;  

➢ Study of piping systems (elbows and pipelines) out service; 

➢ Investigations and inspections of the piping systems defected; 

➢ Effect of crude oil nature and natural gas on the corrosion phenomenon; 

➢ Repairing methods and piping system safety from the corrosion phenomenon. 

I.2 PIPELINE ACCIDENT STATISTICS 

Hydrocarbons such as emulsions (crude oil-gas or crude oil-gas-water) pass through many 

operations including extraction, transportation and refining process in order to arrive to the local 

or international markets and energy centers [3,4]. In fact, the piping system considers a principal 

tool to transport the crude oils with/without aggressive compounds taking into account the safety 

and low cost of maintenance. In order to assess and increase the life time of pipelines under 

service, it is essential to understand their role and avoid the incidents which based to the human 

errors or environmental attack. In this section, the statistical incidents around the world based 

on the literature publications and international standards were presented. Thus, it allows to 

evaluate the efficiency of piping systems taking into consideration the nature of fluid and the 

pipeline materials.  

The safety of piping network is the challenge of each company, where the corrosion 

phenomenon becomes the first issue in the worldwide due to the impact on the universal 

economy, environment and human health. The economic reports indicated that the corrosion 

issue is an obsession for energy experts and scientific organisations such as the National 

Association of Corrosion Engineering (NACE). According to NACE reports about the piping 

systems, it appears that losses have exceeded 2.5 trillion dollars per year for the worldwide 

economy due to the corrosion phenomenon including all kinds of piping systems (offshore, 

above ground, and underground) in addition to the refineries stations. These losses represent 

about 3.3 % of global GDP (Gross Domestic Product) [5-7]. In addition, this value in some 
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development countries is considered greater than all-natural disasters cost such as; hurricanes, 

storms, floods, fires and earthquakes [7]. The corrosion phenomenon affects directly on the 

collapse of the global economy where most companies attempt to activate many procedures 

such as inspection, repairing and maintenance, control, protection, and development methods in 

order to decrease the effect of corrosion issue in the energy fields. Thus, it can avoid the 

production stoppage, the environmental pollution, the increase the maintenance costs, etc [5, 8]. 

Due to this dangerous issue, most laboratories and companies around the world try to obtain 

durable and suitable solutions to decrease the severe damages. It is a great challenge faced 

researchers and engineers for many decades. They are attempting to discover suitable solutions 

for defeating or decreasing this unpleasant lesion. Generally, there are different reasons for this 

problem which have a direct relationship with the nature of piping systems materials, 

hydrocarbons components (with/without sulfur), interaction phenomenon (fluid-fluid and fluid-

solid), operating conditions (temperature and pressure) and extern environment (dryness and 

dampness).  These reasons may help to give an idea for stopping and reducing this industrial 

pandemic.  

Depending on the dangerous incidents which happened during the recent decades according to 

the Pipeline and Hazardous Materials Safety Administration (PHMSA) [9], the damage can be 

evaluated in order to give the real view of the situation about this dangerous phenomenon. 

According to PHMSA, there were 18 fatalities and 69 injuries annually in the United States 

between 1995 and 2014. While in 2019, the number was decreased to 10 fatalities and 35 injuries 

due to the necessary interest in the pipeline network [9]. In order to show the damage of piping 

network, a statistical sample that occurred in the United States between (2010-2019) was shown 

in Table I.1. 

Table I.1: The last decade incidents of piping systems in the US [9]. 

Report Incidents Fatalities Injuries Evacuees Damages ($) Fires Explosions 

Aggressive 

Fluids 

3,978 10 26 2,482 2,812,391,218 130 15 

Gas 

Transmission 

& Gathering 

1,226 25 108 12,984 1,315,162,976 133 57 

Gas 

Distribution 

1,094 105 522 20,526 1,229,189,997 659 257 

Totals 6,298 140 656 35,992 5,356,744,191 922 329 
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The main factors that are responsible for failure incidents as stated in PHMSA's reports are; 

corrosion types, external environment, exploration and extraction, operating conditions 

(temperature, pressure, piping systems geometries), failure of piping systems, failure at welding 

positions, appearing of defects/ small cracks in the inner and extern wall of steel, nature of 

transported liquids, human errors and other reasons (geology of wells, the effect of additives 

and refinery processes) [10]. Figure I.1 illustrates the main causes of pipeline incidents in last 

decade in US for three lines of piping system; the pipeline of aggressive fluids (figure I.1.a), 

transmission and gathering lines (figure I.1.b) and, distribution piping systems (figure I.1.c). 

 

(a)                                                         (b) 

 

(c) 

Figure I.1: Cause of Pipeline Incidents in the US last decade, (a) aggressive fluids, (b) gas 

transmission and gathering and, (c) gas distribution. Data from PHMSA [9]. 
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I.3 CASE STUDIES FOR STRAIGHT PIPES AND PIPE ELBOWS INCIDENTS 

 Pipeline incidents become a threat to the human safety, environmental life and, global economy. 

This section elaborates and presents some of incident cases around the world in order to avoid 

them in future. Furthermore, the pipelines could be very dangerous if they explode in the vital 

Cities where the citizens live as shown in the figure I.2. This incident was happened in 

Kaohsiung city - south Taiwan - in 2014 which caused 25 fatalities and more than 259 injuries 

due to this horrible accident [11,12]. 

  

Figure I.2: Catastrophic incident of pipeline explosion in south Taiwan [11,12]. 

In 2012, pipeline of Colombian gas transmission was failed due the degradation of wall 

thickness by external corrosion (see figure I.3). The pressure increase and operator error were 

the main causes of this accident. Furthermore, it was not checked during last 24 years of incident 

event [13]. According to the investigations, the pipeline also had not the shutoff valves which 

could prevent the catastrophic damage. This accident left a lot of damages such as;   

➢ damage on the infrastructure; 

➢ destroyed three homes and sabotaged lots of houses near the incident site by hundreds 

of feet; 

➢ More than 76 million cubic feet of natural gas were lost. 
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Figure I.3: Incident in Columbian gas transmission natural gas pipeline [13] 

Elbows (pipe bends) are considered important compounds which allow to link the piping 

systems together in order to facilitate the change of flow direction of fluid transport. Due to the 

sensibility of pipe elbows in transporting hydrocarbons, the manufacturing engineering and type 

of materials used to become a significant condition to prevent damage and decrease the costs of 

maintenance and protect the environment. Elbow pipe is the weakest part in the piping system 

which is exposed to the maximum pressures and complex chemical reactions where the most 

perturbations of liquids are focused in the more bent positions. Furthermore, the friction between 

fluid flow and the curvature of pipe bends creates high stresses in the critical positions. 

Extensive reports and researches [14-19] have investigated on the incidents of pipe bends in the 

petroleum industries. This issue is repeated in different sections and stations such as; oil–gas 

separator vessel, crude oil and natural gas subsea pipeline, refineries, CO2 production, 

geothermal production, natural gas gathering and different sections.  Among the chemical 

reactions which may lead the corrosion in pipelines are chlorination and sulfidation reactions. 

They transform the molecular of chemical elements into undesirable layers in the internal 

surface of steel wall due to the presence the aggressive components [17, 20-22]. The chlorination 

and sulfidation reactions which may happen in the hydrocarbon’s transportation are presented 

as follow: 

2 2 2CaCl H O HCl CaO+ → +  (I.1) 

2NaCl H O HCl NaOH+ → +  (I.2) 

2 2 2MgCl H O HCl MgO+ → +  (I.3) 
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2 22Fe HCl FeCl H+ → +  (I.4) 

2 2 2FeCl H S HCl FeS+ → +  (I.5) 

Ilman et al. [18] have investigated on an accident occurred on offshore pipe elbow. The pipeline 

steel was failed after 27 years under service. The main reason for this incident is an internal 

corrosion located on the bottom side of an elbow made of API 5L X52 steel as shown in 

figure I.4. The study has proved that the presence of water and oxidation have led to the 

corrosion occurrence in the teardrop shaped pits and grooves.  

 
Figure I.4: The location internal corrosion on subsea pipe elbow [18]. 

Another incident that happened for pipe elbow in the geothermal production was studied by 

Kusmono et al. [19]. The failure has occurred at the bottom of piping systems' elbow as shown 

in figure I.5. The presence of steam, water, and solid particles are considered as a result of 

erosion corrosion processes on the elbow pipe [19]. 

 
Figure I.5: A view of failure location and wall loss on pipe elbow, (a) external crack and, (b) internal 

wall loss [19]. 

a 
b 
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Recently in the Chinese oilfield, an accident was occurred due to the inner corrosion of 45° 

elbow pipe carrying a natural gas which caused the explosion (figure I.6 a). A group of 

researchers have investigated on the causes of the bursting incident with the aid of visual 

observation, inspection analysis and CFD calculation. According to the industrial designer, the 

lifetime expected of pipeline under service is 30 years, but unfortunately, it was failed at the 

seventh year of its operating work [23]. Moreover, the degradation of wall thickness is clear as 

shown in the figures I.6 (b and c). The final investigation has proved that the inappropriate 

structure design, CO2 corrosion and stress accelerated corrosion are the principal results of the 

accident [23]. 

 
Figure I.6: 45° pipe elbow failure in a natural gas gathering pipeline [23]. 

I.4 MONITORING, DETECTING AND INSPECTION METHODS 

The inspection tools allow to us analyze the main causes that are responsible for pipeline 

incidents. In order to find out the causes of the problem from all sides, the following processes 

must be taken into consideration for accurate and complete investigation; 

➢ On-site inspection, including non-destructive testing (NDT); 

➢ Laboratory analysis, including chemical analysis and metallography; 

➢ Mechanical testing, including loads and vibration measurement; 

➢ Data analysis, including analytical calculation, statistical analysis and numerical 

methods. 

Table I.2 summarizes the different inspection methods which used in the hydrocarbon industries 

and scientific laboratories. 
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Table I.2: Integrity methods for assessment and investigation pipeline incidents 

Integrity type Instrument or method Methodology Reference 

 

 

 

On-site 

inspection 

➢ Visual observation  

➢ Penetrant test 

➢ Magnetic test 

➢ Radiography test 

➢ Ultrasonic Tool  

➢ Smart pigs  

➢ Engineering critical assessment  

➢ Mapping 

➢ Hydrostatic testing 

➢ Long range guided wave  

This type of inspection depends on the scanner 

capture which discovers the internal cracks, 

capture the defects, clean the internal surface 

with aid of pressure. 

 

[24-30] 

 

 

Chemical and 

electrochemical 

analysis 

➢ X-ray Diffraction (XRD) 

➢ X-ray fluorescence (XRF) 

➢ Fourier-transform infrared spectrophotometry 

(FTIR) 

➢ Tafel 

➢ Electrical Impedance Spectroscopy (EIS) 

➢ Discover the crystalline structures and 

atomic spacing of the materials,  

➢ Determine the qualitative and quantitative 

elemental composition of solids and fluids,  

➢ Identify the chemical elements present in 

the specimen, indicate the percentage of the 

element in the material. 

 

 

 

[31-35] 

 

 

Mechanical 

tests 

➢ Optical microscope 

➢ Scanning Electron Microscope (SEM) 

➢ Tensile test 

➢ Flexural test 

➢ Fatigue 

➢ Charpy test 

➢ Study small cracks and show the 

degradation of material; 

➢ Investigate the mechanical properties 

including the yield stress, ultimate strength, 

hoop stress, stress intensity factors (SIFs) 

and other parameters; 

➢ Improve the fracture resistance. 

 

 

[36-38] 
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Statistical 

analysis 

➢ Monte-Carlo Model  

➢ The Time-Independent Generalised Extreme 

Value Distribution (TI-GEVD) model 

➢ The Time-Dependent Generalised Extreme 

Value Distribution (TD-GEVD) model 

➢ The Gamma Process  

➢ Brownian motion with drift (BMWD) model  

➢ Markov Model  

Collect, organize and interpret patterns and 

differences in the data; 

➢ Identify relationships between variables;  

➢ Determine the appropriate significance test 

that should be used. 

 

 

[39-44] 

Numerical 

methods 

➢ Finite element  

➢ Finite difference 

➢ Finite volume 

➢ Solve numerical problems; 

➢ Study of algorithms that use numerical 

approximation; 

➢ Simulate the real tests with less time, low 

cost and easy way. 

 

 

[45-47] 

Analytical 

calculation 

➢ ASME B31G  

➢ Mod ASME B31 G  

➢ DNV RP-F101  

➢ Shell-92  

➢ RSTRENG  

➢ PCORRC  

➢ Based on the corrosion prediction; 

➢ Determine the failure pressure; 

➢ Calculate the appropriate pipe wall 

thickness according to the internal pressure 

design; 

➢ Predict the critical depth ratio of corroded 

position in pipeline 

 

 

 

 

[48-53] 
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I.5 CORROSION IN ENERGY TRANSPORTATION  

The corrosion is a natural operation that occurs in a piping system (collector and transmission 

lines) during the production of hydrocarbons (oil and natural gas) [54]. Its reaction may turn the 

steel into different form of chemical compounds such as; oxide, hydroxide, or sulfide. This 

change in the material structure may cause to the progressive destruction or degradation. In the 

petroleum industries, the corrosion problem is always in presence especially in the power 

stations, refinery process and energy plants. The corrosion phenomenon occurs due to the 

interaction of fluid-structure (oil-steel wall) taking into account the nature of fluid (Newtonian 

/ Non-Newtonian) and material of piping system (ordinary /composite) with geometry (straight 

line / bend line). 

An example of corrosion reaction that may happened in pipeline steel in the presence of 

hydrocarbon and water is shown in figure I.7. Due to the oxidation results of corrosion process, 

solid structure losses the energy which cause the degradation and may stop its operation service 

[55].  

 

Figure I.7: An example of steel corrosion process [18] 

The interaction between metal surface and fluid flow can cause to the oxidation which degrades 

the wall thickness as shown in figure I.7. This process may express as the following reactions: 

At cathode: ( ) ( ) ( )2 24 4 2g aq lO H e H O+ −+ + →   (I.6) 

at anode: ( ) ( )

2 2s aqFe Fe e+ −→ +  (I.7) 

overall: ( ) ( ) ( ) ( )

2

2 )2 (2 4 2 2s g aq aq lFe O H Fe H O+ ++ + → +  (I.8) 
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Depending on the many reports of inspections, analysis, and investigations during the 

hydrocarbon transport, it is clear that the most reasons have direct/indirect relationships with 

occurring the corrosion phenomenon such as operating conditions, high temperature, high 

pressure, the external and internal environment (drying / wetting), crude oil origin, pipeline 

material and the defects in extern/intern wall. In addition, the presence of undesirable 

compounds in the hydrocarbons fields during transport and refining can form aggressive 

components such as sulfur, sodium chloride, calcium chloride, acids, and naphthenic acids. In 

particular, the main factors that can lead to corrosion problem in the hydrocarbons transportation 

and energy industries are: 

➢ Natural, urban, marine and industrial atmospheres including air and humidity; fresh, 

distilled, salt and marine water. 

➢ Service conditions such as; high temperature, high pressure, high velocity; 

➢ Aggressive components such as; bacteria, ammonia (NH3) carbon dioxide (CO2), 

hydrogen sulphide (H2S), sulfur (S) and sulphate (SO4
2- ) ; 

➢ Steam and gases, like chlorine; 

➢ Organic acids; 

➢ Emulsions (Oil-Water, Oil-Water-Gas); 

➢ Alkalies; 

➢ Soils. 

I.5.1 Types of corrosion 

Due to the importance of pipelines which have a significant role of ability to provide global 

energy, they might expose to the corrosion phenomenon especially at the critical zones (elbows, 

welded joins, and walls with defects). However, the types of corrosion do not only relate to the 

nature of crude oil, but they have a serious relation with the type of pipeline materials 

(ordinary/composite) taking into consideration the geometry and operating conditions. The 

dangerous effect of corrosion appears in the mechanics of exploration, extraction, and transport 

of energy through piping systems and the great storage stations, in addition to the refining 

petroleum stage. The corrosion is presented in different types as shown in figure I.8 which make 

the dangerous differs from type to other one.  
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Figure I.8: Various types of corrosion forms in a pipeline [56]. 

I.5.2 Corrosion by CO2 and O2 

CO2 and O2 could be responsible factors for corrosion causing due to their activity in the natural 

gas transportation and the produced a dangerous compound during of carbonic acid (H2CO3) 

during the reaction with pipeline steel. According to [57-61], O2 in the natural gas transportation 

may cause a black powder issue which lead to catastrophic problems such as; equipment erosion, 

valve failure, instrumentation malfunction, and increased pressure drop. Furthermore, a sweet 

corrosion (CO2) happens in the absence of hydrogen sulfide (H2S) or other compounds of 

sulfide. The most known reaction of sweet corrosion is the mixture of carbon dioxide (CO2) 

with water (H2O) which results the carbonic acid (H2CO3) as the following reactions: 

2( ) 2( )sol adCO CO→  (I.9) 

2( ) 2 2 3( )ad adCO H O H CO+ →  (I.10) 

2 22 4O H O e OH− −+ + →  (I.11) 

2 3( ) 2 3 3adH CO H O H O HCO+ −+ → +  (I.12) 

2

3 2 3 3HCO H O H O CO− + −+ → +  (I.13) 

3 ( ) 2adH O e H H O+ −+ → +  (I.14) 
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( ) ( ) 2ad adH H H+ =  (I.15) 

2

22 ( )Fe OH Fe OH+ −+ →  (I.16) 

where the subscript (sol) and (ad) refer to the solution state and adsorption state, respectively. 

Figure I.9 shows a case of a sweet corrosion which lead to a failure pipe and stop the operating 

service. The pitting corrosion is clear shown in the visual and macroscopic observations in the 

figures I.9 (b and c). 

 

 

 

 

Figure I.9: Failure pipe steel due to CO2 environment corrosive, (a) Corroded pipe location, (b) visual 

observation of localized pit corrosion, and (c) metal loss of wall thickness [62]. 

According to the Javidi and Javidi [62], pipeline steel which covered by iron carbonate is 

protected to the attack of CO2 corrosion. Otherwise, the increase of galvanic cell between 

corrosive media and covered area may create a corrosion due to the difference between anode 

and cathode.  

(c) 
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Zhao et al. have investigated the sweet corrosion on X100 steel based on the temperature effect 

according to the electrochemical analysis under the static and dynamic conditions. The obtained 

results present that the temperature has a significant impact on steel corrosive. Furthermore, 

according to their tests, the corrosion reaction behavior under dynamic condition greatly 

increases than the static one [63]. 

I.5.3 Acid corrosion (H2S) 

Hydrogen has a serious effect on corroded metals which could cause the burst on network 

canalizations. Its embrittlement is a dangerous and complex process that enters within the pipe 

body and distributes in different locations. Furthermore, these locations may constitute of; grain 

boundaries, inclusions, voids, dislocation entanglements, micropores, blisters, cracks and 

dislocation networks. On the other hand, it has also an influence to the mechanical properties of 

material [64-66].  

Hydrogen and sulfur are major elements of hydrocarbon compositions which assist corrosion 

development and accelerate the failure in the piping systems [67]. As shown in the following 

reaction (I.17), sulfur (S) and hydrogen sulphide (H2S) have an influence for initial cracks and 

create defects on the internal surface of pipeline wall. 

2 2Fe H S FeS H+ → +  (I.17)

 
Figure I.10: Most types of cracks caused by H2S during the transportation of hydrocarbons in 

pipelines [56]. 
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I.6 CORROSION PROTECTION METHODS 

For decades, most companies have attempted to find suitable solutions. Unfortunately, they 

could not obtain durable solutions heretofore. However, most endeavor in this field classify 

depending on the maintenance, repairing, and welding. The most used methods in the 

hydrocarbons field anti-corrosion depend on the control of the boundary conditions, pressure, 

temperature, the origin of hydrocarbons (with/without presence of undesirable components), 

nature of piping materials [68]. The commonly used techniques for the protection of 

hydrocarbons field are as follow [69]: 

➢ Corrosion protection by different layers of coatings; 

➢ Corrosion protection by natural and industrial inhibitors; 

➢ Using the Composite materials at the critical zones; 

➢ Using the welding operation for the ordinary materials 

Thus, these techniques lead to an increase in the lifetime of piping system materials. In Order 

to clarify the common solutions anti-corrosion, the figure I.11 shows the most protection 

techniques of the corroded piping system taking into account the physical and chemical aspects. 

  

Figure I.11: Protection methods of corroded piping system [69].  
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I.6.1 Corrosion control by inhibition 

In hydrocarbon industries, the inhibitors are among the best solutions for anti-corrosion which 

have become as important technique to protect piping systems. Furthermore, they create an 

additional layer in the internal surface of pipeline to prevent corrosive substances such as 

naphthenic acids, Sulfur, and bacteria which resulted from complex chemical reactions or 

undesirable components of crude oils to reach into the inner metal surface. The corrosion rate 

of the pipeline wall depends on the efficiency of the inhibitors taking into account the operating 

service conditions such as the pressure and the temperature [70-72]. The corrosion inhibitors 

are activated chemical products that can prevent the corrosion phenomenon where they are 

added in small concentrations to the transported liquids (crude oil with/without undesirable 

components) for the aggressive medium (sulfur and naphthenic acids) to avoid, control or 

decrease the corrosion issue [73]. 

In fact, there are many kinds of inhibitors such as synthetic inhibitors and eco-friendly inhibitors 

(green inhibitors).  They use depended on the nature of pipeline material and type of fluid flow. 

Furthermore, the international criteria (human health and environment) must be respected taking 

into account the operating conditions such as transportation or refining operations. 

I.6.2 Composite materials 

Another suitable method for repairing corroded pipelines is the composite material which 

combines from two or more elements with different physical properties and chemical 

compositions. The composites are used in many fields such as the piping systems, aircraft and 

medicine even in the satellites. The composite materials are based on the light material with 

strong mechanical characteristics such as aluminum.  

In the last decades, most laboratories in the worldwide attempted to develop some mechanical 

characteristics of composite materials in order to avoid all kinds of corrosion and damage 

especially in the critical zones. On the other hand, this technique is based on the fibers composite 

(materials composite) to repair some corrosion problems or damage of the piping systems 

especially at elbows and welded joints. Many advantages of composite materials in the 

hydrocarbon field enable the piping systems to resist the corrosion phenomenon and improve 

the mechanical characteristics as following [74-77]: 
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➢ excellent resistance for corrosion, acids and chemical reactions; 

➢ high strength and stiffness; 

➢ Absorption of crack energy; 

➢ high temperature resistance; 

➢ lightweight; 

➢ low installation and maintenance cost; 

➢ does not mechanically breakdown under ultra violet (UV). 

According to the literature, many researchers have proved the qualification of composite 

materials for restoring the corroded critical pipes into equipment service with a high-quality 

performance. They have investigated on repair corroded piping systems using experimental 

investigation and/or numerical analysis in order to prevent the failure and maintain the lifetime 

of existing line production. 

The preparation of composite wrap is based to the international standards, including ASME 

PCC-2 [78] and ISO/TS 24817 [79] which is suggested in accordance with the company 

manufacture instruction. Table I.3 presents the different defects that can be repaired by 

composite materials according to ASME PCC-2 [78] and ISO/TS 24817 [79]. 

Table I.3: Composite repairs for defective pipes according to ASME PCC-2 and ISO/TS 24817 [80]. 

Type of defects ASME PCC-2 ISO/TS 24817 

General wall thinning Y Y 

Local wall thinning Y Y 

Pitting Y Y 

Gouges R R 

Blisters Y Y 

Laminations Y Y 

Circumferential cracks R Y 

Longitudinal cracks R R 

Through wall penetration Y Y 

*Y implies generally appropriate  
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 II.1 INTRODUCTION 

The fracture mechanics is one of the main domains to evaluate the behavior of piping systems. 

Furthermore, it can be used to analyze the structural safety especially the pipes and elbows 

including welded joins. In addition, the nature of piping systems, fluid behavior and operating 

conditions should be taken into account as parts of pipeline integrity. In this chapter, the 

assessment of pipelines with and without defects was presented. The pipeline integrity including 

the engineering codes and developed mathematical formula were described due to their great 

importance for maintaining the pipelines and elbows under service a long time possible. 

Generally, there are many methods used in the industrial companies such as ASME B31G, 

RSTRENG, Shell-92, DNV RP-F101, PCORRC and CHOI model in order to evaluate the 

corrosion phenomenon. Finally, the failure assessment diagram (FAD) was mentioned as an 

important technique to evaluate the effect of crack on the safety of piping systems which can 

indicate the critical points. 

II.2 RELIABILITY ASSESSMENT OF INTACT PIPELINES 

The piping systems are exposed to dangerous phenomena including fatigue, corrosion, erosion, 

damage, and other problems due to the severe operating conditions such as the pressure, 

temperature and external environment on the one hand and on other hand the material used, the 

dimensions and the forms of transport systems (elbows or straight-line). In fact, it presents the 

model of stress–strain which is considered as power low for nonlinear types of steel as follow: 

y

n

y

E

K

   

   

= 


= 
 (II.1) 

where   and  represent the true stress and true strain in the uniaxial direction, respectively. E 

and y  represent Young's modulus and yield strength, respectively. K is a coefficient of the 

power-law stress-strain relationship in the plastic domain case and n is the strain hardening 

exponent.  

To define the mechanical properties of piping system materials, engineering stress-strain and 

true stress-strain are still the important parameters which can be obtained by the experimental 

tests and numerical predictions [1]. To study the mechanical characteristics of piping systems 

for different kinds of material, the finite element method is used to simulate the behaviour, 
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where this method is used in our study (chapter III). For example, the mechanical properties of 

API 5L X52 pipeline steel were selected according to the nonlinear true stress-strain behaviour 

as shown in figure II.1 [2]. 

The engineering stress-strain curve was converted to a true stress-strain curve using logarithmic 

equations. This conversation covers a large region of the engineering stress-strain curves – from 

the beginning of the test until the moment when the ultimate strength of the specimen is 

reached [2]. In the brittle domain,  ( ) is given to   ( ). In the ductile domain,  ( ) is 

changed to   ( ) as follows up through the test conditions: 

( )ln 1  = +  (II.2) 

( )1   = +  (II.3) 

The appreciation value of n can be written as following [3]: 

 

0.596

1
0.239 1

y

ult

n




 
 

= − 
 

 

 (II.4) 

The value of n, K can be appreciated through the following equation [4]: 

 ( ) lt

n

u
eK

n
 =  (II.5) 

where e is the coefficient base of the natural logarithm which is equal to 2.7183 [5]. 

 

Figure II.1. Engineering and true stress-strain curves of API 5L X52 pipeline steel [2]. 
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Table II.1: Mechanical properties of API X-grade pipelines [6-9] 

API 5L 

pipeline 

Yield Strength ( y ) 

min – max (MPa) 

Ultimate Strength ( ult ) 

min – max (MPa) 

Elongation to Failure 

A%  

X42 290 - 495 415 - 655 23 

X46 320 - 525 435 - 655 22 

X52 360 - 530 460 - 760 21 

X56 390 - 545 490 - 760 19 

X60 415 - 565 520 - 760 19 

X65 450 - 600 535 - 760 18 

X70 485 - 635 570 - 760 18 

X80 555 - 705 625 - 825 17 

X100 690 - 840 760 - 990 7 

X120 830 – 1050 915 - 1145 7 

Due to the operating conditions such as the pressure and temperature taking into account the 

mechanical characteristics of the material, patterns of flow, and nature of fluid flow, the piping 

systems are subjected to three types of stresses; hoop stress (  ), longitudinal stress ( l ) and 

radial stress ( r ) as shown in figure II.2 which are expressed by equations (II.6, II.7 

and II.8) [1]. 

 

Figure II.2: Hoop and longitudinal stresses in pipeline which subjected to internal pressure. 
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2

i mPD

t
 =  (II.6) 

4

i m
l

PD

t
 =  (II.7) 

0r   (II.8) 

The elbow is one of the important parts of the piping system which used to connect and to 

change the direction of fluid flow. In addition, it is considered a critical component in the piping 

system due to its geometry, its dimensions and the degree of bend radius. On the using aspect, 

its curvature makes the value of hoop stress is greater than the on straight pipe (see figure II.3). 

On the other hand, the longitudinal and radial stresses keep the same value for straight pipes and 

elbows. Thus, the degree of bend does not affect on the longitudinal stress [10]. 

The behavior analysis of elbow during flow shows that the intrados area is subjected to the 

highest hoop stress, while the extrados zone has the lowest hoop stress as illustrated in equation 

II.9 [10]. In addition, the increasing of bend radius leads to increase the hoop stress at the 

extrados area, but it decreases at the intrados area [11]. 

 

Figure II.3: Geometrical model of a 90° pipe elbow subjected to internal pressure. 

To study the behaviour of piping systems including the elbows, the hoop stress is still an 

important factor where the constant value C has directly relationship with the circumferential 

stress of straight pipe as shown in the equation II.9. However, the constant C changes according 
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to the selected location along the bend of elbow and its sides (intrados, crown or extrados), 

where it is calculated through the equations II.9 and II.10 [1, 12-14]. 

1

2

i mPD

C t
 =   (II.9) 
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 (II.10) 

However, the circumferential stress calculation (hoop stress) at the crown section is still the 

same with straight pipe formulation (equation II.6).  

The piping systems without defect or corrosion phenomena taking into account the operating 

conditions can calculate the burst pressure through the following equation [15]: 

1
4

2

n

f ult

k t
P

D


+

 
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 
 (II.11a) 

k considers a material constant which based on the yield failure criterion in accordance to 

one of the three approaches; Tresca, Von-Mises or ASSY (Average Shear Stress Yield) 

criteria [15]. 
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II.3 CRACK APPROXIMATION 

The crack is one of the principal indicators to detect the state of piping systems through the 

manner of propagation of crack along the critical zones [16]. The concentration of pressure in 

the critical zones such as defects, small cracks, and welding joint is considered the main reasons 

which lead to corrosion, wear, and damage taking into account the temperatures and geometry 

of piping systems.  

The figure II.4 shows that the estimated stress leads to ideal crack which can exhibit the linear 

elasticity without using the LEFM concept [17]. Thus, this method involves a flaw due to the 

relating with real conditions which find on the plastic zone when the ideal crack is able to be 

warranted to present the same behavior as the real crack. Consequently, the LEFM concept 

includes a large warranted to show the same behavior as the real crack [17]. 

II.4 STRESS INTENSITY FACTORS (SIFs) 

The stress intensity factor considers as a main parameter for assessing the fracture mechanics 

and pipeline integrity. In particular, it is used to determinate the stress at critical positions such 

as the weak location, crack area, welding position and elbows.   

 

Figure II.4 Stress behavior for an ideal and real crack [17]. 

In fact, the stress intensity factors are still important factors to measure the durability taking into 

consideration the nature of cracks, their form, their thickness and their position (elbows, welded 

joins). The stress intensity factor is considered as a factor to measure maximum values of 

stresses which are depended to the mechanical characteristics.  
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Irwin [18] is one of the first scientists who has studied the behavior of energy around cracks 

using SIFs. He has presented that there are three kinds of SIF depending on the distribution of 

forces on the surfaces and the propagation of the energy along the crack. The three modes (figure 

II.5) are as follow: (i) mode I (an opening; tensile), (ii) mode II (in-plane shear), and (iii) mode II 

(tearing-antiplane shear). In fact, KI (mode I) has more influence than the other modes KII 

(mode II) and KIII (mode III) in the longitudinal crack case [18-21].   

 
(a)                                        (b)                                                 (c) 

Figure II.5 Three standard loading  modes of a crack, (a) opening mode, (b) in-plane shear mode, and 

(c) tearing-antiplane shear mode [17]. 

To analyze the cracks, SIFs are based on the stresses /shears in three directions X, Y and Z. 

Figure II.6 shows the coordinate system describing the stresses near the crack front. 

 

Figure II.6 Coordinate system and typical stress components near the crack extremities [17]. 

SIFs for mode I (an opening; tensile), mode II (in-plane shear), and mode III (tearing-antiplane 
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shear) are given as following equations respectively: 
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where ij is the stress/shear in the particular direction. A mixed-mode phenomenon depends on 

the form of geometry and crack direction, where the calculate of total stress is given by the sum 

of different stresses [22]: 

( ) ( ) ( ) ( )

ij ij ij ij

total I II III   = + +  (II.16) 

However, the curvature is the main feature of elbow, where the mixed mode of loading (KI, KII, 

and KIII) can be shown. Moreover, it increases the difficulty to analyze the crack behavior due 

to the presence of three patterns (modes) at the same position. Depending on the presence of 

three modes, the equivalent stress intensity factor (Keq) is written by the following equation: 

2 2 2 2(1 )eq I II IIIK K K K= + + +  (II.17) 

II.4.1 SIF for semi-elliptical cracks  

Piping systems including elbows are still as important tools to transport hydrocarbons energy 

worldwide. The external environment and operating conditions including temperature, 

humidity, drought, high velocity, and welding positions can accelerate the corrosion 

phenomenon especially with the presence of defects in the pipelines. The corrosion usually 

appears in irregular forms which make the difficulty for studying them. To overcome these 

difficulties and approach to the real conditions, many studies have proposed regular forms such 

as a semi-elliptic (parabolic), a semi spheric or a semi-rectangular to analyze their behavior 

through analytical, experimental and/or numerical methods according to standard 

conditions [23-32]. 
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The analyses proved that the concentration of stress in the semi-elliptic is focused at the middle 

zone of cracks and defects while in the case of the rectangular shape is located in the rounded 

zones along the defect area [33]. Figure II.5 illustrates the semi-elliptical corrosion shape in the 

external surface of pipeline.  

Stress intensity factor of mode I at any point along the semi-elliptical surface crack can be 

calculate using the following equation: 

. , , ,I

RdK
d

F
Q t c t

d


 
 

=  
 

 (II.18) 

The K factor for an external surface crack in pipeline under the high pressure is written as 

following [34] 

, , ,
2

i ext
I

P D RdK
d

F
Qt t c t

d 
 

=   
 

  (II.19) 

Where the parameters Pi, r, t, F, d, and c are the internal pressure, internal radius, wall thickness 

of pipeline, the geometry and crack size correction factor, crack depth, the crack half-length on 

the surface, respectively.  is the parametric angle where the stress can be concentrated along 

the crack front (Figure II.7).   

 

Figure II.7: Semi-elliptical crack in a piping system 

The maximum value of KI is located at the deepest point of the crack front   = 90° [22]. Q is 

the form of an ellipse which is formed by different cases through values of d/c [34]. An empirical 

equation for Q is given by follow equations: 
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II.4.2 Fracture toughness 

The piping system is one of principal keys on the world energy, where the hydrocarbon 

industries sought to improve the mechanical characteristics. However, the scientific laboratories 

face a challenge to provide the durable solutions about the cracks and corrosions. The 

improvement of materials is depended to the mechanical properties which are based on different 

factors such as; thickness, surface roughness and length, percentage of chemical elements taking 

into account the importance of carbonization, defect geometry (defected length, depth and 

width), or loading mode, and environment (sea, desert, city, temperature, etc).  

The critical value of SIF is called a fracture toughness (KIC) and considered as an important 

material property for the failure assessment of pipelines [35,36]. Fracture toughness expresses 

the material’s resistance to the brittle fracture and is often used in design applications [37]. The 

fracture mechanics is considered as important during the evaluation of the structural integrity of 
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piping systems. Based on the theory of linear elastic fracture mechanics (LEFM), failure occurs 

when the value of stress intensity factor (KI) is greater than the critical value of plane strain 

fracture toughness for mode I crack displacement (KIC), which can be expressed as following: 

I ICK K   (II.21) 

A failure criterion for mixed mode (case of pipe elbow) of loading was used [38-40]: 

2 2 2

I II III

IC IIC IIIC

K K K
C

K K K

       
+ + =     

     
 (II.22) 

Failure condition is given by C=1, IK  , IIK  and IIIK  are applied in elbow at critical zone for 

mode I, II and III ICK , IICK and IIICK are the fracture toughness of three modes. In steel, 

fracture toughness of mode I is equal to the fracture toughness of mode II [38]: 

IC IICK K=  (II.23a) 

And where the equation of calculation IIICK is given by as follow: 

C
IIIC IIC

C

K K



=  (II.23b) 

where C and C are critical shear and normal stresses. 

II.5 CORROSION ASSESSMENT ON PIPELINE STEELS 

The corrosion phenomenon has become one of the difficult challenges in the hydrocarbon 

industries. In order to keep the continuity of energy transport, many studies have been presenting 

the durable solutions and new ideas about industrial and natural inhibitors.  

In this section, the pipeline integrity continues to attach the great importance to improving 

components function in order to maintain them under service a long time possible. Generally, 

there are many methods to evaluate the corrosion problem which is based on the inspection 

(material of piping, operating conditions, nature of hydrocarbons) and analyses (layer 

compounds of corrosion). In addition, the pipeline integrity has been developed by international 

standards or researchers’ models in order to maintain the continuity of operating service using 

experimental tests, numerical analysis and/or analytical models [41-44]. 
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II.5.1 Failure pressure models based on yield stress  

In the 60s, many studies proposed the mathematical formulas for allowing the prediction and 

the evaluation of the burst capacity of corroded pipes [24, 45-47]. In addition, depending many 

factors such as flow stress ( flow ), wall thickness (t), outer diameter (Dext) and defected area 

function (f(d/t)) are used to calculate the failure pressure of piping systems.  

(a) Battelle NG-18 model 

In order to study the failure criterion, the first formula is named Battelle NG-18   which had 

been proposed by Maxey et al. [24]. This formula is applied using the rectangular shape of 

corrosion phenomenon to analyze the piping systems. The NG-18 equation for failure criterion 

is written as following: 

( )2
.f flow

ext

t dP f
tD

=   (II.24) 

69flow y = +  (II.25) 

( ) 0

0

1 ( / )

1 ( / ) /

A Adf
t A A M

 −
=  

− 

 (II.26) 

where Pf is the failure pressure. A and A0 are area of the river-bottom profile and the reference 

area respectively. M dsecribes the geometry correction factor (Folias factor) as follow: 

0.5
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2 2

1 0.6275 0.003375
ext ext

L L
M

D t D t

  
 = +  −  
   

 (II.27) 

However, based on this criterion, engineering models were developed depending to the flow 

stress ( flow ), correction factor (M) and corroded profile [25]. Analytically, the flow stress 

depends upon the yield strength, y, (B31G, mod B31G and RSTRENG) or ultimate strength, 

ult, (DNV RP-101, PCORRC and Shell-92). 
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(b) Original ASME B31G  

Based on Battelle NG-18 standard, American Society of Mechanical Engineers (ASME) has 

started to develop the industrial codes in order to predict the burst capacity for pressurized 

defected pipes. It is considered as the important code to predict the burst capacity for pressurized 

pipes due to the high pressure and temperature with small defects and cracks. Furthermore, 

many studies have been providing engineering models to examine this phenomenon using the 

semi-elliptical as a simulated shape which is proportional to the mathematical models taking 

into account the operating conditions [26]. According to the ASME, the first model is called an 

original ASME B31G [26] which is used for a parabolic defect shape and the maximum 

circumferential stress () cannot exceed the yield strength of the material y  . Moreover, 

the flow stress depends to the yield strength ( 1.1flow y = ). According to B31G, failure function 

may express as following equation, where the defect depth must not exceed 80% of wall 

thickness. 

( ) 1 (2 / 3)( / )

1 (2 / 3)( / ) /

d tdf
t d t M

−
=

−
 (II.28) 
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 
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  (II.29) 

Where d, t, and L are the crack depth, wall thickness, and longitudinal corrosion defect length, 

respectively. 

(c) Modified ASME B31G model 

Kiefner et al. [27] have modified the original ASME B31G standard which is used for an 

arbitrary defect shape. In addition, the defect depth should not exceed 85% of wall thickness. 

The flow stress depends to the yield strength which is approximately equal to 69y MPa + .  

( )
( )
1 0.85( / )

1 0.85( / ) /

d tdf
t d t M

−
=

−
 (II.30)  
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Where the correction factor (bulging factor) equation is expressed as follow: 
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 (II.31) 

(d) RSTRENG model 

Due to the importance the energy transport and its safety, researchers had to think for an 

adequate model. RSTRENG model [28] is used for effective area and effective length (river 

bottom profile) as presented in the equation of failure function (equation II.32) while the flow 

stress is still as ASME B31G modification model ( 69flow y = + ) taking into consideration the 

condition of defect depth ratio ( / 0.8d t  ). 
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  (II.32) 

Where the geometry correction factor (M) can be calculated using the following equation: 
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 (II.33)  

II.5.2 Failure pressure models based on ultimate strength 

Developing the prediction technology is one of among ways to keep the safety of energy 

transported. Depending on the inspections and analyses and investigations [25,12-14,19-21, 38], 

the most results indicate to the standard B31G, modified B31G and RSTRENG formulas are not 

suitable to predict the modern pipelines with high toughness. Thus, improving the quality of 

piping components is based to develop new models for predicting in real times the burst and the 

prevent catastrophic incidents taking into account the boundary conditions especially the 

pressure and temperature and nature of the material. The developed models are based on 

ultimate strength. 
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(a) Shell-92 model 

Depending on the inspections and analyses and investigations [25,12-14,19-21, 38], the most 

results indicate to the standard B31G, modified B31G and RSTRENG formulas are very 

conservative predictions for modern pipelines (high toughness). Consequently, the development 

of pipeline steels is required new models in order to predict the real time of burst and to prevent 

the catastrophic incidents. However, Ritchie and Last [29] have suggested a new mathematical 

model for failure pressure calculation known as Shell-92 which presented in equation II.34. The 

flow stress ( flow ) in Shell-92 model is identified by ultimate strength which equal to 0.9 ult .  

( )2
.f flow

ext

t dP f
tD t

=
−

 (II.34) 

The failure function f(d/t) is given by equation II.35 taking into account the condition of defect 

depth which must not exceed 85 % of pipeline thickness.  
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(b) DNV RP-F101 

Veritas [30] has presented a theory to evaluate the burst capacity on corroded pressurized piping 

systems which is called DNV RP-F101 basing on the previous model shell-92 (equation II.34). 

This model is dedicated to high toughness in defective piping systems with rectangular shape 

defects and river bottom profile [25]. He has believed that the use of flow stress as ultimate 

strength ( flow ult = ) and correction factor, M (equation II.37) may give a relatively 

conservative prediction on burst capacity of corroded pipeline. However, this method is not 

applicable for defect depths which are greater than 85% of a pipe wall thickness. 
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(c) PCORRC 

The integrity assessment of piping systems with long defects for moderate and high toughness 

becomes the great challenge facing most petroleum companies, where the new burst capacity 

criterion that is named PCORRC model, has been presented by Stephens and Leis [31] taking 

into account the operating conditions. Based on FE, they have investigated their analysis on 

elliptical defect shapes using a plastic collapse failure. Furthermore, the demonstrated model 

proved that the flow stress is controlled by ultimate strength ( flow ult = ). In addition, the defect 

depth and length are considered the critical parameters for corroded pipes assessment which are 

defined by failure function (equation II.38) and bulging factor (equation II.39). 

( ) 1 ( / )*df d t M
t

= −  (II.38) 

1 exp 0.157
( ) / 2

L
M

D t d

 
= − −  − 

 (II.39) 

(d) CHOI model 

According to the failure pressure of piping systems, Choi et al [32] have proposed a new formula 

based on limit load analysis which are performed on API X65 pipeline steels using a numerical 

analysis. Moreover, the failure pressure calculation is established according to the flow pressure 

and failure function which are dependent on a condition of /L rt  as stated by Choi et al [32]. 

However, the flow stress is related to the ultimate strength ( 0.9flow ult = ) if / 6L rt   and 

the failure function can be determined by a quadratic equation as follow: 
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On the contrary, if the / 6L rt  , the flow stress is equal to the ultimate strength ( flow ult = ) 

and the failure function (equation II.40) will change into the first degree which can be rewritten 

as follow:  

( ) 1 0

Ldf C C
t rt

 
= + 

 
 (II.42) 

where the constant parameters, C0 and C1 are expressed as follow: 
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 (II.43) 

(e) Zhu and Leis model 

In 2012, new analytical method was developed for assessing corroded piping system and 

predicting the failure pressure by Zhu and Leis [48]. The analytical method was based on three 

approaches; Tresca, von Mises, and ASSY which provide the enough analyses about the defects 

on piping systems taking into account the strain hardening parameter [48]. Their analyses were 

carried out on specimens which had long real defects removed from critical zones of corroded 

pipes (crack or welded joins) under service in order to understand the behavior of defects taking 

into consideration the operating conditions. In consequence, the final function of failure pressure 

can be expressed by following equation: 
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f ult

k t d
P

D t


+

   
= −   
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 (II.44) 

where the parameter “k” was defined in equation II.11.b.  

II.6 Failure Assessment Diagram (FAD) 

To study the efficiency of piping systems, the FAD is still the important tool to measure the 

quality and durability of material depending on many parameters such as depth, thickness, 

length, surface roughness, taking into account the operating conditions such as the temperature 

and pressure. Depending on the value of fracture toughness (KIC) parameter that is important 

material property of resulted of critical value of SIF, indicates the failure assessment of pipelines 

[35,36]. In addition, the FAD curve (see figure II.8) is still an important technique to define 
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accurately the orientation of pipeline lifetime, where this technique is divided into three zones 

(i) security zone, (ii) safety zone, and (iii) failure zone. 

FAD presents defect loading conditions in a graph where the non-dimensional crack driving 

force Kr is plotted versus non-dimensional applied stress Lr. Kr is defined as the ratio of maximal 

stress intensity factor, KI, max, to the fracture toughness of material, KIC. 

2
6( ) 1 0.3 0.7 exp( 0 1

2

r
r r r r

L
K f L L L

 
 = = + +  −  →     

 
 (II.6) 

Kr = KI, max/KIC (II.6) 

Lr is the ratio of hoop stress θ to flow stress flow which is given by the following equation: 

Lr= θ/flow  (II.6) 

where g and flow are given by following equations 

flow = (y +ult)/2  (II.6) 

Due to the complex geometry of pipe bends, the mixed mode loading allows to appear the KII 

and KIII through the crack driving force Kr which is represented by the ratio of maximum 

equivalent stress intensity factor, Keq, max, taking into account the fracture toughness of material 

in mode KIC. 

Kr=Keq/KIC (II.6) 

The FAD is based on the interpolation curve Kr= f (Lr) and it is typically presented in polar 

coordinates (r,  ) [49]. A schematic representation of a typical FAD with two characteristic 

polar angle values (1 and 2) that defined three typical domains:  

➢ Brittle fracture, if  > 1   

➢ elasto-plastic fracture, if 1 >   > 2   

➢ plastic collapse, if  < 2   

In FAD, failure is given by the following condition; if the assessment point of coordinate [Lr, Kr] 

is under the failure curve given by the following equation K𝑟,𝑐= 𝑓(𝐿𝑟,𝑐) where the subscript c 
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indicates critical condition, the structure is safe. If the assessment point is above the curve, 

failure occurs [49]. 

 
Figure II.8: Schematic view of the Failure Assessment Diagram (FAD) and three typical domains. 
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III.1 INTRODUCTION 

Piping systems including the pipelines, joints and elbows used in the refineries, exploration and 

production, are considered as important instruments for transporting the hydrocarbons with 

safety method. Moreover, they are major parts to provide the energy all over the world taking 

into account the operating conditions such as pressure and temperature. Despite the importance 

of the piping components, the repeated failures and defects in the critical parts of elbows 

especially joins and welded parts become the main challenge that face the engineers in the 

hydrocarbon industries. This phenomenon most probably causes due to the corrosion which is 

a dangerous and enormously costly issue.  

In this chapter, we focus on two main sections which explain the crack and defect phenomena 

in pipe elbows. First section investigates the critical position in the API 5L X52 pipe elbow 

according to the Fluid-Structure Interaction (FSI) using numerical analysis of CFD and FEA. In 

order to perform this section, it is divided into four main parts: the first part concentrated on 

analyzing and comparing the results which appear the effect of bending radius of elbow on the 

maximum values of Von-Misses stress for each radius taking into account the characteristics of 

mechanical including the yield stress of the elbow material. The second part focused on the 

creation of a semi-elliptical crack for different locations along the elbow to define the critical 

position according to the stress intensity factors. In the third part, the semi-elliptical crack angle 

orientation was studied at the critical position to indicate the critical angle which allows 

evaluating the effect of crack during the transporting of energy. The last part is focused on the 

check of the elbow safety where the failure assessment diagram (FAD) is one of most techniques 

which used to analyze the damage of piping systems in order to show the critical crack depth 

ratios at a critical position and a critical angle. 

The second section evaluates the integrity assessment of damaged API 5L X52 steel elbows 

which was carried out within the framework of numerical study using the finite element method 

(FEM) and finite element analysis (FEA). To evaluate the damage, the FEM is used to simulate 

this phenomenon taking into consideration the limit pressure in the elbow containing a 

rectangular shaped corrosion defect at the intrados side. This study was accurately performed 

and compared to different codes for calculating limit pressure. To analyze the state of elbows at 

the intrados side with highest hoop stress, the FEM is used to predict the corrosion area. 
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Different relative defect depths to wall thickness ratios are created at the critical area and used 

as a principal parameter in the corrosion assessment. 

III.2 NUMERICAL ANALYSIS OF SEMI-ELLIPTICAL CRACKS 

Piping systems are exposed to catastrophe issues including corrosion and erosion which are the 

most common defects due to the operating conditions such as pressure and temperature and 

other external factors. The figure III.1 shows a real case of corrosion phenomenon in the intrados 

section of pipe elbow resulted by the complex chemical reactions due to the interaction gas-

solid. We have performed a numerical study to understand the corrosion phenomenon on the 

one hand and on the other hand to avoid the corrosion problems and its reasons as much as 

possible. Depending on the boundary conditions to corroded elbows, the numerical study was 

carried out by ANSYS software [1] under the effect of the interaction between elbow and natural 

gas. The elbow of 90° made of API X52 steel was investigated by FVM and FEM techniques 

taking into account its dimensions as shown in figure III.1. 

The geometry of the elbow is shown in figure III.1b where the dimensions are as presented as 

follow: internal radius Ri=285.75 mm, wall thickness t = 12.7 mm and the length 

L = 1000 mm.  is the elbow bending radius. 

 
(a)                                                                  (b) 

Figure III.1: API X52 pipeline steel (a) an example of real corroded steel (b) Geometrical model of 

the pipe elbow. 

Due to the difficulties of carrying out an experimental study under very complicated conditions, 

we have used a numerical software in order to understand the interaction between elbow and 
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natural gas. In fact, we have used the FVM of computational fluid dynamics (CFD) to study the 

behavior of gas flow and pressure distributions along pipe elbow. These pressures across the 

elbow were obtained by the importation of the other section called APDL (Ansys Parametric 

Design Language) using FEM. The figure III.2 illustrates the methodology of numerical steps. 

First of all, elbow radius was applied progressively in order to show the stress. At stabilization, 

the study of stress distributions along elbow curvature under gas pressure of 7 MPa was 

conducted in order to get the critical position defined as the position of maximum stress.  

 

Figure III.2: Schematic description for numerical methodology. 

At this critical position, a semi-elliptical crack was introduced and its orientation  effect was 

studied in order to get the critical crack angle. This will create different semi-elliptical crack 

depths (d/t) in the range of 0.1 to 0.8; where “d” is the crack depth and “t” is the pipe elbow 

thickness. Failure assessment diagram (FAD) curve was used to evaluate the critical crack depth 

ratios at a critical position and a critical angle. 
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III.2.1 Effect of elbow radius  

The numerical study including the finite element method is still as a suitable technique to 

investigate the behavior of crack and critical positions along the elbows. The numerical study 

was performed using the important steps to define the critical positions and applying the 

boundary conditions including the suitable mesh to obtain the accurate results.   

Figure III.3 illustrates the elbow geometry, meshing and boundaries conditions of our case 

study, where the pressure was distributed along of the internal surface of elbow to appear the 

defects zones and leakage points. 

 

Figure III.3: Geometry, meshing and boundaries conditions of elbow model. 

In order to analyze the effect of the cracked elbow on the safety of piping system at critical 

zones, the radius bending was taken into our consideration as it plays an important role in the 

security and assessment for pipeline failure where the critical zones are affected by the 

interaction fluid/ structure including elbow geometry. Figures (III.4 - III.6) show the distribution 

of pressure, velocity and Von-Mises stress along the pipe elbows, respectively.  

The Effect of elbow radius was investigated in order to obtain the radius value at which the 

stress is stabilized. The change in the elbow radius leads to change the behavior flow including 
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the maximum stress and therefore to security and defect assessment of pipeline as shown in 

figure III.7. 

  
(a)                                                                  (b) 

Figure III.4: Pressure distribution along the elbow for (a)  = 50 mm and (b)  = 500 mm. 

  
(a)                                                              (b) 

Figure III.5: Velocity distribution along elbow for (a)  = 50 mm, (b)  = 500 mm. 
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(a)                                                                      (b) 

Figure III.6: Von-Mises stress distribution along pipe elbow for (a)  = 50 mm, and (b)  = 500 mm. 

 
Figure III.7: Effect of elbow radius on maximum Von Mises Stress. 

Table III.1: Evaluation of the effect of elbow radius on maximum Von Mises Stress. 

Radius  < 25 25 <  < 85 85 <  < 450  > 450 

Admissibility no (   y) no (  y)  No (Fs < 2) Yes (Fs  > 2) 

Stress evolution Decrease Stabilization  Decrease Stabilization  

0 100 200 300 400 500 600 700 800 900 1000

200

250

300

350

400

450

500

550

IV
IIIIII


y
=410 (MPa)

M
a

x
im

u
m

 V
o

n
 M

is
es

 s
tr

es
s 

(M
P

a
)

Elbow Radius  (mm)

Safety factor, F
s
 = 2



CHAPTER III: ASSESSMENT OF CRITICAL POSITIONS IN PIPE ELBOWS 
 

66 

 

The effect of elbow radius was also examined according to the maximal values of Von-Mises 

stress as it shown in figure III.7. Von Mises stress evolution can be divided into four zones as 

indicated in Table III.1. The admissible elbow radius refers to the value of Yield strength of API 

X52 pipeline steel which is equal to 410 MPa and the traditional safety factor taken as Fs = 2. 

Any bending radius leading to a maximum stress greater than 410 MPa divided by the safety 

factor is not acceptable for industrial service. As a real case (Figure III.1a), a value of 500 mm 

of elbow radius was taken in our investigation. For this case: the stress amplification due to the 

presence of elbow is kt = 1.2. 

III.2.2 Critical position along elbow 

The numerical software provides the approximate solutions under the operating condition and a 

good way to increase the pipeline efficiency and to prevent the occurrence of corrosion. The 

presence of   high pressure in elbow is one of serious problems which can be the main reason to 

occur the corrosion phenomenon and hence, it leads to explosion the piping systems. Critical 

zone presented as a red zone in figure III.6 that is resulting from the internal natural gas pressure. 

Figure III.8 presents the corresponding distribution of different stresses (Von-Mises, normal 

stress and principal stress). 

   
(a)                                     (b)                                               (c) 

Figure III.8: Stresses distribution in elbow (a) Von-Mises stress, (b) Normal stress xx and (c) 

Principal stress   

Figure III.8 indicates that the maximum value of Von-Mises stress is 198.96 MPa.  Normal 

stress xx and principal stress  have the same value equal to 219.56 MPa. The maximum 

stress criterion apply to the three different stresses gives a maximum stress localization in the 
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same node with an angle α = 72°. In the next part, a semi-elliptical crack is introduced with in 

different angular position along the intrados of elbow ( = 5° to  = 85°); is defined in 

figure III.9.  

 

(a)                                                               (b) 

 

(c) 

Figure III.9: Maximum stresses distribution versus crack angle  in elbow (a) Von-Mises stress, (b) 

Normal stress xx and (c) Principal stress  

Depending on the depth ratio d/t = 0.5 and d/c = 0.5 which are considered as principal parameters 

of the semi-elliptical crack in our study in order to predict the behavior of elbow under the severe 

conditions. In addition, the stress intensity factor in mode I versus the crack tip angle  is used 

to shows the behavior along the elbow for defining the critical zones. There are many reasons 

to generate the crack along the elbow, the industrial defect and join welded are still the original 
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of small crack where the maximum stresses are concentrated at weak zones. 

Figure III.10 shows the stress intensity factor distributions in a semi-elliptical surface crack for 

different angular positions  along the elbow intrados surface (). Maximum mode I stress 

intensity factor KI,Max is localized at  = 75° and  is given by the following formulae : 

2IMax maxK F d =    (III.1) 

max is the maximum applied stress, d is the crack depth and F is the geometric function which 

depends of crack length, aspect ratio, as well as the type of applied load. 

 

Figure III.10: Mode I stress intensity factor of semi-elliptical surface crack in elbow versus 

angular crack  and for different angle position  (d/t =0.5, d/c =0.5, P =7 MPa). 

III.2.3 Effect of angle crack orientation on SIFs 

In fracture mechanics, the crack phenomenon is considered as the dangerous issue in the 

hydrocarbon industries which may lead to pipeline failure. Appearing the crack in elbow under 

the high pressure leads to create the small cracks along the elbow with different orientations. 

For this reason, the mixed mode of stress intensity factors (KI, KII, KIII) is accurately used to 

predict the crack behavior taking into consideration the pressure and the bend angle. In this 

work, crack is not naturally oriented perpendicular to normal stress therefore mixed mode of 
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loading (KI, KII, KIII) is applied. In addition, elbow curvatures induce mixed mode of loading 

however crack orientation is  = 0°. The shape geometry and stress distributions at semi-

elliptical external surface cracks in the critical position of intrados pipe elbow are illustrated in 

figure III.11 for three crack orientations (a)  = 0°, (b)  = 45° and (c)  = 90°. According to the 

numerical calculation (Figure III.10), the crack is created in the critical zone at 75° of elbow 

steel which is subjected to the internal pressure (P = 7 MPa) resulting from natural gas that may 

affects the internal surface wall of pipe bend. 

       
(a)                                                  (b) 

 
(c)                                                                  (d) 
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(e)  

Figure III.11: Stress distribution at semi-elliptical crack tip for 3 crack orientations. (a)  = 0°, 

(b)  = 45° and (c)  = 90°, (d) definition of angular position , and (e) shape of semi elliptical crack. 

Next, the stress intensity factors are considered for a critical crack orientation ( =75°). The 

next figures present the stress intensity factors (KI, KII, KIII) distribution of semi elliptical crack 

tip for different crack angular positions (). 
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 (b) 

 
(c) 

Figure III.12: Stress intensity factor with different orientations of crack-tip angle (a) mode I, (b) 

mode II, and (c) mode III. 
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III.2.4 Effect of crack depth ratio on SIF 

Depending on the obtained results, the stress intensity factors including (KI, KII, KIII) allows to 

study the crack behavior along the elbow, in despite on the opening mode (I) is the most 

important mode than the modes II and III. Due to the complex geometry of elbow, the mode II 

is induced by longitudinal stress where mode III is influenced by the elbow curvatures taking 

into account the geometry, thickness and the bend of elbow. The SIF of mode I becomes the 

maximum value at   = 90° which can be called as the critical angle.  

However, the KII value is very small and KIII value is less than KI. Due to the presence of three 

modes (KI, KII and KIII), failure equation is based on the equivalent stress intensity factor which 

was presented in the precedent chapter (equation II.17). 

2 2 2 2(1 )eq I II IIIK K K K= + + +   (III.2) 

where  is the Poisson’s ratio. Keq for crack orientation angle  = 90° is higher than KI, this 

parameter is able to show all values of three modes (KI, KII and KIII) as shown in simulated 

results. Figure III.13 presents the equivalent stress intensity factor with the orientation  of semi-

elliptical crack in different angular position  It shows that orientation of 90° has more 

efficiency for elbow pipeline. The influence of relative depth ratios (d/t) changing from 0.1 to 

0.8 on stress intensity factors (KI, KII, KIII) is shown in figure III.14 for d/t = 0.5. 

   

Figure III.13: Equivalent stress intensity factor versus relative crack orientation for different angular 

position. 
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Due to the concentration of crack’s energy in the critical zones in the elbow, stress intensity 

factors in mode KI and Keq increase with relative crack depth ratios (d/t) as seen in figures III.13 

and III.14. 

   

Figure III.14: Stress intensity factor in mode KI versus angular position for different relative crack 

depth ratios (d/t). 

Based on the operating conditions including the internal pressure and elbow curvature, the 
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approximately negligible. Semi-elliptical crack with different relative depths was examined at 

a critical position ( = 75°) and a critical crack angle (θ = 90°).  Depending on the numerical 

data, the failure criterion for mixed mode is used to explain the phenomenon of crack: 
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  (III.3) 

Failure condition is given by C=1, KI, KII and KIII are applied in elbow at critical zone for 

mode I, II and III KIC, KIIC and KIIIC are the fracture toughness of three modes equal to 116.6, 

116.6 and 67.27 MPa √ m respectively for API X52 pipe steel [2-4]. In steel;  

KIC = KIIC  (III.4) 

and where the equation of calculation KIIIC is given as follow: 
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C
IIIC IIC

C

K K



=  (III.5) 

where c and c are critical shear and normal stresses. 

Figure III.15 gives an evolution of fracture condition C for different crack orientations under 

the same internal pressure and for a relative crack depth d/t =0.5. 

  

Figure III.15: Evaluation of fracture condition equation with crack orientation C = f(θ). 

Fracture condition is fulfilled for crack orientation in the value range of θ from 32.52° to87.66° 

for semi-elliptical crack front position ( = ) 

III.2.5 Particular Failure Assessment Diagram (FAD) use for Elbow crack defect 

The failure Assessment Diagram is one of the most techniques which used to study the behavior 

of elbow integrity and predict the failure time. It allows to determine the critical crack depth at 

a critical position and a critical angle with the aid of stress intensity factors and fracture 

toughness. In the case that the stress intensity factors were not enough to show the critical zones 

along the propagation of the cracks in the elbow, the FAD becomes a necessary step to predict 

the crack zones depending on three zones: the security zone, the safety zone, and the failure 

zone. 
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Figure III.16 represents the FAD curve for elbow and straight pipe for different value of relative 

depth crack ratio (d/t) in the range 0.1 - 0.8. The value of fracture toughness in the present study 

is based on the references [5, 6] where the constraint is represented by T stress [7] which 

calculated using the stress difference method [8, 9] through Material Failure Master Curve 

(MFMC). 

Hence this technique expresses on the fracture toughness with the effective critical constrain 

𝑇𝑒𝑓,. For pipe steel, MFMC has been determined by equation III.6 where it obeys a linear 

relationship. 

, ,0IC ef C ICK aT K= +  (III.6) 

where a is equal to -0.069√m and KIC,0 is the reference fracture toughness for Tef,c = 0 and 

KIC,0 = 77.28 MPa√m. For a straight pipe, a value of KIC = 116.6MPa√m was obtained and 

corresponds to a low constraint under the internal pressure. For elbow, the value of fracture 

toughness was reduced to KIC,0 = 95 MPa√m due to a higher constraint. Evolutions of 

assessment points for different relative crack depth ratios are reported in FAD for straight pipe 

and elbow with same pressure, diameter and thickness in figure III.16.  

 
Figure III.16: Failure Assessment Diagram for straight pipe and elbow Evolution of assessment points 

with relative crack depth (d/t=0.1 - 0.8) and (C = 95 MPa.m0.5 and KIC = 116.6 MPa.m0.5). 
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It is noted that due to stress amplification and higher constraint, the assessment points for the 

same defect size are located with higher ordinates. Critical defect sizes are defined when 

evolution curves cross the failure curve. For elbow, the relative critical defect depth is 

(d⁄t = 0.28), which is higher for a straight pipe (d⁄t = 0.66).  Assessment points for elbow and 

below failure are located in the brittle zone of the FAD. This is proving the use of a linear 

behavior for computing SIF. This assumption is not valid for a straight pipe but it is given here 

for comparison. 

III.3 ASSESSMENT OF CORRODED PIPE ELBOW 

This section focuses on the simulation of 90° elbow with the parallelepiped rounded borders 

shaped corrosion defects with different relative defect depth ratios at the critical intrados 

locations which is performed using the FEA technique on the one hand. On the other hand, the 

numerical results are compared with the results which obtained by industrial models to modify 

the limit pressure equations of industrial models (ASME B31G, modified ASME B31G, and 

DNV RP-F101), presented in chapter II. The modification includes the use of the Goodall 

formula [10] (equation (III.7)) for the hoop stress   in the pipe elbow during the calculation of 

the limit pressure PL according to three industrial models originally developed for the straight 

pipe.  

1 / 2

1 /

Pr r R

t r R


−
= 

−   
(III.7) 

The present results allow studying the behaviour of elbow defects, where the obtained results 

with discussions are divided into three subsections. First, in subsection III.3.1, the hoop stress 

at the intrados location of the pipe elbow without defect was examined and calculated using the 

equations suggested in the literature for the straight pipe (Chapter II) and Goodall formula for 

the pipe elbow (equation (III.7)). In addition, the obtained results are compared with the results 

for the distribution of hoop stress on the intrados ( = 0°) sections of the pipe elbow obtained 

by numerical FEA. In the next subsection III.3.2, the results of the limit pressure calculation for 

different corrosion defect depth ratios using three modified industrial models (ASME B31G, 

modified ASME B31G, and DNV RP-F101), and the Goodall formula [11] for calculation of 

the hoop stress () in the pipe elbow, is presented and compared with numerical FEA results. 

Furthermore, the NFAD for the straight pipe and elbow with corrosion defects for the safety 

factor calculation is presented and further analyzed in the final subsection III.3.3. 
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III.3.1 Hoop stress at intrados section of the pipe elbow  

An elbow is subjected to the internal service pressure Ps = 7 MPa. The FEM results are shown 

in figure III.17. Figure III.17a shows the 90° pipe elbow geometry and figure III.17b shows the 

mesh constructed with a 16-node quadrilateral element. Figure III.17c illustrates the hoop stress 

distribution along the pipe elbow. Figure III.18a presents the distribution of hoop stresses at 

different angles along the pipe elbow, as illustrated in figure III.18b. 

   
(a)                                       (b) 

 
(c) 

Figure III.17: Pipe elbow without corrosion defects subjected to the internal service pressure 

Ps= 7 MPa, (a) geometry, (b) meshing, and (c) hoop stress distribution.  
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Figure III.18: Pipe elbow without corrosion defects: (a) distribution of the hoop stress; (b) different 

paths angles along the pipe elbow. 

Due to the operating conditions, the mechanical characteristics change during the flow in 

pipeline, where the maximal value of hoop stress is concentrated at the intrados side of elbow, 

as shown in figures III.17 and III.18. Depending on the analyses of elbow crack phenomenon, 

figures III.18a and III.18b show the distribution of hoop stress along the intrados ( = 0°), 

extrados ( = 180°) and crown ( = 90°) sides of the elbow. Moreover, the obtained results prove 
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that the critical zones focus on the intrados section of the elbow according to the obtained high 

hoop stress value that equals  = 212.4 MPa. In addition, the hoop stress value decreases at the 

crown side of the elbow, where it is near to the value for the straight pipe ( = 164.5 MPa) as 

shown in figure III.19. 

 

Figure III.19: Distribution of the hoop stress in the straight pipe (Internal pressure P = 7 MPa, internal 

radius Ri = 285.75 mm, wall thickness t = 12.7 mm, and the length L = 1000 mm). 

Table III.2: Hoop stress   at the intrados section of the pipe elbow without corrosion 

defects. 

Method of calculation 
Hoop stress, 

  (MPa) 

Error (%) = 

( (FEA ) - (Eq.II.6 and Eq. III.7)) / (FEA) 

x 100% 

Numerical FEA model (Figure III.17) 
 (FEA)= 

212.69 
- 

Goodall formula [10] (equation 

(III.7)) 

 (Eq.III.7)= 

201.39 
5.32 

Straight pipe formula (equation (II.6)) 
 (Eq.II.6)= 

157.50 
25.94 

Table III.2 shows the maximal hoop stress values obtained by the numerical FEA model together 

with values obtained using the Goodall formula (equation (III.7)), and the formula for the 

straight pipe (equation (II.6)). It is clear that the hoop stress value obtained using the Goodall 

formula - equation (III.7) ( = 201.39 MPa) is close to the value obtained by the numerical 
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FEA model, figure III.17 ( = 212.69 MPa), with the small error of 5.32 %, Table III.2. The 

error is calculated using the following formula: Error (%) = ( (FEA)- (Eq.II.6, III.7))/ (FEA) x 

100%, where  (FEA), and  (Eq.II.6, III.7) are the hoop stress values obtained by FEM model, 

equation (II.6), and equation (III.7), respectively. On the other hand, the much higher error 

(25.94%) is obtained using the straight pipe formula (equation (II.6)) for calculation of the hoop 

stress (= 157.50 MPa), Table III.2. Such a large discrepancy between hoop stress values at 

the intrados section of the pipe elbow, obtained by both FEA and the Goodall formula, and the 

value obtained using the formula for the straight pipes indicate on the high criticality of this 

section of pipe elbows. A good agreement between the hoop stress value obtained using the 

Goodall formula [10] for calculation of the hoop stress () in a pipe elbow, and the value 

obtained by numerical FEA model (see Table III.2, error = 5.32%), provides a solid background 

for checking the limit pressure calculations results using three modified industrial models. Also, 

the obtained numerical FEA value for the hoop stress ( (FEA) = 212.69 MPa) as well as the error 

in comparison with the Goodall formula [10] results (5.32%) are in close agreement with the 

maximum error of 6.58% reported by Duan and Shen [12]. Once again, the hoop stress value 

obtained by the Goodall formula is somewhat higher than that obtained by the numerical FEA. 

The comparison of results obtained using modified industrial models and the FEA results is the 

topic of the next subsection III.3.2.  

III.3.2. The limit pressure calculation using modified industrial models and FEA results 

In this part, the corroded pipe elbow assessment is studied to prevent their burst and the results 

of the limit pressure calculation using modified industrial models are compared with the FEA 

results. Previous research indicates that there is a serious need to determine a perfect formula to 

calculate a limit pressure at the intrados section of the pipe elbow [11-17]. Therefore, the limit 

pressure of the corroded pipe elbow is analyzed using FEA, as shown in figures III.21 and III.22. 

The parallelepiped rounded borders shape corrosion defect is simulated at the intrados section 

of the pipe elbow. The pipe elbow with a length (L = 174 mm), width (W = 208 mm), and with 

different geometrical corrosion defect depth to wall thickness ratio (d/t = 0.1 - 0.8, see 

Figure III.20) is investigated, figure III.21. The defects with different d/t depth ratios were 

modeled at the intrados section of the 90° pipe elbow, figures III.21a and III.21b. The hoop 

stress distribution for d/t = 0.5 is shown in figure III.21c. 
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Figure III.20: The position of rectangular parallelepiped-shaped in the center intrados location. 

 
                   (a)                                        (b)                                                     (c) 

Figure III.21: (a) the geometry of rectangular corrosion defect, (b) meshing, and (c) hoop 

stress distribution (d/t= 0.5). 

In conducted FEA, for each defect depth (d/t= 0.1 - 0.8, see Figure III.20), the applied pressure 



CHAPTER III: ASSESSMENT OF CRITICAL POSITIONS IN PIPE ELBOWS 
 

82 

 

is increased with an increment of 1 MPa, from 1 MPa to the maximal 16 MPa. The hoop stress 

that is equal to the yield or ultimate strength can be considered as a limit pressure, as indicated 

in figure III.22a. The effects of defect depth ratios (d/t= 0.1 - 0.8) on the hoop stress were 

analyzed at different internal pressures. Below the yield strength value (σy= 410 MPa), a typical 

linear increase of the hoop stress can be observed, figure III.22a. Due to the entering into the 

plastic regime, above σy while approaching the ultimate strength value (ult= 520 MPa), 

nonlinearity in the hoop stress increase was observed, figure III.22a. Figure III.22b illustrates 

the numerical FEA obtained limit pressures based on the yield σy and ultimate strength ult 

values for API 5L X52 steel with different defect depth ratios (d/t= 0.1 - 0.8, see Figure III.20) 

at the intrados section of the pipe elbow.  

  
(a) 

 
(b) 

Figure III.22: (a) hoop stress versus internal pressure; (b) limit pressure PL according to the yield and 

ultimate strength. 
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As previously discussed, the limit pressure determines the pipe burst. It depends on two main 

mechanical properties (i) yield strength σy and (ii) ultimate strength ult. As indicated in 

figures III.22a and III.22b, the limit pressure for the pipe elbow made of API 5L X52 steel with 

defect depth ratio d/t= 0.1 is almost 16 MPa based on the ultimate strength, and 12 MPa based 

on the yield strength. While the limit pressure for defected pipe elbow with defect depth ratio 

d/t= 0.8 is much lower, approximately 8 MPa based on the ultimate strength and only 4.5 MPa 

based on the yield strength. The reduction of the internal service pressure Ps = 7 MPa 

(Figure III.22b) in the pipe elbow is necessary when a critical defect depth reached d/t = 0.65, 

based on the yield strength σy = 410 MPa for API 5L X52 steel. In this study of pipe elbows, the 

presented numerical FEA results (Figure III.22b) indicate that the use of yield strength as a limit 

value for the limit pressure determination does not represent a conservative solution as it was in 

the case of straight pipe made of the same steel [18,19]. Nevertheless, during comparison of the 

suitability for application of the ultimate strength or yield strength as a limit value for the limit 

pressure determination and the conservatism estimation, it is necessary to take into account other 

important factors. These factors are (i) the pipeline component: straight pipe or a pipe elbow, 

(ii) the type of the defect: cracks (the stress intensity factor - SIF) or corrosion defects without 

the crack, (iii) geometrical characteristics of the corrosion defect (the degree of stress 

intensification), and (iv) the defect depth ratio d/t [18- 26].  

The comparison between the numerical FEA results for the limit pressure, and results obtained 

using three modified industrial models (ASME B31G, modified ASME B31G, and DNV RP-

F101) for different corrosion defect depth ratios are presented in figure III.23. The decrease of 

the limit pressure in API 5L X52 made steel pipeline is compared for the straight pipe case, 

using three standard industrial models, and for the pipe elbow case, using both modified 

industrial models together with the Goodall formula for calculation of the hoop stress in the pipe 

elbow and FEA results. The numerical FEA results for the limit pressure based on both yield 

strength and ultimate strength are presented in figure III.23. The parallelepiped rounded borders 

shape corrosion defects with different corrosion defect depth ratios (d/t= 0.1 - 0.8) are located 

at the straight pipe, and at the intrados section of the pipe elbow (Figure III.21), respectively. 

As expected, the limit pressure values in the straight pipe, obtained using all three industrial 

models, are significantly higher than for the pipe elbow. This indicates that the application of 

unmodified - original industrial models developed for the straight pipe in the case of the pipe 
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elbow is not advisable and justified because of the significant overestimation of the allowable 

limit pressure.  

Contrary, the results for the modified industrial standards that take into account the pipe elbow 

geometry by using the Goodall formula for calculation of the hoop stress in the pipe elbow are 

found to be in close agreement with the numerical FEA results. When the ultimate strength is 

used to determine the limit pressure in the numerical FEA (PL ult(FEA)), a much better agreement 

with results for all three modified standards are confirmed, Table III.3. The maximal error within 

the range 10.56% (d/t = 0.1) - 17.93% (d/t = 0.8), (error (%) = (PL (B31G) - PL ult(FEA)) / PL ult(FEA) 

x 100%) is obtained using ASME B31G industrial model for all defect depth ratios, Table III.3. 

For defect depth ratios d/t below 0.5, the ASME B31G industrial model calculation results are 

conservative (error: 1.40% (d/t = 0.5) up to 10.56% (d/t = 0.1)), and the gap between the FEA 

and ASME B31G results is diminishing while approaching the defect depth ratio of 0.5. At 

defect depth ratios higher than d/t = 0.5, the ASME B31G results for the limit pressure are higher 

than those obtained by the FEA (error: 4.39% (d/t = 0.6) - 17.93% (d/t = 0.8)), and the gap 

(error) becomes higher with further defect depth ratio increase up to d/t= 0.8, Table III.3. The 

similar conservative trend when using ASME B31G industrial model was also observed by Lee 

et al. [15] and Amandi et al. [27]. The results for the limit pressure (PL (Mod. B31G) and PL (DNV)) 

obtained using other two modified industrial standards (modified ASME B31G, and DNV RP-

F101) are less conservative, higher than those obtained by the FEA, and in better agreements 

with the numerical FEA results based on the ultimate strength (PL ult(FEA)), see Figure III.23 

and Table III.3. The curvature of the FEA results and for both ASME B31G and DNV RP-F101 

industrial models follow a similar trend.  

The results for both modified industrial models are slightly less conservative than FEA results 

and similarly for all defect depth ratios. The similar trend of the burst pressure values of the 

damaged pipe elbows obtained using ASME B31G and DNV RP-F101 industrial models was 

also observed by Lee et al. [15], albeit their study indicates that both models have shown more 

conservatism than the FEA. The results obtained in this study using the modified ASME B31G 

standard (PL (Mod. B31G)) are closest to the numerical FEA results (PL ult(FEA)) for all defect depth 

ratios, Figure III.23. The error is relatively small for all depth ratios and within the range 2.49 - 

10.27%, Table III.3. On the other hand, the numerical FEA results for the limit pressure in the 
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pipe elbow using the yield strength (PL y(FEA)) for different defect depth ratios are consistently 

much more conservative, figure III.23. These numerical model results obtained using the 

Goodall formula for calculation of the hoop stress in the pipe elbow are in good agreement with 

results reported by Duan and Shen [12] for the case when the maximum strain is located in the 

inner wall at the intrados of the pipe elbow. 

 

Figure III.23: Comparison between the limit pressure values in the straight pipe and the pipe elbow (at 

the intrados section) for different depth ratios (d/t = 0.1 - 0.8). 

Table III.3: The difference in the limit pressure PL values for the pipe elbow based on the ultimate 

strength (PL ult(FEA)) obtained by FEA, and by modified industrial standards (B31G, modified B31G, and 

DNV RP-F101) using the Goodall formula for calculation of the hoop stress in the pipe elbow. 

Defect 

depth  

ratio,  

d/t 

PL (MPa), see Figure III.23,  

and Error (%) = (PL (B31G, Mod. B31G, and DNV) - PL ult(FEA)) / PL ult(FEA) x 100% 

PL ult(FEA) 

(MPa) 

PL (B31G) 

(MPa) 
Error (%) 

PL (Mod. B31G) 

(MPa) 

Error 

(%) 
PL (DNV) 

(MPa) 
Error (%) 

0.1 16.19 14.48 10.56 16.59 2.49 17.32 6.95 

0.2 15.37 13.91 9.48 15.81 2.86 16.58 7.87 

0.3 14.45 13.31 7.91 14.94 3.41 15.72 8.79 

0.4 13.35 12.65 5.21 13.98 4.72 14.70 10.14 

0.5 12.12 11.95 1.40 12.90 6.45 13.48 11.25 

0.6 10.72 11.19 4.39 11.69 9.03 11.99 11.85 

0.7 9.35 10.37 10.87 10.31 10.27 10.12 8.26 

0.8 8.03 9.47 17.93 8.73 8.77 7.72 3.89 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

14

16

18

20

22

Pipe elbow (numerical analysis)

 Yield strength  Ultimate strength

Straight pipe standards

 B31G  Mod B31G  DNV

 

 

L
im

it
 p

re
ss

u
re

, 
P

L
 (

M
P

a)

Defect depth ratio, d/t

Pipe elbow (modified standards)

 B31G  Mod B31G  DNV



CHAPTER III: ASSESSMENT OF CRITICAL POSITIONS IN PIPE ELBOWS 
 

86 

 

III.3.3 Notch Failure Assessment Diagram (NFAD)  

In this final subsection, the notch failure assessment diagram (NFAD) for the straight pipe and 

pipe bends with corrosion defects is presented and analyzed. The assessment point in NFAD is 

defined with two non-dimensional parameters - coordinates (Lr, Kr), where Lr is applied stress 

(load), and Kr is a driving force.  

Figure III.24 shows the NFAD for the straight pipe and pipe elbow with different parallelepiped 

rounded borders shaped corrosion defect depth ratios (d/t= 0.1 - 0.8) at the intrados section. 

Evolutions of the function point coordinates, which define the assessment point on the NFAD, 

indicate that the pipe elbow is a more endangered component of the pipeline. For all corrosion 

defect depth ratios, the assessment points for the pipe elbow have a higher value of both 

coordinates (Lr, Kr) then for the straight pipe due to the stress amplification and higher constrain 

in pipe elbows. Particularly, the non-dimensional applied crack driving force Kr coordinates for 

all corrosion defect depth ratios are higher for the pipe elbows. The difference between the Kr 

coordinate for the pipe elbow and straight pipe increases significantly with an increase of the 

corrosion defect depth ratio d/t from 0.1 to 0.8. Therefore, only at the lowest corrosion defect 

depth ratio (d/t= 0.1), the pipe elbow assessment point is in the elasto-plastic failure domain of 

the NFAD. A further significant rise of the Kr coordinates at somewhat higher d/t ratios (0.1 < 

d/t ≤ 0.38), provokes conditions for the pipe elbow assessment points to be shifted into the brittle 

zone of the NFAD, but still within the safety zone. The loading path increases in a more non-

linearly way with the rise of crack depth ratio d/t (0.38 < d/t ≤ 0.8) at the intrados section of the 

pipe elbow. Also, for the corrosion depth ratios higher than the critical (d/t> 0.38), all assessment 

points are located in the failure zone of the NFAD, figure III.24. The obtained critical 

parallelepiped rounded borders shaped relative corrosion defect depth ratio (d/t= 0.38) for the 

pipe elbow is somewhat higher than the critical semi-elliptical relative crack depth ratio (d/t= 

0.28) in the pipe elbow obtained in figure III.16. 

The loading path increases in a more linear way for the straight pipe with different corrosion 

defect depth ratio. More linear behavior is mainly the consequence of the lower increments of 

the corresponding Kr coordinates for the straight pipe with the increase of d/t. The obtained 

critical parallelepiped rounded borders shaped relative corrosion defect depth ratio (d/t= 0.69) 

for the straight pipe is significantly higher than for the pipe elbow (d/t= 0.38). Moreover, all 
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assessment points for the straight pipe with corrosion defect depth ratios below the critical (0.1 

< d/t ≤ 0.69) are located in the least dangerous plastic collapse fracture domain of the NFAD, 

as shown in figure III.24. The obtained critical parallelepiped rounded borders shaped relative 

corrosion defect depth ratio (d/t= 0.69) for the straight pipe, figure III.24, is slightly higher than 

for the critical semi-elliptical relative crack depth ratio (d/t= 0.66) in the straight pipe obtained 

in figure III.16. Also, for the crack depth ratios lower than the critical (0.1 < d/t ≤ 0.66), 

investigated in figure III.16, all assessment points were located in the more dangerous elasto-

plastic fracture domain of the NFAD. Contrary, in this section of the parallelepiped rounded 

borders shaped corrosion defects in the straight pipe, for all defect depth ratios lower than the 

critical (0.1 < d/t ≤ 0.69), the assessment points are located in the less dangerous plastic collapse 

fracture domain of the NFAD, as shown in figure III.24.  

 

Figure III.24: Notch failure assessment diagram (NFAD) for the straight pipe and pipe elbow with 

different parallelepiped rounded borders shaped corrosion defect depth ratios (d/t= 0.1 - 0.8) at the 

intrados section. 

It can be concluded that due to more pronounced stress intensification provoked by the semi-

elliptical cracks with different relative depth rations, the structural integrity and reliability of 
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borders shaped corrosion defects. The results presented in this section indicate further that the 

more severe stress conditions in pipe elbows with corrosion defect at the intrados section in 

comparison to the straight pipe lead to the shift of assessment points into the brittle zone of the 

modified NFAD. According to industrial models, previously analyzed in the subsection III.3.2, 

the straight pipe can resist the defect depths which reach 80-85% of pipe wall thickness [15, 28-

29]. The results presented in this section and the NFAD for the straight pipe indicate that such 

a criterion is overly optimistic and hence not universally applicable. The presented results are 

proving the applicability and practical benefits of the modified NFAD. The NFAD is useful for 

the reliability assessment of corroded pipes and particularly critical pipe elbows taking into 

account the different shapes and depth of defects and the significant stress intensification in pipe 

elbows. 
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IV.1 INTRODUCTION 

The natural energy is still an important source for humanity including the crude oil, natural gas 

and water. Furthermore, they face a great challenge to explore, exploit and transport them with 

safety conditions. Due to the shortage of fresh water and its demand increasing in the desert 

areas, the world turned into the seawater desalination technique and treatment. The appearing 

of corrosion along piping systems such as the elbows and desalination equipment becomes as a 

dangerous phenomenon due to the aggressive components in the seawater and chemical 

solutions. Moreover, the use of piping network including pipelines and elbows consider the best 

method to transport the aggressive fluids such as Carbon dioxide (CO2), Hydrogen, Methanol, 

H2S, HCl, H2SO4, ammonia (NH3) by safest way over great distance.  Depending on the good 

mechanical and physical properties and lower cost despite the corrosion resistance of relatively 

low, pipelines are made generally by the carbon steels [1-2].  

The water transport networks defects including the corrosion phenomenon are a major challenge 

facing many desalination plants due to the dangerous factors which occur during the flow of 

fluid. One of the main damage problems is the corrosion due to the aggressive fluids taking into 

account their chemical components and reactions. In addition, erosion is one of the serious 

reasons which lead to the corrosion issue. Most flow liquids through piping system lade some 

solid particles which can make a damage in the critical zone of internal wall of elbow. 

In the current case study, the production of CO2 is one of the processes in the desalination plant. 

It needs a solution of Monoethanolamine (MEA) mixed with distilled water (11% of MEA pure 

to one litre of distilled water) to absorb CO2 from flue gas (The gas residue is exhausted from 

the top of the absorber). The aim of this chapter is to inspect two corroded pipe elbows which 

transport the solution of MEA with highly contains of CO2. Generally, sodium carbonate 

(Na2CO3) is added to this process in order to control final pH correction range as to prevent or 

reduce the corrosion issue [6]. As primary observations, it was noted that there are some 

elements that have the biggest affect. These elements are referred to the type of welding 

material, respect the time using of Sodium carbonate (Na2CO3) and the nature of solution liquid. 

Depending on the inspection methods such as; scanning electron microscope (SEM), X-ray 

diffraction (XRD) and X-ray fluorescence (XRF) test, the obtained results illustrate the main 

reasons of erosion in the critical positions of pipe elbows. 
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IV.2 PROCESS STRUCTURE OF CO2 PRODUCTION 

Firstly, it is going to introduce in brief the station and CO2 production section in order to 

understand the importance of this work. The desalination plant is located on the Mediterranean 

coast of Algeria about seven kilometers west of the Ténès city in Chlef. Its capacity of 

production of drinking water is almost 200,000 m3/ day. It started its service operation in 

February 2015 under Abengoa Spanish multinational company management which will be the 

responsible of its operation and maintenance for a period of 25 years [7, 8].  

In addition, the plant features a system to produce CO2 from flue gases. The production of CO2 

liquid is one of the principal processes in the large refineries and power plants. This process 

must be passed by three main steps; (i) absorption, (ii) compression, and (iii) transportation. 

First step needs for chemical absorbent in order to capture CO2 from the flue gas as shown in 

figure IV.1. The flue gas will be passed first in an absorber which containing the amine solution 

to capture CO2 gas. Secondly, the CO2 will be transformed to the liquid phase Last step, CO2-

rich amine will be transported into stripper using piping system. CO2 will be separated from 

amine solution using stripper heat process.  

This process can be concluded by two reactions; (i) Absorber reactions, and (ii) Regenerator 

reactions. Their expressions can be written by the following reactions respectively [9]: 

2 2 3CO H O RN HCO RNH− ++ + → +  (IV.1) 

3 2 2HCO RNH heat CO H O RN− ++ + → + +  (IV.2) 

 

Figure IV.1: General description of CO2 production using MEA solution [10]. 
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IV.3 EROSION-CORROSION IN THE PIPE ELBOWS 

Many studies [11-20] proved that the CO2 in gaseous state has no corrosive effect on steel of 

transport network in despite of the presence of oxygen molecules. On the other hand, it has a 

great effect to appear the corrosion phenomenon after dissolution in water with the presence of 

chemical solvents especially MEA which helps to activate the chemical reactions. This process 

leads to the dissociation of acidic ions to CO2.  

In this case study, two pipe elbows of carbon steel which transport a MEA with highly contains 

of CO2 were exposed to the erosion-corrosion phenomenon in the critical zones as shown in 

figure IV.4. In order to investigate the failure causes, samples from critical positions of carbon 

steel are inspected using SEM, XRD and XRF analyses. These corroded elbow samples were 

taken from the desalination plant. The positions of these corroded elbows are depicted in figure 

IV.2 and identified as part I and II. Figure IV.2 shows a schematic presentation for the solution 

process and the location of the failed elbows. The liquid solution passes through the pipe in a 

vertical direction as shown in the figure IV.2a. There are two elbows shown in figure IV.2; the 

valve of the first elbow (Part I) is opened completely for 90° while the valve of the second elbow 

(Part II) is opened partially with 35°. 

 

(a)                                                               (b)  

Figure IV.2: (a) A schematic view of the carbon steel elbows at the corroded location and (b) a photo-

digital image of the real installed elbows. 
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IV.3.1 External surface 

Based on the steps of the desalination plant, the flow fluid is performed under the complex 

operation conditions, where the valve of elbow is opening to allow the distribution of the flow 

between the two internal zones. In addition, the interactions which occur between the wall of 

elbow and solution suspensions (solid-liquid) helpful to activate the corrosion taking into 

account the including complex corrosive conditions.  

In fact, the welding supposed to be used as a solution method for corrosion. Unfortunately, the 

type of welding encountered in the elbow has also an impact on creating the corrosion problem. 

In this case, the appearance of corrosion problem is one of the negative signs which lead to 

damage, where it was started in zone 3 (Part II) at the critical welding position between flange 

and elbow. Successive welding treatments (five times) did not help in solving this problem as 

corrosion occurred again on the same location. This complicated issue spurred us to investigate 

in detail this corrosion phenomenon. Figure IV.3 shows an external view of the corroded 

positions in three regions of the elbow pipe (indicated by arrows). During the service operation, 

the internal inlet pressure is in the range 3.5 to 4 bar whereas the outlet pressure reaches only 

up to1 bar (Figure IV.2). The flowing temperature reaches about 85 °C. The corroded area in 

the two positions (3 and 9 O’clock) of the first elbow (Part I) is clearly shown in figure IV.3 (a 

and b) and the damaged area for the second elbow (Part II) can be seen in figure IV.3c and is 

indicated by arrow 3 (6 O’clock). 

 

(a)                                                           (b)                                         (c) 

Figure IV.3: General view of the external surface of failed pipe elbows, (a) 3 O’clock of part I (b) 9 

O’clock part I, and (c) 6 O’clock of part II. 
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IV.3.2 Visual Observation 

Depending on the operating conditions of desalination plant system, the pipeline should be 

inspected in the locations having the highest interaction with effluents especially in the critical 

zones that surround the valves. In fact, the elbow bend has a great effect on the safety of systems 

where the elbow is an important part which can be used to change the directions of fluid flow 

or to link the transport networks according the need of companies. In addition, the degree of 

elbow bend may create a great stress along on the internal wall where it can appear in the critical 

zones, taking into account the pressure let-down valves.  

In this section, samples from the heavily corroded elbow of the two parts I and II (shown in 

figure IV.3) were used to find out the reasons for the erosion-corrosion occurrence. The 

corrosion position of samples was experimentally analyzed which occurred close to the welding 

zone on the two elbows as shown in figure IV.3. Figures (IV.4 and IV.5) show the visual 

observations of the corroded sites in the internal surface along the elbow in varying degrees. 

Due to the seriousness of corrosion problem which takes many forms such as pits and grooves 

where the crack of corrosion   propagates in the same direction of fluid flow.  

It can be observed that the thicknesses of the elbow pipe and flange (part I) are degraded as 

shown in figures (IV.4 and IV.5) and Tables (IV.1 and IV.2). The eroding of wall thickness is 

related to the attack of the flowing fluid taking into consideration the opening of valves which 

also contributed greatly the activation of the suspension interactions (fluid-solid). Such type of 

problems leads to hypothesize that the leaks are resulted from the attack of the flowing fluid that 

is rich with CO2. Depending on these notes, the experimental results are able to show the 

problem causes, thus, the accuracy solutions and some recommendations will be suggested to 

avoid the corrosion in future. 

  
(a)                                                                           (b) 

Figure IV.4: General view of the internal surface of failed pipe elbows, (a) elbow I, and (b) elbow II.  
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(a)                                                                           (b) 

Figure IV.5: Degradation of wall thickness (a) elbow pipe (part I), and (b) flange steel. 

Table IV.1: Degradation of pipe elbow thickness (part I). 

Thickness  t0 t1 t2 t3 t4 t5 t6 t7 

Value (mm) 3 3 2.3 2.55 2.8 2.6 3.1 3.45 

Table IV.2: The change of wall thickness of flange. 

Thickness tb1 tb2 tb3 tb4 tb4 tb5 tb6 

Value (mm) 26.95 26.90 19 22.85 22.75 25.75 26.85 

IV.3.3 Chemical composition and mechanical characterization 

Knowing the mechanical behavior of the piping system is necessary to predict and avoid 

corrosion problems. The chemical composition of the corroded elbow was studied via 

microstructural and mechanical properties investigations including the tensile and hardness 

measurement tests. In this part, the chemical composition of the standard material DIN 17175 

(ST 35.8) [21] is shown in Table IV.3. Table IV.4 shows the mechanical properties of the steel 

elbow and its dimensions. 

Table IV.3: Chemical composition of DIN 17175 pipe steel (%) [21]. 

Grade C Si Mn P S 

ST 35.8 0.17 max 0.10-0.35 0.40-0.80 0.040% max 0.040% max 

Table IV.4: Mechanical properties of DIN 17175 (ST 35.8) pipe steel standard [21]. 

Tensile strength 

(MPa) 

Yield strength 

(MPa) 

Elongation 

(% min) 

Pipe outside 

diameter (mm) 

Elbow 

bending (°) 

360 to 480 235 25 140 90 

Wall thickness 

(mm) 

Pressure inlet 

(bar) 

Pressure outlet 

(bar) 

The conductivity of 

Solution (ms/cm) 

pH of 

Solution 

4 4 1 3.76 9.96 
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IV.4 ANALYSIS OF CORRODED CRITICAL ZONES  

Most companies of transport suffer from corrosion and erosion phenomena in the elbows which 

become a huge challenge for engineers due to the change of structural and mechanical properties 

of materials. Understanding the behavior of the corroded elbow is greatly associated with the 

fluid-solid interaction inside the pipe. In this study, samples for different zones of corroded 

elbow were used to analyze its corrosion behavior. A series of experiments were performed 

along the corroded elbow to detect the major causes of the corrosion-erosion phenomenon. In 

this section, the obtained results are analyzed to reveal the corrosion reasons and its propagation 

along the elbow. 

The inspection was carried out on three specimens taken from three different surfaces of elbow 

(part II) as shown in figure IV.6. The three cut specimens according to the friction of fluid flow 

in the internal surface of elbow were analyzed. Figure IV.6 shows also a photo-digital image 

that illustrates the effect of corrosion on the internal surface of the elbow. It is clear that the 

surface layer in which the liquid passes is corroded and surrounded by a rough layer as indicated 

by arrows named “A”, “B” and “D”. Zone “A” is a proper surface which does not have signs of 

corrosion, while “B” is the area of where the fluid passes from and has a uniform corrosion but 

without defects. Finally, part “D” is the corroded zone where the flowing fluid attacks the 

indicated location in the image.  

 

Figure IV.6: Internal surface view of the analyzed specimens. 
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IV.4.1 Optical microscope 

In order to illustrate the effect   of corrosion on transport network, microscopic analyses were 

performed using a Carl Zeiss Axio Imager A1m microscope, coupled with a CANON camera 

model Power shot A640. This optical microscope allows us to show the visualization of the 

specimens’ surface color, and their shape and distribution. Figures (IV.7 - IV.9) provide a better 

imaging for the surface of specimens shown in figure IV.6.  

 

Figure IV.7: Optical microscopy at zone “A”. 

 

Figure IV.8: Optical microscopy at zone “B”. 

 

Figure IV.9: Optical microscopy at zone “D”. 
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IV.4.2 Scanning Electron Microscopy (SEM) 

The analyses of corroded elbow by optical microscope and SEM results indicate clearly the 

behavior of the elbow under the operating conditions. The combined results of the two 

techniques can give an idea on the nature of the pipe’s effluent that is less corrosive to the pipe’s 

material. The surface morphology and elemental compositions of different positions of corroded 

elbow specimens were studied by scanning electron microscopy (SEM) measurements.  

 
(a)                                                 (b)                                               (c)  

 
(d)                                                 (e)                                               (f)  

Figure IV.10: Top-surface SEM image of Region A for two positions with different sizes (a) position I 

with 50 m, (b) position I with 40 m, (c) position I with 20 m, (d) position II with 50 m, (e) position 

II with 40 m, and (f) position II with 20 m. 
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(a)                                                 (b)                                               (c)  

 
                    (d)                                                 (e)                                               (f)   

Figure IV.11: Top-surface SEM image of region B for two positions (a) position I with 50 m, (b) 

position I with 40 m, (c) position I with 20 m, (d) position II with 50 m, (e) position II with 40 m, 

and (f) position II with 20 m. 

 

Figure IV.12: Top-surface SEM image of Region D. 

From the images, it is clear that the surface of the elbow has degraded to different extents. 

Figures (IV.7 and IV.10) show the images of the non-corroded zone “A”, while figures (IV.8 

and IV.11) depicted the status of the surface of the second region “B” which might have a high 

degree of fluid-solid interaction that is responsible for the friction and corrosion phenomena 

(brown color) on the internal surface of steel. The dark brown color also visible in zone “D” 



CHAPTER IV: EROSION-CORROSION IN THE CRITICAL POSITIONS OF PIPE ELBOWS: CASE 

STUDY 

 

103 

 

(Figures IV.9 and IV.10) and indicates the presence of cracks and serious corrosion-erosion 

problems on this part of the elbow. This zone has also a groove and pinhole due to the attack of 

CO2-rich flowing fluid. In addition, the presence of small solid particles in the fluid is mainly 

responsible on the erosion problem in the elbow which will be further addressed in the following 

section. 

IV.3.3 X-ray fluorescence (XRF) test 

Micro X-ray fluorescence (XRF) instrument is one of the best non-destructive techniques which 

allow to analyze the qualitative and quantitative elemental composition of solids [22]. The peak 

energy component of the XRF spectrum identifies the chemical elements present in the 

specimen, while the height indicates the percentage of the element in the material. The XRF 

investigation of the specimens was performed using a XGT 5000 model instrument and under 

operating conditions consisted of 30 kV voltage and a current of 0.02 to 1.00 mA and 

incrementing by 0.02 mA. 

 
Figure IV.13: XRF spectrum of Region “A”. 

 
Figure IV.14: XRF spectrum of Region “B”. 
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Figure IV.15: XRF spectrum of Region “D”. 

The obtained results were illustrated from all specimens derived from the corroded inner layer 

which is directly in contact with the steel carbon surface by XRF spectra as shown in figures 

(IV.13 - IV.15). From these spectra, a peak corresponding to Fe element can be observed. A 

peak for Ti is only observed in the spectrum of region “A” but in a small concentration 

(Figure IV.13). Furthermore, the spectra of all zones indicate clearly of the elbow material 

compounds that were significantly influenced by the geometry of elbow and valves as well as 

the operating conditions and the degree of fluid-solid interaction. 

All specimens of corroded elbows were analyzed using the XRF which confirmed the presence 

of Si and Mn with small concentration. Depending on the suitable conditions which activate the 

complex chemical reactions where these elements were caused mainly the erosion-corrosion 

problem of the elbow pipe, hence, this phenomenon leads to the damage in piping systems. As 

observed in the XRF spectrum of the corroded layer in zone “D” (Figure IV.15), the presence 

of many elements such as Si, Ca, S, Ti, Mn and Fe in this corroded zone is an indication to the 

presence of sand particles in the fluid effluent. 

IV.3.4 X-ray diffraction (XRD) 

The XRD analysis becomes also an important instrument to   study the behavior of corroded 

elbow specimens. It is used to discover the crystalline structures of the elbow’s materials. Due 

to the increase of dangerous incidents in the desalination plants, XRD analysis considers as a 

necessary technique to detect the components of the corroded critical zones of metallic 

structures. The samples of corroded elbow were grinded into a finely ground powder in a cup 
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(mortar grinder). Based on the reflected X-rays, the deformation of the sample was detected by 

the sweep detector samples’ intensity. Using APD 2000 XRD diffractometer model equipped 

with GD model Goniometer for the meter, the corroded elbow specimens were characterized by 

recording the intensity of the diffraction lines as a function of the deflection angle 2θ. In 

addition, Bragg's law is used to locate the directions of diffractions. The obtained results were 

analyzed using WinDust32 software. θ is the half-deflection angle (half of the angle between 

the incident beam and the direction of the detector) while “λ” is the wave length of X-rays. 

  

Figure IV.16: XRD test for specimens “A” and “B”. 

Several experimental were carried out to highlight the mechanical properties and chemical 

compositions of critical zones including the structure of the corroded layer of elbow. 

Figure IV.16 shows the obtained XRD diffractograms of the corroded zones “A” and “B”. It is 

clearly observed that the crystal peaks of the hydrated phases in specimen “A” indicated that the 

corroded layers have contained complex compounds such as hematite. The disappearance of 

these peaks can be also noted in the spectra of specimen “B”. Moreover, a change in the 

structural composition of the corroded layer is manifested by the appearance of oxides 

containing iron such as hematite Fe2O3. 
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IV.4 DISCUSSION 

The inspection of transported liquid and corroded specimens using the mechanical tests and 

chemical analyses lead to discover the main causes of corrosion phenomenon. Furthermore, the 

use of microscopic is an important step to understand the failure of transport network. The 

microscopic images above proved the existence of the complex chemical reactions resulted from 

the interaction between the flowing fluid and the internal wall of elbow. This phenomenon led 

to the observed corrosion in the elbow under the special operating conditions taking into 

consideration the geometry of elbows, kind of valve, and transported fluid.   

 Based on the operating conditions, the MEA solution is transported through the piping network 

with adding precise concentrations of chemical additives to overcome the instability of this 

mixture. However, the unrespect of precise concentrations use under service conditions is still 

one of the major reasons which leads to activate the undesirable chemical reactions which 

degrade the wall thickness of the material. 

 As a result of the complex situation at the interaction zone, it appears that the leak was caused 

by a localized hole. In spite of the several times repairing by welding, the fluid attack by valve 

opening and the erosion-corrosion damage was repeated continue to appear again in the same 

zones surrounding the welding areas. This phenomenon was almost happened in the pipe elbow 

due to the different of welding properties to pipeline. Due to the direct fluid-solid interaction 

caused by valve angle opening and its quick flow, the elbow steel exhibited both general 

thinning and localized grooves caused by silicon particles taking into account the distinct 

morphology of elbow. The formation of a dark brown color coating layer on the surface of the 

elbow is direct proof on the evolution of corrosion process on the internal surface of pipeline. It 

was noticed that there is a reduction in the thicknesses along the elbow especially in the 

interaction zone. The layer of dark brown color at a valve angle of 35° is main proof on forming 

the oxidation process (corrosion phenomenon) on the internal surface of pipeline. According to 

the analysis, it is noted that the occurred defects on the pipe were caused by an inappropriate 

welding process which has also accelerated the corrosion process. This is matched with some 

of previous cases [23-25] that the corrosion in carbon steel can be occurred by poor welding.  

The results indicated that the mechanical properties of elbow were significantly influenced by 

the solution contents and additives materials. Among the advantages of corrosion is to form a 
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ferrous layer on the internal wall when exposed to aggressive chemical reactions which protects 

the steel from additional corrosion especially under the aggressive operating conditions and the 

presence of silicon particles in the flowing fluid. However, it might lead also to a serious 

corrosion issue if the layer was unable to form. Thus, carbon steel is a very fit to be used in 

piping systems carrying aggressive solutions. 

The reason for taking these tests into account was to identify the reasons and prohibit the elbow 

corrosion. This analysis was necessary in order to find the fit solutions to protect the piping 

systems. Improving the kind of valves and pipe quality can be considered as the appropriate 

solutions to reduce the friction and interaction fluid-solid along the elbow. They also can 

increase the efficiency of geometry and diminish the erosion phenomenon. The iron film is 

relatively fragile and can be eroded away or prevented it to be fully formed by turbulence or 

fluid flow attack. If this occurs, the underlying metal rapidly corrodes until a new film is formed 

and becomes stable. The general corrosion attack appears on the pipe elbow was most likely the 

result of corrosion caused by flowing fluid attack and turbulence. However, turbulence effects 

at elbows, flanges, and other disruptions can destroy the protectiveness of the corrosion product 

film and lead to the accelerated corrosion [26-28]. 
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1. CONCLUSIONS 

The pipe elbow is a main part in the pipeline components which is considered as the weakest in 

piping system due to the change of its direction. It contains the welded zone, different bends 

and high concentration of stress at the critical zones because of the curvature. The results of 

analyses proved that the high internal pressure and the poorly defined geometry allow to the 

damage and decrease the safety of transport network. The experimental method and numerical 

techniques were used to study the effect of several aspects on the performance of piping systems 

including the elbow under operating conditions.  

Firstly, the numerical investigations were applied for API X52 elbow steel with two different 

ways; (i) semi-elliptical cracks, and (ii) rectangular notch, in the critical position of the intrados 

section of elbow. The main conclusions of this numerical analysis can be drawn as follow: 

➢ There is a good agreement between the hoop stress value obtained using the Goodall 

formula for calculation of the hoop stress at the intrados section of a pipe elbow 

without corrosion defects and the value obtained by the FEA with the small error of 

5.32 %. 

➢ The presence of elbow in piping system leads to activate a locally stresses. 

➢ The stress amplification factor Kt was found to be 1.2. 

➢ The maximum stress was located at a curvature angle α = 72°. 

➢ Severe stress conditions of a defect in elbow locate its assessment point in the brittle 

part of the FAD. 

➢ For elbow, the relative critical defect depth is (d⁄t = 0.28), which is higher for a straight 

pipe (d⁄t = 0.66). 

Regarding the results of the limit pressure calculation and the hoop stress values in the pipe 

elbow with different rectangular parallelepiped-shaped corrosion defect, the following 

conclusions can be drawn. 

➢ The much higher error (25.94 %) is obtained using the straight pipe formula for the 

calculation of the hoop stress in the pipe elbow. 
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➢ The results of the limit pressure calculations using the modified codes that take into 

account the pipe elbow geometry by using the Goodall formula for calculation of the 

hoop stress in the pipe elbow are in close agreement with the numerical FEA results. 

➢ Both conservative trend and overestimation in the limit pressure values obtained 

using ASME B31G code with the highest errors (from 10.56 up to 17.93 %) of all 

three used models in comparison with the numerical FEA results for analyzed defect 

depth ratios (d/t = 0.1 - 0.8) are observed. 

➢ The results for the limit pressure obtained using the other two modified standards 

(modified ASME B31G, and DNV RP-F101) are less conservative and in much better 

agreement with the numerical FEA results based on the ultimate strength.  

➢ The results for the limit pressure obtained using the modified ASME B31G standard 

are closest to the numerical FEA results for all defect depth ratios (error: 2.49 - 

10.27 %). 

➢ The numerical FEA results for the limit pressure in the pipe elbow using the yield 

strength for different defect depth ratios are consistently much more conservative and 

hence not applicable in this study. 

It is worth noting that the corrosion phenomenon in API 5L X52 pipe elbows can be studied by 

Failure Assessment Diagram (FAD) to predict the lifetime of pipeline. The obtained results 

proved the practical benefits of the modified notch failure assessment diagram (NFAD) for the 

assessment of the structural integrity and reliability of straight pipes and pipe elbows with 

different corrosion defects. Based on the comprehensive reliability analysis using the NFAD for 

the straight pipe and pipe bends (API 5L X52) with different depth ratios (d/t= 0.1 - 0.8) of the 

rectangular parallelepiped-shaped corrosion defect with rounded corners at the intrados section the 

following conclusions can be drawn.  

➢ For the calculation of a non-dimensional crack driving force Kr in the pipe elbow, a 

maximum equivalent notch stress intensity factor (Keq) should be computed and used 

since the elbow curvature provoked the complex mixed mode of loading. The 

obtained fracture toughness value for the pipe elbow is less than for the straight pipe 

due to a higher constraint.  
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➢ The assessment points for the pipe elbow have a higher value of both coordinates (Lr, 

Kr) for all corrosion defect depth ratios than for the straight pipe, due to the stress 

intensification and higher constrain in the pipe elbows. 

➢ For the corrosion defect depth ratios higher than 0.2 (d/t > 0.2), the pipe elbow 

assessment points are located in the brittle zone of the NFAD, while the critical 

corrosion defect depth ratio (in the failure zone of the NFAD) is d/t = 0.38. 

➢ The obtained critical corrosion defect depth ratio (d/t= 0.69) for the straight pipe is 

significantly higher than for the pipe elbow (d/t= 0.38). Also, all assessment points 

for corrosion defect depth ratios below the critical are located in the least dangerous 

plastic collapse fracture domain of the NFAD. 

The inspection analyses were investigated on a real case of corroded elbow of carbon steel used 

in the desalination plant. The results of the failure phenomenon were carefully studied by 

analyzing the microstructure and the composition of the surface films on the surface of the 

corroded specimens using scanning electron microscope (SEM), X-ray diffraction (XRD) and 

X-ray fluorescence (XRF) techniques. The main conclusions of this investigation can be drawn 

as follow: 

➢ Disrespect the specified time of Sodium carbonate (Na2CO3) usage can change the 

value of pH which may leads to corrosion. 

➢ The bad process of welding can lead to the corrosion issue. 

➢ The turbulence effects at elbows, flanges, and other disruptions can destroy the 

protectiveness of the corrosion product film and lead to the accelerated corrosion. 

➢ The increase of silicone percentage in the corroded surface gives an information that 

the sand particles were responsible to the erosion-corrosion phenomenon. 

2. RECOMMENDATIONS  

This study confirms that the pipe elbow is a critical part of piping systems. Moreover, the 

stresses at the intrados section of the pipe elbow are higher than at extrados or crown sections. 

Due to these facts, unmodified codes developed for the straight pipes are not applicable for pipe 
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elbows. Further investigation of modified codes for the limit pressure calculation in the pipe 

elbow, taking into account the application of different contemporary formulas for the calculation 

of the hoop stress, is envisaged in our future research. 

It is an important to reduce the internal pressure when the defect size is increasing to maintain 

the reliable operation of pipelines. It is always advisable to make a comparison between the 

deterministic and probabilistic approaches because of the confirmed trend of a decrease in the 

reliability index with an increase of the defect depth to wall thickness ratio. 

Improving the kind of valves and pipe quality can be considered as the appropriate solutions to 

reduce the friction and interaction fluid-solid along the elbow. They also can increase the 

efficiency of geometry and diminish the erosion phenomenon. Finally, the followings can be 

recommended to prevent the repetition of erosion-corrosion problems inside the elbow: 

➢ Checking frequently the quality of the used membranes to prevent the sand particles to 

enter the water treatment units.  

➢ Looking after the design of the pumping system and its depth in sea water. 

➢ Replacing the welding curing methodology of defected parts with the composite 

patching methodology. 

➢ Controlling the pH of MEA solution. 

➢ Adding green inhibitors to MEA solution for decreasing its corrosivity to the steel elbow. 
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