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General introduction

A part from the computational power of a quantum computer there is a much more
banal argument for incorporating quantum mechanics into computer science: Moore's
law and the limits of semiconductors technology (we will discuss Moore's law,
Computers microarchitectures and the limits of semiconductors technology in the first
chapter of this thesis “Computers microarchitectures and the limits of semiconductors
technology”). In 1965 Intel co-founder Gordon Moore observed an exponential growth
in the number of transistors per square inch on integrated circuit and he predicted that
this trend would continue. In fact, since then this density has doubled approximately
every 18 months. If this trend continues then around the year 2020 the components of
computers are at the atomic scale where quantum effects are dominant. We have thus
to inevitably cope with these effects, and we can either try to eliminate them as long as
this is possible and keep on doing classical computing or we can at some point try to
make use of them and start doing quantum computing.

Quantum mechanics is one of the cornerstones of modern physics. It governs the
behaviour and the properties of matter in a fundamental way, in particular on the
microscopic scale of atoms and molecules. Hence, what we may call a classical
computer, is itself following the rules of quantum mechanics. However, such devices
are not quantum computers in the sense that all the inside information processing can
perfectly be described within classical information theory. In fact, we do not need
guantum mechanics in order to explain how the bitsinside a classical computer evolve.
The reason for thisis that the architecture of classical computers does not make use of
one of the most fundamental features of quantum mechanics, namely the possibility of
superpositions. (We will discuss the superposition principal and other principals of
guantum mechanics in the second chapter of this thesis “Notions of quantum
mechanics’). Throughout the entire processing of any program on a classical
computer, each of the involved bits takes on either the value zero or one. Quantum
mechanics, however, would in addition allow superpositions of zeros and ones, that is,
bits — now called qubits (quantum-bits) — which are somehow in the state zero and one
at the same time. Computing devices which exploit this possibility, and with that all
the essential features of quantum mechanics, are called quantum computers. Since they

have an additional capability they are at least as powerful as classical computers. every
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General introduction

problem that can be solved on a classical computer can be handled by a quantum
computer just as well. The converse, however, is aso true since the dynamics of
guantum systems is governed by linear differentia equations, which can in turn be
solved (at least approximately) on a classical computer. Hence, classical and quantum
computers could in principle emulate each other and quantum computers are thus no
hypercomputers. So why quantum computing? And if there is any reason, why not just
simulate these devices on a classical computer? To answer theses questions we must
talk about the roles of quantum computers.

One reason for aiming at building quantum computersis that they will solve certain
types of problems faster than any (present or future) classical computer — it seems that
the border between easy and hard problems is different for quantum computers than it
Is for their classical counterparts. Here easy means that the time for solving the
problem grows polynomially with the length of the input data (like for the problem of
multiplying two numbers), whereas hard problems are those for which the required
time grows exponentially. Prominent examples for hard problems are the travelling
salesman problem, the graph isomorphism problem, and the problem of factoring a
number into primes. For the latter it was, to the surprise of all, shown by Peter Shor in
1994 that it could efficiently be solved by a quantum computer in polynomial time.
Hence, a problem which is hard for any classical computer becomes easy for quantum
computers. Shor’s result gets even more brisance from the fact that the security of
public key encryption, i.e., the security of home banking and any other information
transfer viathe internet, is heavily based on the fact that factoring is a hard problem.

One might think that the cost for the gained exponential speedup in quantum
computers is an exponentia increase of the required accuracy for al the involved
operations. This would then be reminiscent of the drawback of analog computers.
Fortunately, this is not the case and a constant accuracy is sufficient. However,
achieving this “constant” is without doubt experimentally highly challenging.

Moreover, we know that nature provides many fascinating collective quantum
phenomena like superconductivity, magnetism and Bose-Einstein condensation.
Although all properties of matter are described by and can in principle be determined

from the laws of quantum mechanics. Physicists have very often serious difficulties to
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General introduction

understand them in detail and to predict them by starting from fundamental rules and
first principles. One reason for these difficulties is the fact that the number of
parameters needed to describe a many-particle quantum system grows exponentially
with the number of particles. Hence, comparing a theoretical model for the behaviour
of more than, say, thirty particles with experimental reality is not possible by
simulating the theoretical model numerically on a classical computer without making
serious simplifications.

When thinking about this problem of simulating quantum systems on classical
computers Richard Feynman came in the early eighties to the conclusion that such a
classical ssimulation typically suffers from an exponential slowdown, whereas another
guantum system could in principle do the simulation efficiently with bearable
overhead.

In this way a quantum computer operated as a quantum simulator could be used as a
link between theoretical models which are formulated on a fundamental level and
experimental observations. Similar to Shor’s algorithm a quantum simulator such as
Deutsh algorithm, Deutch Joza algorithm, Simon’s algorithm, and Grover’s algorithm,
would yield a quadratic to exponential speedup compared to a classical computer (we
will discuss these quantum algorithms in the chapter four of this thesis “Quantum
computers’). An important difference between these two applications is, however, that
auseful Shor-algorithm quantum computer requires thousands of qubits whereas a few
tens of qubits could already be useful for the simulation of quantum systems.

However, the crucial question remain is how can a quantum computer be built? On
the one hand, progress has been made in recent years in the experimental controlled
manipulation of very small quantum systems that can be not called other than
spectacular, in away that was not imaginable not long ago. Quantum gates have been
implemented in the base spin manipulation, and with nuclear magnetic resonance
technigues, even small quantum algorithms have been realized.Moreover, completely
new ways of controlling individual quantum systems will have to be devised,
potentially combining different ideas from quantum optics and solid state physics. Any
such implementation will eventually have live up to some requirements that have

maybe most distinctly been formulated by DiVincenzo as generic requirements in
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General introduction

practical quantum computation (we will discuss the DiVincenzo criteria and the
implementation of quantum computers in the third chapter “The use of spin in
guantum computers”).

Besides the quantum computer with its mentioned applications quantum information
science yields a couple of other useful applications which might be easier to realize.
The best example is quantum cryptography which enables one to transmit information
with “the security of nature's laws’. However, small building blocks of a quantum
computer, i.e., small quantum circuits may be useful as well. One potential application
is for instance in precision measurements like in atomic clocks. We also will discuss
the link between spin transport and the use of the spin in the build of quantum

computers.
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

[-1- Introduction:

In the last three decades the world of computers and especially that of microprocessors
has witnessed an exponential growth in both productivity and performance. The
integrated circuit industry has followed a steady path of constantly shrinking devices
geometries and increased functionality that larger chips provide. The technology that
enabled this exponential growth is a combination of advancements in process technology,
microarchitecture, architecture and design and development tools. Together, these
performances and functionality improvements have resulted in a history of new
technology generations every two to three years, commonly referred to as ‘Moore Law'.
Each new generation has approximately doubled logic circuit density and increased
performance by about 40%. This chapter analyses some of the microarchitectural

techniques that are typical for contemporary high-performance microprocessors.

[-2- Evolution of semiconductor technology:

During the past 40 years the semiconductor industry has distinguished it self both by rapid
space of performance improvements in its products, and by a steady path of constantly
shrinking device geometries and increasing chip size.

Technology scaling has been the primary driver behind improving the performance
characteristics of integrated circuits's (IC). The speed and integration density of 1C's have
dramatically improved. Exploitation of a billion transistor capacity of a single
microprocessor requires new system paradigms and significant improvements to design
productivity. Structural complexity and functional diversity of such computers are the
challenges for the design teams. Structural complexity can be increased by having more
productive design methods and by putting more resources in design work. Functional
diversity of information technology products will increase too. The next generation
products will be based on computers, but the full exploitation of silicon capacity will
require drastical improvements in design productivity and system architecture.

Together these performances and functionality improvements are generally identified in a

history of new technology generations with the growth of the microprocessor, which is
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

frequently described as a'Moore's Law'. Moore's Law states that each new generation has
approximately doubled logic circuit density and increased performance by 40% while
quadrupling memory capacity. According to International Technology Roadmap for
Semiconductor (IRTS) projections, the number of transistors per chip and the local clock
frequencies for high performance microprocessors will continue to grow exponentially in
the next 10 years too. The 2003 IRTS predicts that by 2014 microprocessor gate length
will have been 35 nm, voltage will drop to 0.4V, and clock frequency will rise to almost
30 GHz. Figure |.1 presents some of these predictions. As a consequence, experts expect

that in the next 10 years the transistor count for microprocessors will increase to 1 billion.

Feature Size

100 pm
Integrated Circuit
10 pm / History
1 um
ITRS Roadmap
LM 1. TN
0.1um |
1
__________________ .4'_ .~
10, | 1~
e Transition Region ! ! S
.' ; =
inm t  Quantum Devices : : a
1 i i
0.4nm Atomic Dimensions ] |

1960 1980 2000 2020 2040

Figurel-1: Trendsin future size over time [1]

[-3- Moore'sLaw

The pace of IC technology over the past forty years has been well characterized by
Moore's Law [1]. It was noted in 1965 by Gordon Moore, research director of Fairchild
Semiconductor, that the integration density of the first commercial integrated circuit was
doubled approximately every year. From the chronology in Table I-1, we see that the first

microchip was invented in 1959. Thus, the complexity was one transistor. In 1964,
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

complexity grew up to 32 transistors, and in 1965, a chip in the Fairchild R&D lab had 64
transistors. Moore predicted that chip complexity would be doubled every year based on
datafor 1959, 1964, and 1965.

Microchip complexly Moore'sLaw
year transistor s Complexity: transistor s
1959 1 2°=1
1964 32 2°=32
1965 64 2°=64
1975 64.000 2°=64.000

Table I-1: Complexity of microchip and Moore's law [2]

In 1975, the prediction was revised to suggest a new, slower rate of growth. Doubling of
the IC transistors count every two years. This trend of exponential growth of I1C
complexity is commonly referred to as Moore's Law |. However some people say that
Moore's Law complexity predicts a doubling every 18 months.

As a result, since the beginning of commercia production of IC's in the early 1960's,
circuit complexity has risen from a few transistors to hundreds of billion transistors
functioning together on a single monolithic substrate. Furthermore, Moore's law is
expected to continue at a comparable pace for at |east another decade.

Memory size has also increased rapidly since 1965, when the PDP-8 came with 4 KB of
core memory and when an 8 KB system was considered large. In 1981, the IBM PC
machine was limited to 640 KB memory. By the early 1990's, 4 or 8 MB memories for
PCs were rule, and in 2000, the standard PC memory size grew to 64-128 MB, in 2003 it
was in the range from 256 up to 512 MB.

Disk memory has also increased rapidly: from small 32 - 128 kB disks for PDP 8e
computer in 1970 to 10 MB disk for the IBM XT PC in 1982. From 1991 to 1997, disk
storage capacity increased by about 60% per year, yielding an eighteen folds increase in
capacity. In 2001, the standard desktop PC came with a 40 GB hard drive, and in 2003
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

with 120 GB. If Moore's law predicts a doubling of microprocessor complexity every two
years, disk storage capacity will increase by 2.56 times each two years, faster than

Moore's Law.
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Figure|-2: Evolution of transistor count of CPU/microprocessor and memory 1Cs [1]

Tendencies in capacity and speed increasing for random logic, DRAM, and disk, during
the past period, are givenin Table | -2.

Capacity Spead (latency)
Logic | 2 x in 3 years | 2 x in 3 years
DEAM | 4 = in 3 years | 2 x in 10 vears
Disk |4 = in 3 years | 2 = in 10 vears

Table |-2: Capacity and speed increasing during the past period [2]

I-4- Limits of technology scaling
Improved microprocessor performance results largely from technology scaling, which lets
designers increase the level of integration at higher clock frequencies. While current

implementations use feature sizes of about 0.25 micron, devices with feature sizes smaller
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

than 0.1 micron are expected in the next few years. Meanwhile, device propagation delay
(under constant field assumptions) improves linearly with the decrease in feature size.
Nevertheless, designers face several mgjor technical challenges in the deep-submicron
era. The most important is that interconnect delay (especialy global interconnect delay)
does not scale with feature size. If all three dimensions of a wire are scaled down by the
same scaling factor, the interconnect delay remains roughly unchanged. Thus, the
interconnect delay decreases far less rapidly than the gate delay and proves more
significant in the deep-submicron region.

In an effort to minimize interconnect resistance, modern designs scale interconnects
height at a much slower pace than interconnect width. Consequently, the aspect ratio
(T/Win Figure I-3) should rise gradually from 1.8 at present to 3.0 by the year 2012. This
shift reduces wire resistance but also increases the effects of line coupling, from 20% at
0.7 micron to 80% at 0.18 micron. Cross talk between adjacent wires will pose a more
serious problem, and wire congestion will ultimately determine interconnect delay and
power dissipation. Implementations that use more devices in critical paths yet offer less
wire congestion and shorter interconnect delays may be preferable to older

implementations that simply focus on reducing the number of gate delays.
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Figure|-3: Interconnect capacitances [6]
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

Feature sizes below 0.1 micron lead to other technical challenges. High-performance
processors need special cooling techniques, which could consume as much as 175 W of
power. Enabling GHz signals to travel into and out of the chips requires new circuit
designs and algorithms. Preventing latch-up and reducing noise coupling may require new
materials such as silicon-on-insulator. Similarly, reducing cross talk and DRAM leakage
may require low k “ dielectric insulator” as well as high k materials, respectively. These
challenges demand that designers provide whole system solutions instead of treating logic

design, circuit design, and packaging as independent phases of the design process.

[-5- Limitsin frequency scaling:

Microprocessor performance has improved by approximately 50% per year for the past 15
years. This can be attributed to higher clock frequencies, deeper pipelines, and improved
exploitation of instruction-level paralelism (ILP). In the deep-submicron era, we can
expect performance improvement to result largely from reducing cycle time at the

expense of greater power consumption.

[-5-1- Cycletime:

Processor clock frequencies have increased by approximately 30% per year for the past
15 years, due partly to faster transistors and partly to fewer logic gates per cycle.
Traditionally, digital designs have used edge triggered flip-flops extensively. Such a
system’s cycle time T, is determined by T, = Ppa + C, where P, is the maximum delay
required for the combinational logic, and C is the total clock overhead, including setup
time, clockto-output delay, and clock skew. For high-end server processors, the SIA
predicts that the clock cycle time will decrease from roughly 16 FO, (fanout-of-four)
inverter delays at present to roughly five FO, inverter delays at 0.05-micron feature size.
As a result, clock overhead takes a significant fraction of the cycle time, and flip-flop
clocking systems appear infeasible. Fortunately, a number of circuit techniques can

Improve microprocessor cycle times:
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Chapter | Computers microarchitectures and the limits of semiconductors technoloqgy

o Severa new flip-flop structures, such as sense-amplifier-based, hybrid latch, and
semidynamic flip-flop, have been proposed to lower clock overhead.

» Asynchronous logic eliminates the need for a global clock. Average latency depends on
Prean (average logic delay) instead of P, (maximum logic delay), but completion
detection and datainitialization incur significant overhead.

 Various forms of dynamic logic have been proposed to minimize the effects of clock
skew. These techniques reduce clock overhead at the expense of power and scalability.

» Wave pipelining uses P, (minimum logic delay) as a storage element to improve cycle
time.

We use wave pipelining to illustrate some of the new clocking considerations. For
memories and other functional blocks that contain regular interconnect structures, wave
pipelining is an attractive choice. The technique relies on the delay inherent in
combinatorial logic circuits. Suppose a given logic unit has a maximum interlatch delay
of P and a corresponding minimum delay of P, with clock overhead C. Then the
fastest achievable cycle timet equals Pyax-Prmin + C.

As with conventionally clocked systems, system clock rate T, is the maximum t; over i
latched stages. Sophisticated tools can ensure balanced path delays and thus improve
cycle time. In practice, using specia tools lets us set P, to within about 80% to 90% of
(Pmax + C). While this would seem to imply clock speedup of more than five times the
maximum clock using traditional clocking schemes, environmental issues such as process
variation and temperature gradient across a die restrict realizable clock rate speedup to
about three times. Figure |-4 details the register-to-register waveforms of a wave-
pipelined vector multiplier. The achieved rate shown at the bottom of the figure is more
than three times faster than the traditional rate determined by the latency between the

multiplier input and output (shown in the top two segments of Figure|-4).
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Figurel-4: Wave pipelined vector multiplication [7]

Wave pipelining also exemplifies how aggressive new techniques offer architects and
implementers both benefits and challenges. Although alowing significant clock-rate
improvements over traditional pipelines, wave pipelines cannot be stalled without losing
the in-flight computations. Because individual waves in the pipeline exist only by virtue
of circuit delays, they cannot be controlled between pipeline latches. In the case of wave
pipelines, architecturally transparent replay buffers can provide the effect of a stall and
extend the applicability of wave pipelining to applications that require stalling the
pipeline. Other new techniques may not fit in directly with current architectures and may

also require special treatment to be generally applicable.

[-6- Limitsin low power

Low power consumption is one of the crucial factors determining the success of personal
mobile communications and portable computing systems in the fastest growing sectors of
the consumer electronics market. Mobile computing system and biomedical implantable

devices are just afew examples of electronic devices whose power consumption isabasic
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constraint to be met, since their operativity in the time domain depends on limited energy
storage.

The electronic devices at the heart of such products need to dissipate low power, in order
to conserve battery life and meet packaging reliability constraints. Lowering power
consumption is important not only for lengthening battery life in portable systems, but
also for improving reliability, and reducing heat-removal cost in high performance
systems. Consequently, power consumption is a dramatic problem for all integrated
circuits designed today.

Low power design in terms of algorithms, architectures, and circuits has received
significant attention and research input over the last decade. The implementation can be
categorized into system level, agorithm level, architecture level, circuit level, and
process/device level.

The system level is the highest layer which strongly influences power consumption and
distribution by partitioning system factors.

The algorithm level is the second level, which defines a detailed implementation outline
of the required original function, i.e. it determines how to solve the problem and how to
reduce the original complexity.

At the architecture level there are still many options and wide freedom in implementation,
such as, for example, CPU - microprocessor, DSP (Digital Signal Processor), ASIC
(Application Specific Integrated Circuit) - dedicated hardware logic, reconfigurable logic,
etc.

The circuit level is the most detailed implementation layer. This level is explained as a
module level such as multiplier or memory and basement level like voltage control that
affects wide range of the chip.

The process level and the device level are the lowest levels of implementation. This layer
itself does not have drastic impact directly. However, when it is oriented towards voltage
reduction, thislevel plays avery important role in power saving.

Present day general purpose microprocessor designers are faced with the daunting task of

reducing power dissipation since power dissipation quickly becomes a bottleneck for
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future technologies. For al the integrated circuits used in battery-powered portable
devices, power consumption is the main issue. Furthermore, power consumption is aso
the main issue for high-performance integrated circuit due to heat dissipation.
Consequently, power consumption is a dramatic problem for all integrated circuits

designed today.

|-7- Computational integrity

The last basic trade-off is determining the level of computationa integrity. When
rebooting a personal computer after an application has caused the system to crash, we
may wonder about the application or the system or both. However, the observed failure is
a retrograde problem solved years ago in hardware with the introduction of user and
system states and corresponding memory protection. In looking ahead to improved
models of computational integrity, we should consider

* Reliability,

* Testability,

* Serviceability,

* Process recoverability, and

* Fail-safe computation.

Reliability is a characteristic of the implementation media. Circuits and cells may fail, but
this need not lead immediately to demonstrable faults in the processor. Indeed, smaller
feature sizes may lead to increasing failures over time resulting from electrostatic
overstress, and so on. Error correction systems provide an important way to recover from
certain modes of device failure. In case of transient errors, error detection systems
coupled with instruction retry are a minimum requirement for enabling correct
computations.

Testable designs explicitly include accessibility paths, such as scan paths, that enable
special validation programs to verify a processor’s correct operation over a broad variety

of state combinations. Testability isimportant for continuing test and design validation.
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Serviceability allows for ready diagnosis of both transient and permanent failures. It
depends on error detection, error scanning on detection, and error logging. The goal is a
design that lets us identify degraded paths caused by recoverable but recurring errors.
Process recoverability includes features for instruction retry, process rollback, and, in
multiprocessor systems, process migration to another processor.

Fail-safe computation integrates al the above with environmental considerations such as
power and temperature. In principle, even power failure should not cause an executing
process to abort. Using an uninterruptible power supply or some other backup system lets

us save the system state so that computation can resume when power returns.

[-8- Future Directionsin Microprocessor Systems

Deep-submicron technology allows billions of transistors on a single die, potentially
running at gigahertz frequencies. According to Semiconductor Industry Association
projections, the number of transistor per chip and the local clock frequencies for high
performance microprocessors will continue to grow exponentially in the near future, as it
is illustrated in Figure 1-5. This ensures that future microprocessors will become even

more complex.
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Figure|-5: The National Technology Roadmap For semiconductor: a- total transistor
per chip b- On-chip local clock [3]
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One approach is to add more memory (either cache or primary) to the chip, but the
performances gain from memory aone is limited. Another approach is to increase the
level of system integration, bringing support functions like graphics accelerators and 1/0
controllers on chip. Although integration lowers system costs and communication latency,
the overall performance gain to application is again marginal.

In the sequel we will point to some of the new directions oriented towards
system/microprocessor performance improvement mainly intended to enhance system/

processor's computational capabilities.

[-8-1- Microprocessor today - microprocessor tomorrow

Microprocessors have gone through significant changes during the last three decades.
However, the basic computational model has not been changed much. A program consists
of instructions and data. The instructions are encoded in a specific instruction set
architecture (ISA). The computational model is still a single instruction stream based on,
sequential execution model, operating on the architecture states (memory and registers). It
is a job of the microarchitecture, the logic, and the circuits to carry out this instruction
stream in the best way.

Figure |1-6-a shows the leve of transformation that a problem, initially described in some
natural languages like English, French or Arabic has to pass through in order to be solved.
When we say microprocessor today we generally assume the shaded region of Figure | -6-
a, where each microprocessor consists of circuit that implement hardware structure
(collectively called the microarchitecture) that provide an interface to the software. As it
can be seen from Figure |-6-a the compiled program uses to tell the microprocessor what
it (the program) needs to be done, and the microprocessors use to know what it must be
carried out in behalf of the program. The ISA is implemented by a set of hardware
structures collectively referred to as the microprocessor's microarchitecture. If we take our
levels of transformation and include the algorithm and language into microprocessor, the
microprocessor then becomes the thing that uses device technology to solve the problem
(Figurel-6-b).
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Figurel-6: a- The Microprocessor today b- The Microprocessor tomorrow [10]

[-8-2- Futuredirectionsin microar chitectures

Future microprocessors will be faced with new challenges. Numerous techniques have
been proposed. Most of them have multiple sequencers, and are capable of processing
multiple instruction streams. In the sequel, we will discuss some microarchitectural

techniques that are likely to be used commercially in the near future:

[-8-2-1- Multithreading or multiprocessing:

The processor is composed as a collection of independent processing elements (PES),
each of which executes a separate thread or flow control. By designing the processor as a
collection of PEs, (@) the number of global wires is reduced, and (b) very little
communication occurs through global wires. Thus, much of communication occurring in
the multi- PE processor is local in nature and occurs through short wires. The commonly
used model for control flow among threads is the parallel threads model. The fork
instruction specifies the creation of new threads and their starting addresses, while the
join instruction serves as a synchronizing point and collects the threads. The thread

sequencing model isillustrated in Figure I-7.
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[-8-2-2- Simultaneous-multithreading (SMT):

Is a processor design that consumes both thread-level and instruction-level parallelism. In

SMT processors thread-level parallelism can come from either multithread, paralel

programs or individual, independent programs in a multiprogramming workload. ILP

comes from each single program or thread. Because it successfully (and simultaneously)

exploits both types of parallelism, SMT processors use resources more efficiently, and

both instruction throughput and speedups are greater. Figure 1-8 shows how three

different architectures partition issue slots (functional units).

The rows of squares represent issue slots. The processor either finds an instruction to

execute (filled box) or it allows the slots to remain unused (empty box).

Figure 1-8: How three different architectures partition issue dots a-

0000 EE00 EEED @ tes:
0000 EEOC COOBE g ess
0000 mO000 CEEC
0000 WMO00 EEoD B theads
0000 D000 OO0O Mo theads
0000 BEE0 EEEC
0000 EO0O0 COEC
0000 EE0D0 EEEC
a) ) ¢)

superscalar b- multithreaded superscalar ¢c- SMT [11]
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[-8-2-3- Chip multiprocessor (CMP):

The ideais to put several microprocessors on asingle die (Figure 1-9). The performance
of small-scale CMP scales close to linear with the number of microprocessors and is
likely to exceed the performance of an equivalent multiprocessor system. CMP is an
attractive option to use when moving to a new process technology. New process

technology allows us to shrink and duplicate our best existing microprocessor on the

some silicon die, thus doubling the performance at the same power.

L2 Cache

Chip
Communication

Figure1-9: Chip multiprocessors [11]

[-9- Networkson chips

According to ITRS prediction, by the end of the decade, system on a chip (SoCs) using
50nm transistors and operating below 1V, will grow up to 4 billion transistors running at
10 GHz. The major design problem accompanied with these chips will be the challenge
how to provide correct function and reliable operation of the interacting components. On-
chip physical interconnections will present a limiting factor for performance, and possibly
for energy consumption.

Synchronization of future chips with a single clock source and negligible skew will be
extremely difficult, or even impossible. The most likely synchronization paradigm for
future chips — globally asynchronous and locally synchronous — involves using many
different clocks.

In the absence of a single timing reference, SoC chips become distributed systems on a

single silicon substrate. In these solutions, components will initiate data transfer
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autonomously, according to their needs, i.e. the global communication pattern will be
fully distributed.

On-chip networks relate closely to interconnection networks for high performance parallel
computers with multiple processors, where processor is an individua chip. Like
multiprocessor interconnection networks, nodes are physically closer to each other and
have high link reliability. From the design stand point, network reconfigurability will be a
key in providing plug-and-play component use because the components will interact with

one another through reconfigurable protocols.

[-10- Conclusion:

Human appetite for computation has grown even faster than the processing power that
Moore's law predicted. We need even more powerful processors just to keep up with
modern applications like interactive multimedia, mobile computing, wireless
communications, etc. To make matters more difficult, we need these powerful processors
to use less energy than we have been accustomed to, i.e. to design power aware
components/systems. To achieve this functionality we must rethink the way we design
our contemporary computers. Namely, rather than worrying solely only about
performance, we need now to judge computers by their performance, power, cost product.
This new way of looking at processors will lead us to new computer architectures and
new ways of thinking about computer system design. Thus, if making transistors smaller
and smaller is continued with the same rate as in the past years, then by the year of 2020,
the width of wire in a computer chip will be no more than a size of a single atom. These
are size for which rules of classical physics no longer apply. Computer designed on
today's chip technology will not continue to get cheaper and better. Because of its
predicted great power, quantum computer is an attractive next step in computer
technology. Theoretically, it can run without energy consumption and billion times faster
than today's computers. Because quantum computers are based on the principles of
guantum theory, let us first review what quantum mechanics is and what quantum

information theory is.
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I1-1- Introduction:

Quantum physics covers a set of physical laws that apply at microscopic scale.
While fundamentally different from the majority of laws that appear to apply at
our own scale, that laws of quantum physics nevertheless underpin the general
basis of physics at al scales. That said, on the macroscopic scale, quantum
physics in action appears to behave particularly strangely, except for a certain
number of phenomena that were already curious, such as "superconductivity"
or "superfluidity”, which in fact can only explained by the laws of quantum
physics. Quantum physics gets its name from the fundamental characteristics of
guantum objects, i.e., characteristics such as the angular momentum (spin) of
discrete or discontinuous particles called quanta, which can only take values

multiplied by an elementary quantum.

|1-2- Basic conceptsin quantum mechanics

[1-2-1- Wave-particle duality

The Bohr model of the atom involved two puzzling features - the electron was
treated as a wave, and light was treated as a particle (a photon). The connection
to these new pictures of electrons and light from our more familiar view of an

electron as a particle and light as a wave is provided by the relation

_h -
x_/éw » (11-1)
which links the mass (m) and speed (v) of an electron to the wavelength (1) of

the associated wave, and by the relation
E=hv .. (11-2)

which links the frequency (v) of a light wave to the energy (E) of the
associated photon.
These relations are not derivable from other relations; they are hypothesized,
and are ""true" only so long as they satisfy experimental verification. Even so,
they are unlike most mathematical statements, however, in the following sense.
A statement like Newton's 2™ law of motion,

F=m*v ... (11-3)
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refers on both sides of the equal sign to the same object: one says the force on
some object is equal to the mass (m) of the object times the acceleration (v) of
the object. Implicit in thisis the fact that both sides of the equation are referring
to the same object, and so we have in mind one common picture of the object.
However, the preceding quantum relations are referring to different pictures of
an object: on one side of the equation we view the object as a particle, and use
words to describe the particle's mass, speed, and energy, and on the other side
of the equation we view the object as a wave, and use words like wavelength
and frequency to describe that wave.

Questions then arise. What is an electron? Is it a particle or a wave? And what
is light? A wave or a photon? The answer to these is found in the statement of
wave-particle duality:

All objects exhibit at times a wave like nature, and at other time a particle like
nature

Thus, objects (light, electrons, bowling balls, ...) can at times appear to us as
waves, and at other times as particles. In this sense they are neither particles
nor waves, in an absolute sense, but only exhibit wave or particle properties,

depending on the experiment being performed.

|1-2-2- Heisenberg's Uncertainty principle:

In guantum physics, the outcome of even an ideal measurement of a system is
not deterministic, but instead is characterized by a probability distribution, and
the larger the associated standard deviation is, the more "uncertain” we might
say that that characteristic is for the system. The Heisenberg uncertainty
principle, or Indeterminacy Principle, articulated in 1927 by the German
physicist Werner Heisenberg, gives a lower bound on the product of the
standard deviations of position and momentum for a system, implying that it is
impossible to have a particle that has an arbitrarily well-defined position and
momentum simultaneously. More precisely, the products of the standard

deviations in each of the three spatial dimensions are bounded by
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(Az)(Ap,) = h/2

(Ay)(Apy) > R/2 (11-4)

(Az)(Ap.) = h/2
where 7 is the reduced Planck constant; Ax, Ay, and Az are the standard
deviations of the three coordinates of position; and Apy, Apy, and Ap, are the
standard deviations of the three components of momentum. The principle
generalizes to many other pairs of quantities besides position and momentum
(for example, angular momentum about two different axes), and can be derived
directly from the axioms of quantum mechanics.
Note that the uncertainties in question are characteristic of the mathematical
guantities themselves. In any real-world measurement, there will be additional
uncertainties created by the non-ideal and imperfect measurement process. The
uncertainty principle holds true regardless of whether the measurements are
ideal (sometimes called von Neumann measurements) or non-ideal (Landau
measurements). Note also that the product of the uncertainties, of order 10
Joule-seconds, is so small that the uncertainty principle has negligible effect on
objects of macroscopic scale, despite its importance for atoms and subatomic
particles.
As we said, this principle is a consequence of the wave-particle duality. The
amplitude of the wave associated with a particle corresponds to its position,
and the wavelength (more precisely, its Fourier transform) is inversely
proportional to momentum. In order to localize the wave so as to have a sharp
peak (i.e., a small position uncertainty), it is necessary to incorporate waves
with very short wavelengths, corresponding to high momentain all directions,
and therefore a large momentum uncertainty. A helpful analogy can be drawn
between the wave associated with a quantum-mechanical particle and a more
familiar wave, the time-varying signal associated with, say, a sound wave. It is
meaningless to ask about the frequency spectrum at a single moment in time,
because the measure of frequency is the measure of a repetition recurring over
a period of time. Indeed, in order for a signal to have a relatively well-defined

frequency, it must persist for a long period of time, and conversely, a signal
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that occurs at a relatively well-defined moment in time (i.e., of short duration)
will necessarily encompass a broad frequency band. This is, indeed, a close

mathematical analogue of the Heisenberg principle.

[1-2-3- Quantum super position:

The superposition principle plays the most central role in all considerations of
guantum information. An important experiment in quantum mechanics is the
double dit experiment which determines the quantum superposition principle.
The essentia ingredients of the experiment are a source, a double-dit
assembly, and an observation screen on which we observe interference fringes.
These interference fringes may easily be understood on the basis of assuming a
wave property of the particles emerging from the source. It might be mentioned
here that the double-dlit experiment has been performed with many different
kinds of particles ranging from photons, via electrons, to neutrons and atoms.

Quantum mechanically, tha state is the coherent superposition

)=l e (11-5)

Where |y, ) and|y, ) (seell-3 to know the notion of brackets( | )) describe the

guantum state with only slit aor slit b open.

|1-2-4- M easurement theory
Suppose we have a system with N distinguishable states|0),|1),...,| N -1), and

some apparatus that will reliably distinguish these N states. Without loss of
generality, let us say the apparatus will output the (classical) label ‘i’ together

with the observed state |i) when |i) is provided as input. In other words, the

measurement apparatus provides a classical description of the measurement
outcome (which we simply denote as i where we indexed the possible
measurement outcomes using the indices i; the values i do not need to be
integers), aong with some quantum state. Traditionaly, the classical

description or label is often described as a needle pointing to some value on a
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dia. But if we assume only finite resolution we can just as well assume a
digital display with sufficiently many digits.

Quantum mechanics tells us that if the state ) «|i) is provided as input to this
apparatus, it will output label i with probability |«|? and leave the system in
state|i).

Thus, for a given orthonormal basis B ={¢, )} of a state space H, for a system

A, it is possible to perform a Von Neumann measurement on system Hp with
respect to the basis B that, given a state

|l//>:Zai|(pi> (11-6)
outputs alabel i with probability |«i|? and leaves the system in state o).

Furthermore, given a state |y') = > o |p;) from a bipartite state space Ha® Hg

(the |¢;) are orthonormal; the |y,) have unit norm but are not necessarily

orthogonal), then performing a Von Neumann measurement on system A will

yield outcome i with probability |«;|? and leave the bipartite system in state

o) [71)-

For the state|y ) = > o |, ), notethat e, = (g, |w) = (¢, |w), and thus

lai|” = el a; = (| Mo w) (11-7)
We can see that two states |y) and ei9|y/> (differing only by a global phase) are
equivalent. Consider the state €°|y)=)" o;€’|y,)immediately before a
measurement. The result i will occur with probability

pi)=0aie"0€’=d"a=|al?... (11-8)
and thus the resulting probability is the same as it would be for the state|y/) .
The statistics of any measurements we could perform on the state €°|y/)are
exactly the same as they would be for the state|y). This explains that global

phases have no physical significance.
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Combining the Measurement Postulate above with the other postulates, we can
derive more general notions of measurement. In particular, if one wishes to

measure a pure state [y )one can add an ancillary register of arbitrary size
initialized to some fixed state, say|0,0,..0). One can then perform a unitary

operation on the joint system, followed by a Von Neumann measurement on
some subsystem of the joint system to obtain a label i. Depending on what is
done with the rest of the system (i.e. the part of the system that was not
measured), one can derive a variety of generalized notions of quantum
measurement.

A Von Neumann measurement is a special kind of projective measurement.

An orthogonal projection is an operator P with the property that P’ = P and P?
= P. For any decomposition of the identity operator | = Zi P into orthogonal
projectors P;, there exists a projective measurement that outputs outcome i with

probability p(i) = (v |P|y)and leaves the system in the renormalized state

P . . . .
L"Z;_ In other words, this measurement projects the input state|y ) into one of
Pu
the orthogonal subspaces corresponding to the projection operators P;, with
probability equal to the square of the size of the amplitude of the component of

ly) in that subspace.

Note that the Von Neumann measurement as described in the Measurement
Postulate (which can be described as a ‘complete’ or ‘maximal’ measurement)
IS the special case of a projective measurement where all the projectors P; have
rank one (in other words, are of the form |y, )y, |for anormalized state|y, ) ).

Projective measurements are often described in terms of an observable. An

observable is a Hermitean operator M acting on the state space of the system.

Since M is Hermitean, it has a spectral decomposition

M:ZmiPi (11-9)

where P; is the orthogona projector on the eigenspace of M with real

eigenvalue m;. Measuring the observable corresponds to performing a
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projective measurement with respect to the decomposition | = Zi P where the

measurement outcome i corresponds to the eigenvalue m.

[1-2-5- Entanglement

Consider a source which emitsapair of particles such that one particle emerges
to the left and the other one to the right (see source S in Figure I1-1). The
source is such that the particles are emitted with opposite momenta. If the
particle emerging to the left, which we call particle 1, is found in the upper
beam, then particle 2 traveling to the right is always found in the lower beam.
Conversely, if particle 1 is found in the lower beam, then particle 2 is always
found in the upper beam. In our qubit language we would say that the two
particles carry different bit values. Either particle 1 carries“0” and then particle
2 definitely carries “1”, or vice versa. Quantum mechanicaly this is a two-
particle superposition state of the form

%q%mz verf1 o)) .. (11-10)

The phase y isjust determined by the internal properties of the source and we
assume for smplicity y =0. Equation (11-10) described what is called an
entangled state. The interesting property is that neither of the two qubits carries

a definite value, but what is known from the quantum state is that as soon as
one of the two qubits is subject to a measurement, the result of this
measurement being completely random, the other one will immediately be
found to carry the opposite value. In a nutshell this is the conundrum of
guantum non-locality, since the two qubits could be separated by arbitrary
distances at the time of the measurement.

A most interesting situation arises when both qubits are subject to a phase shift
and to Hadamard transformation (see 11-4-3) as shown in Figure |1-1 [24].
Then, for detection events after both Hadamard transformations, that is, for the
case of the two particle interferometer verification for detection behind the
beamspliters, interesting non local correlations result which violate Bell’s

inequalities [24].
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— H ¥ H [

Figurell-1: A source of emitstwo qubitsin an entagled state. Top: A two particle
interferometer verification. Bottom: The principle in terms of one photon gates. [24]

The essence of such a violation is that there is no possibility to explain the
correlations between the two sides on the basis of local properties of the qubits
alone. The quantum correlations between the two sides cannot be understood
by assuming that the specific detector on one given side which registers the
particle is not influenced by the parameter setting, that is, by the choice of the
phase for the other particle.

A very interesting, and for quantum computation quite relevant generalization
follows if entanglement is studied for more than two qubits. Consider the
simple case of entanglement between three qubits, as shown in Figure I1-2. We
assume that a source emits three particles, one into each of the apparatuses
shown, in the specific superposition, a so-called Greenberger-Horne-Zeilinger
(GHZ) [24],

1
ﬁ([0>1|0>2|0>3 0, [0,00,) .. (11-12)

This quantum state has some very peculiar properties. Again, asin two-particle
entanglement, none of the three qubits carries any information on its own; none
of them has a defined bit value. But, as soon as one of the three is measured,
the other two will assume a well-defined value as long as the measurement is
performed in the chosen 0-1 basis. This conclusion holds independent of the

special separation between the three measurements.
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Figurell-2: Three particles entanglement in a GHZ state. [24]

Most interestingly, if one looks at the relations predicted by the GHZ state (11-
11) between the three measurements after passing the phase shifters and the
Hadamard transforms, a number of perfect correlations still result for certain
joint settings of the three parameters, the interesting property now being that it
is not possible to understand even the perfect correlations with a local model.
This shows that quantum mechanics is at variance with a classical local world
view not only for the sector of statistical predictions of the theory but also for

predictions which can be made with certainty.

|1-2-6- Entanglement and quantum indistinguishability

In order to understand both the nature of entanglement and ways of producing
it, one has to realize that in states of the general form the equations (I11-10) and
(11-11), we have a superposition between product states. We recall from the
discussion of the double-dlit diffraction phenomenon that superposition means
that there is no way to tell which of the two possibilities forming the
superposition actually pertains. This rule must aso be applied to the
understanding of quantum entanglement. For example, in the state

1 (11-12)

|lP>12 = ﬁ(lo>1|1>2 + |1>1|0>2)
there is no way of telling whether qubit 1 carries the value’0” or “1”, and
likewise whether qubit 2 carries the value 0" or “1”. Yet if one qubit is

measured the other one immediately assumes a well-defined quantum state.
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These observations lead us directly to the conditions of how to produce and
observe entangled quantum states.

To produce entangled quantum states, one has various possibilities. Firstly, one
can create a source which, through its physical construction, is such that the
guantum states emerging aready have the indistinguishability feature discussed
before. Thisis realized, for example, by the decay of a spin-0 particle into two
spin-1/2 particles under conservation of the internal angular momentum . In
this case, the two spins of the emerging particles have to be opposite, and, if no
further mechanisms exist which permit us to distinguish the possibilities right

at the source, the emerging quantum state is
), = %WMZ - (11-13)

Where, e.g. |T> , means particle 1 with spin up. The state (11-13) has the

remarkable property that it is rotationally invariant, i.e., the two spins are anti-
parallel along whichever direction we choose to measure.

A second possibility is tat a source might actually produce quantum states of
the form of the individual components in the superposition of (I1-13), but the
states might still be distinguishable in some way. This happens, for example, in
type-1l parametric down, where along a certain chosen direction the two
emerging photon states are.

IH),V), and V) [H), ... (11-14)

That means that either photon 1 is horizontally polarized and photon 2 is
vertically polarized, or photon 1 is vertically polarized and photon 2 is
horizontally polarized. Yet because of the different speeds of light for the H
and V polarized photons inside the down-conversion crystal, the time
correlation between the two photonsis different in the two cases. Therefore, the
two terms in (I11-14) can be distinguished by a time measurement and no
entangled state results because of this potential to distinguish the two cases.
However, in this case too one can still produce entanglement by shifting the
two photon-wave packets after their production relative to each other such that

they become indistinguishable on the basis of their positionsin time.
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What this means is the application of a quantum eraser technique where a
marker, in this case the relative time ordering, is erased such that we obtain
guantum indistinguishability resulting in the state.

|‘P>12:%(]H>1|V>2+e”‘|v>l|H>2) .. (11-15)

which is entangled.

A third means of producing entangled states is to project a non-entangled state
onto an entangled one. We remark, for example, that an entangled state is never
orthogonal to any of its components. Specifically, consider a source producing
the non-entangled state

0,1, ... (11-16)

Suppose this state is now sent through a filter described by the projection
operator

P=¥), (¥, (11-17)
Where |¥),, isthe state of (11-12). Then the following entangled state results:

(003, +12,/0) X0l 1, + ({01,001, =5 (0018, +[]0) ...c1-18
It is no longer normalized to unity because the projection procedure implies a
loss of qubits.

While each of three methods discussed above can in principle be used to
produce outgoing entangled states, a further possibility exists to produce
entanglement upon observation of a state. In general, this means that we have
an unentangled or partialy entangled state of some form and the measurement
procedure itself is such that it projects onto an entangled state, in much the
same way as discussed just above. This procedure was used, for example, in the
first experimental demonstration of GHZ entanglement of three photons .
|1-2-7- Decoherence:

Decoherence is a phenomenon that plays a great role in many of the events of
guantum mechanics. Understanding decoherence is essential to understanding

how classical physics emerges from quantum mechanics.
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The basic idea is this. a quantum system, A, in isolation, behaves in a
characteristically quantum-mechanical fashion, exhibiting interference effects
that reflect the phase difference between the various components of its state
vector. For example, if A consists of an electron in a state that is a
superposition of equal parts spin up and spin down, there will be measurements
that can be performed on the electron that will be sensitive to the phase
relationship between these two components. This is quite different from the
classical notion of probability: there isn't merely a 50% chance for the
electron’s spin to be up or down; rather, both possibilities exist simultaneously,
and the phase describes a relationship between them that would be meaningless
if either was absent.

If system A then interacts with another system, B, in such a manner that
different components of A's state vector influence B differently, the two
systems become entangled, and observations on A aone will no longer exhibit
guantum effects. System A appears to have “collapsed” down to just one
component of its original state vector. In the example of the electron, it now
acts asif there were merely a 50/50 chance for its spin to be either purely up or
purely down.

However, no such “collapse” has redly taken place. Measurements on the
combined system, A+B, reved that it is in a pure quantum state, and none of
the original components of A's state vector have been lost. Classical physics
emerges, essentially, from the inability to observe everything we'd need to in

order to detect quantum phenomenain the world at large.

[1-3- Linear Algebra and the Dirac notation
[1-3-1- The Dirac Notation and Hilbert Spaces
In the Dirac notation, the state “a’ of a system is denoted by the ‘ket’ |a). We

denote the dual vector for a with a ‘bra’, written as (a|. Then inner products

will be written as ‘bra-kets' (e.g.(a|b)).

UH.B.C 32



Chapter |1 Notions of quantum mechanics

The kets belong to a vector spaces called Hilbert spaces. We will use H to
denote such a space.

Since H isfinite-dimensional, we can choose a basis and alternatively represent
vectors (kets) in this basis as finite column vectors, and represent operators
with finite matrices. The Hilbert spaces of interest for quantum computing will
typically have dimension 2" for some positive integer n. This is because, as
with classica information, we will construct larger state spaces by
concatenating a string of smaller systems, usually of size two.

We will often choose to fix a convenient basis and refer to it as the
computational basis. In this basis, we will label the 2" basis vectorsin the Dirac
notation using the binary strings of length n:

|00...00),|00...01),...,|11...10),|11...11). ... (11-19)
|

n

The standard way to associate column vectors corresponding to these basis

vectors is as follows:

1 0 g
0 1 0
0 0 0
|00..00) < (_’,|oo...01>@ en[1.10) & | 11,10 & | | ...(11-20)
0 R 1 (')
0 0 .

An arbitrary vector in H can be written either as a weighted sum of the basis

vectorsin the Dirac notation, or as a single column matrix.

[1-3-2- Dual Vectors
For vectors over the complex numbers, an inner product is a function which
takes two vectors from the same space and evaluates to a single complex

number. We write the inner product of vector v with w as(v|w). An inner

product is such a function having the following properties.

1. Linearity in the second argument
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<V,Z},iwi>:zi:},i<v,wi> (11.21)

2. Conjugate-commutativity
(v,w) = <W,V>* (11.22)
3. Non-negativity
(v,v)>0 (11.23)
with equality if and only if v=0.
A familiar example of an inner product is the dot product for column vectors.

The dot product of v with w iswritten v - w and is defined as follows.

Vl Wl Wl
VZ WZ W2 n
:(vlvz...vn C=dviw L (11.24)
i=1
v, Jw W

Definition I1-1:
Let H be a Hilbert space. The Hilbert space H~* is defined as the set of linear
maps H—C.

We denote elements of H* by (x|, wherethe action of (x| is:

(x]:lv)P (x|lw)eC (11-25)

Where (y|y) istheinner-product of the vector|y) e H with the vector |y) e H.
The set of maps H* is a complex vector space itself, and is called the dual

vector space associated with H. The vector (| is called the dual of | ). Interms

of the matrix representation, (y|is obtained from |y by taking the
corresponding row matrix, and then taking the complex conjugate of every
element (i.e. the ‘Hermitean conjugate’ of the column matrix for| ). Then the
inner product of |y) with |p) is (y|e), which in the matrix representation is
computed as the single element of the matrix product of the row matrix

representing |y ) with the column matrix representing |¢) . Thisis equivalent to
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taking the dot product of the column vector associated with |y) with the
column vector associated with|gp).
Two vectors are said to be orthogonal if their inner product is zero. The norm
of avector|y), denoted ||y)| is the square root of the inner product of |y)with
itself. That is,

[v)l=ywlv) - (11-26)
The quantity ||| is called the Euclidean normof |y). A vector is called a unit

vector if it has norm 1. A set of unit vectors that are mutually orthogonal is
called an orthonormal set.
Definition I1-2:
Consider a Hilbert space H of dimension 2". A set of 2" vectors B = {b, )} < H
is called an orthonormal basisfor H if

(b, |by) =6, vb,,b €B ... (11-27)

and every |y) e H can be written as

lv)=>Dw.|b,) forsomey eC .. (11-28)

b,eB
The values of v, satisfy v, =(b,|w), and are called the ‘coefficients of |y)
with respect to basis{b, )}.

Note that if we express |y)=> «|4) with respect to any orthonormal

basis {¢,)} then [Jy)] = 3 Jer "
Theorem I1-1[23]
The set {(b, |}isan orthonormal basis for H'called the dual bass.

[1-3-3- Operators

Definition I1-3

A linear operator on a vector space H is a linear transformation T : H — H of
the vector space to itself (i.e. it is a linear transformation which maps vectors

in H to vectorsin H).
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Just as the inner product of two vectors |y)and |¢)is obtained by multiplying
ly) on the left by the dual vector (p|, an outer product is obtained by
multiplying |y) on the right by (¢|. The meaning of such an outer

product|y ) (p|is that it is an operator which, when applied to |y), acts as

follows.

(w)eD) |7)=[v)elr)=(ol7) w). - (11-29)

The outer product of a vector |y)with itself is written |y )(y |and defines a
linear operator that maps

WXyl lvivle)=wlelv) .. (11-30)

That is, the operator |y )(y |projects a vector |¢) in H to the 1-dimensional

subspace of H spanned by |y). Such an operator is caled an orthogonal
projector.
Theorem I1-2[23]

Let B = {b,)}be an orthonormal basis for a vector space H. Then every linear

operator T on H can be written as

T= > T,./b )b, (11-31)

by bmeB
Where T, =(b,[T|b,).

We know that the set of al linear operators on a vector space H forms a new
complex vector space L(H) (‘vectors' in L(H) are the linear operators on H).
Notice that Theorem 11-2 essentially constructs a basis for L(H) out of the
given basis for H. The basis vectors for L(H) are all the possible outer products

of pairs of basis vectors from B, that is{b, )(b, |}

The action of T isthen

Ty SToalb )b w)= ST blw)b). ... (11-32)

bn,b,rGB bn,bmeB
In terms of the matrix representation of T, T, 1S the matrix entry in the n™ row

and m™ column.

For any orthonormal basis B = {b, )}, the identity operator can be written as
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1= Yo, )b, ... (11-33)

b,eB
Equation (11-33) is called the resolution of the identity in the basis B.
Notice that, for an operator T on H, and |y) € H, the map

|l//>H<g0|(T|l//>) (11-34)
is a linear map from H to C, and thus belongs to H'. Each map in H

corresponds to some vector <go* | . The adjoint of the operator T, denoted T, is
defined as the linear map that sends |) |’ ), where (4((T|y))=(¢" |v)for

al|y).
Definition I1-4
Suppose T is an operator on H. Then the adjoint of T, denoted T, is defined as

that linear operator on H* that satisfies

(Wi lo) =(efMlyw) . Vw)le)eH .. (11-35)
In the standard matrix representation, the matrix for T° is the complex
conjugate transpose (also called the * Hermitean conjugate’, or ‘adjoint’) of the
matrix for T.
Definition [1-5
An operator U is called unitary if U = U™!, where U™ is the inverse of U.
Note that U* = U™ implies U*U = I, where | is the identity operator. The
unitary operators preserve inner products between vectors, and in particular,
preserve the norm of vectors.
We also define a class of operators that describes the Hamiltonian of a system
as well as the observables, which correspond to an important type of
measurement in quantum mechanics.
Definition I1-6
An operator T in a Hilbert space H is called Hermitian (or self-adjoint) if

T=T (11-36)

(i.e. itisequal to its own Hermitian conjugate).
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Definition I1-7

A projector on a vector space H isa linear operator P that satisfies P> = P. An
orthogonal projector is a projector that also satisfies P* = P.

Definition [1-8

A vector |y )is called an eigenvector of an operator T if

Tly)=c|y) (11-37)
for some constant c. The constant c is called the eigenvalue of T corresponding

to the eigenvector |y ).

Theorem I1-3[23]
If T=T" and if T|y)= 2|y) then 1 € R. In other words, the eigenvalues of a

Hermitian operator arereal.
Definition 11-9
The trace of an operator A acting on a Hilbert space H is

Tr(A)=> (b, |Ab,) (11-38)

by

where {b,)}is any orthonormal basis for H.

[1-3-4- The spectral theorem
The spectral theorem is a central result in linear algebra, because it is often
very convenient to be able to specify a basis in which a given operator is
diagonal (i.e. to diagonalize the operator). The spectral theorem applies to a
wide class of operators which we now define.
Definition I1-10
A normal operator Aisalinear operator that satifies

AAT= ATA (11-39)
Notice that both unitary and Hermitean operators are normal. So, most of the
operators that are important for quantum mechanics and quantum computing

arenormal.
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Theorem I1-4 [23]
For every normal operator T acting on a finite-dimensional Hilbert space H,

there is an orthonormal basis of H consisting of eigenvectors |T; ) of T.
Note that T is diagonal in its own eigenbasis: T = > T,|T, (T, |, where T; are the

eigenvalues corresponding to the eigenvectors|T,). We sometimes refer to T

written in its own eigenbasis as the spectral decomposition of T. The set of
eigenvalues of T is called the spectrumof T.

The Spectral Theorem tells us that we can aways diagonalize normal operators
(in finite dimensions). In the linear algebra the diagonalization can be
accomplished by a change of basis (to the basis consisting of eigenvectors).
The change of basis is accomplished by conjugating the operator T with a
unitary operator P. With respect to the matrix representation for the operator T,
we can restate the Spectral Theorem in aform which may be more familiar.
Theorem I1-5[23]

For every finite-dimensional normal matrix T, there is a unitary matrix P such
that T= PAP", where 4 isa diagonal matrix.

The diagonal entries of 4 are the eigenvalues of T, and the columns of P

encode the eigenvectors of T.

[1-3-5- Functions of operators
One of the reasons why the Spectral Theorem isimportant isthat it allows us to
simplify the expressions for functions of operators. By the Spectral Theorem,

we can write every normal operator T in the diagonal form

T=2TT )T 2 (1-40)

First, note that since each | T, }(T; |is aprojector,
(o))" =T x| = (11-41)
for any integer m. Also noting that the eigenvectors are orthonormal, we have
(T[T)=0, (11-42)
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So this means that computing a power of T (in diagonal form) is equivalent to

computing the powers of the diagonal entries of T:

Sl -z . o
The Taylor seriesfor afunction f : C — C, hastheform
()= Y a,x" (11-44)
m=0

The range of values of x for which the Taylor series converges is called the
interval of convergence. For any point x in the interval of convergence, the
Taylor series of afunction f converges to the value of f(x).

Using the Taylor series for a function f, we can define the action of f on
operators over C (provided the relevant Taylor series converges). For example,

we would define the exponential function so that, for an operator T, we have
1
T _ = Tm _
€ _Em !T (11-45)

In general, the Taylor series for any function f acting on an operator T will have

the form
f(T)y=>a,T" (11-46)

If Tiswritten in diagonal form, then the expression simplifies:

fM=2a,1" = ;am[iZTilTiXTi |]m = 2an T[T = 2 T -

(11-47)

So when T is written in diagonal form, f(T) is computed by applying f
separately to the diagonal entries of T. In general, the procedure for computing
afunction f of an operator T isto first diagonalize T (the Spectral Theorem tells
us we can do this for most of the operators that will be important to us), and

then compute f individually on the diagonal entries.

I1-3-6- Tensor products
The tensor product is a way of combining spaces, vectors, or operators

together. Suppose H; and H, are Hilbert spaces of dimension n and m
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respectively. Then the tensor product space Hi;® H, is a new, larger Hilbert

H1 and {]cj>}j & {L...,m}is an orthonormal basis for H,. Then

{b)®c,)j e L.} jelL...m} . (l1-48)
is an orthonormal basis for the space H,® H,. The tensor product of two

vectors |y,)and |y,)from spaces H; and H,, respectively, is a vector in
H,®H,, and is written |y,) ® |y, ). The tensor product is characterized by the

following axioms:

1.Foranyc e C, |y,) e Hy, and |y,) € Hy,

clva) ®lw2))=(cv)®(v2)=lva) @) ... (11-49)

2. Forany |y,),|¢;) € Hy, and |y,) € Hy,
(vs) +lo)®lwo) =lvr) ®@lvo) +lo) ®ly,) .. (11-50)

3. Forany|y,) € Hy, and|y,),|p,) € Hy,
v @ (vo) +0o)=lws) ®wo) +vi) ®le,) ... (11-51)

Suppose A and B are linear operators on H; and H, respectively. Then A ® Bis
the linear operator on H,; ® H, defined by

(A® B)(Il//l>®|l//2>)5 Ay,)®Bly,) .. (11-52)

This definition extends linearly over the elements of H; ® H,:
(A® B)(Zz”|bi>®|cj>] => % Ab)®Blc;) ... (I1-53)
ij 1]

We have presented the tensor product using the Dirac notation. In the matrix
representation, this transates as follows. Suppose A is an mxn matrix and B a
px q matrix, then the left Kronecker product of A with B isthe mpxng matrix

AyBy - Auqu-" AnBy... Alnqu
AiBy.. ABy.. AB.. AB,
AnBy .. Amlqu"' AmBiy- Armqu
AuBoi. AuB. AnBu.. AnB,,

This matrix is sometimes written more compactly in ‘block form’ as

A®B = ... (11-54)
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A.[B] A,[B] ... A,.[B] . (11-55)

Here, [B] represents the px g submatrix B. Then each block entry A; [B] above

Is the matrix [B] multiplied by the single entry in row i, column j, of matrix A.

ABy AB, .. A By,

AQB = ABy AByp A; By

... (11-56)
ABy ABy, .. A By,

The matrix representation for the tensor product of two vectors, or two

operators, is the left Kronecker product of the matrix representation of the two

vectors or operators being ‘tensored’ together. For example, the matrix
representation of (a,|0) + a,|1))® (B,|0) + B,|1) )is
aofo
(a"j@(ﬂoj: %Py .. (11-57)
2% B By
alﬂl
[1-3-7- The Schmidt decomposition theorem

Theorem |1-6

If |y) is a vector in a tensor product space Ha® Hg, then there exists an
orthonormal basis ﬂ(pi’*>} for HA, and an orthonormal basis ﬂ(pf‘>} (for HB,
and non-negative real numbers {p, }so that

|w>=Z\/E|q)ﬁ>|<piB> ... (11-58)
The coefficients ,/p, are called Schmidt coefficients. To understand what this
theorem is saying, supposeﬂ<pi’*>} and {I(piB>} were chosen to be any arbitrary
orthonormal bases for Hy and Hg respectively. Then, the basis states for the
space Ha@ He are ") ® |o7) (often written |/ o} )).

The genera vector |y)in Ha® Hgisthen
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|1//>:Zai’j|qoiA>|q0F> .. (11-59)

where the coefficients o, =€” /p,, are in general complex numbers. Note

that we have had to use different indices on the two sets of basis vectors to
account for al the ‘cross-terms’. If H, has dimension m and Hg has dimension

n, this general vector is a superposition of mn basis vectors. The Schmidt

decomposition tells us that we can aways find some pair of bases ﬂgoi’*>}and

{]<pf‘>}wch that all the ‘cross terms’ vanish, and the general vector smplifies to

asum over one set of indices
|W>:Z\/Fi|(piA>|(piB> ... (11-60)

and the coefficients can be assumed to be real (since any phase factors can be
absorbed into the definitions of the basis elements). The number of terms in

this sum will be (at most) the minimum of mand n.

[1-3-8- Mixed States

In the preceding, we have aways assumed that the state of a system has a
definite state vector. Such a state is commonly referred to as a pure state. There
are important situations, for which the qubit is described by one of a specific
set of state vectors, with corresponding probabilities (the probabilities must add

to 1). For example, suppose we know that a qubit is in the pure state

|w1>=%|o>+%|1> with probability 1/3, and is in the pure state

|w2>=%|o>—%|1> with probability 2/3. The state described by this

probability distribution is called a mixture or ensemble of the states |y,) and

lw,). We refer to the state of a system in such a situation as being a mixed

state.
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[11-3-8-1- Mixed states
We can have mixed states on an ensemble of any number n of qubits. One way
of representing a general mixed state on n qubitsis as the ensemble

{lwa) e (wa) o) (wic) B} .. (l1-61)
which means that the system is in the pure (n-qubit) state |y, ) with probability
pi, fori=1,2,...,k Notethat apure state can be seen as a special case of a
mixed state, when all but one of the p; equal zero.
To use a representation such as (11-61) in all our calculations would be quite
cumbersome. There is an aternative, very useful, representation of mixed
states in terms of operators on the Hilbert space H. These are called density
operators. The matrix representation of a density operator is called a density
matrix.

The density operator for a pure state |y) is defined as

p=lv)v| .o (11-62)
If we apply the unitary operator U to state|y ) we get the state U|y') which has
density operator U|y)(y|U'. Consider measuring the state with density
operator p = |y )(y |in the computational basis. The probability of getting O is
given by (0l )y |0) = (0]|0
Notice that (O|y (v |0)evaluates to a real number. Since any number is the

trace of a corresponding 1 x 1 matrix (whose only entry is that complex
number), we can also write the probability of the measurement giving result O

as

(Ofy )y |0) =Tr((0lw){w |0)=Tr(0)Ow)w () .. (1-63)
where the last step follows from the cyclicity of trace (i.e. Tr(ABC) = Tr(BCA)
= Tr(CAB)).
Similarly, if we measure a qubit in a state with density operator p = |y )(y |, the
probability of obtaining the outcome |1)isTr(1)(2]y )y |). If only dealing with

pure states, this notation is unnecessarily redundant; however, if we also
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consider mixed states it is a much more concise notation than used above in
Equation (11-61).

The density operator for an ensemble of pure statessuch as (11-61) is
k
p=2 0w )| .. (11-64)
i=1

and captures all the relevant information about the state of the system.

I1-3-8-2- Mixed states and the Bloch sphere

The pure states of a qubit can be represented by points on the surface of the
Bloch sphere. Mixed states correspond to points in the interior of the Bloch
sphere, which can be seen as follows. If p=>" p|w,)w,|and if the Bloch

vector for |y, ) is (ax;, ay;, az;), then the Bloch vector for the mixed state p is

pP= z P (ax,i 1Ay ’az,i):(z piax,i ’Z piay’i ,Z piaZ’iJ (”-65)

There are of course many different convex combinations of points on the
surface of the Bloch sphere that correspond to the same mixed state. One can
compute the Bloch vector for a mixed state directly from its density matrix as
follows. If we observed that any operator on a single qubit can be written as a
linear combination of operators from {l,X, Y,Z}.

The operators X, Y,Z al have trace 0. Since a density matrix must have trace 1,

this means that any density operator for a single qubit can be written as
pz%l toayX+a Y+a,Z

The vector (ax, ay, az) gives the coordinates for the point in the Bloch sphere

corresponding to the state p. For example, the totally mixed state (the ensemble

{U 0)(0], %j (|1><1| %j} corresponds to the point at the centre of the Bloch sphere.

I1-3-9- Time-evolution of a closed system

A physical system changes in time, and so the state vector |y)of a system will
actually be a function of time, |y(t)). Quantum theory postulates that the

evolution of the state vector of a closed quantum system is linear. In other
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words, if we know that some fixed transformation, let us call it U, maps|y;) to
Uly,)then
UZai|y/i>:ZaiU|y/i> ... (I1-66)

Thus, the time-evolution of the state of a closed quantum system is described
by a unitary operator. That is, for any evolution of the closed system there

existsa unitary operator U such that if theinitial state of the systemis|y,), then

after the evolution the state of the system will be
lw,)=Ulw,) .. (11-67)

In quantum computing, we refer to a unitary operator U acting on a single-qubit
as a 1-qubit (unitary) gate. We can represent operators on the 2-dimensional
Hilbert space of a single qubit as 2 x 2 matrices. A linear operator is specified
completely by its action on a basis.
In the principle of quantum mechanicsthe continuous timeevolution of a closed
guantum mechanical system (ignoring specia relativity) follows the
Schrodinger equation
dly (t))

dt

where h is a physical constant known as Planck’s constant and H(t) is a

i =H(t)w () ... (11-68)

Hermitean operator known as the Hamiltonian of the system. The Hamiltonian
is an operator which represents the total energy function for the system. It may
in general be a function of time, but for convenience, let us consider
Hamiltonians that are constant. In this case the solution to the Schr”odinger

equation for fixed timest;, and t, is
wlt,) = ey () .. (11-69)

For Hermitean operators H, the operator € "> s a unitary operator. So for

the case of (non-relativistic and continuous time) constant Hamiltonians, one
can observe that the Evolution Postulate follows from the Schr”odinger

eguation.
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[1-3-10- Composite systems

So far we have discussed the postulates for the case of a single system only, in
particular a qubit. If all we ever needed to know was how isolated qubits
behave when they are never allowed to interact with each other, then this would
be sufficient. If we want to study potentially useful quantum computations we
will need to understand how quantum mechanics works for systems composed
of several qubits interacting with each other. That is, we would like to know
how to describe the state of a closed system of n qubits, how such a state
evolves in time, and what happens when we measure it. Treating a larger
system as a composition of subsystems (of bounded size) allows for an
exponentially more efficient description of operations acting on a small number
of subsystems.

Thus, when two physical systems are treated as one combined system, the state
space of the combined physical system is the tensor product space H; g H, of
the state spaces Hq,H, of the component subsystems. If the first system isin the
state |y, ) and the second system in the state |y, ) then the state of the combined

system is
lv,)®ly,) ... (11-70)
It is important to note that the state of a 2-qubit composite system cannot

aways be written in the product form |y,) ®|y,) . If the 2 qubits are prepared

independently, and kept isolated, then each qubit forms a closed system, and
the state can be written in the product form. However, if the qubits are allowed
to interact, then the closed system includes both qubits together, and it may not
be possible to write the state in the product form. When this is the case, we say
that the qubits are entangled. From an algebraic point of view, the state of the
composite system is a vector in the 4-dimensional tensor-product space of the 2
constituent qubits. The 4-dimensional state vectors that are formed by taking
the tensor product of two 2-dimension state vectors form a sparse subset of all
the 4-dimensional state vectors. In this sense, ‘most’ 2-qubit states are

entangled.
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I1-4- Qubits

[1-4-1- The state of a quantum system

A photon that is constrained to follow one of two distinguishable paths. We
identified the two distinguishable paths with the 2-dimensional basis vectors

(é} and((g and then noted that a general ‘path state’ of the photon can be

described by a complex vector

(ZO] .. (11-72)

with Joof® + |asf* = 1. This simple example captures the essence of the first
postulate, which tells us how physical states are represented in quantum
mechanics which said that The state of a system is described by a unit vector in
aHilbert space H.

Depending on the degree of freedom (i.e. the type of state) of the system being
considered, H may be infinite-dimensional. For example, if the state refers to
the position of a particle that is free to occupy any point in some region of
space, the associated Hilbert space is usually taken to be a continuous (and thus
infinite dimensional) space. It is worth noting that in practice, with finite
resources, we cannot distinguish a continuous state space from one with a
discrete state space having a sufficiently small minimum spacing between
adjacent locations. For describing realistic models of quantum computation, we
will typically only be interested in degrees of freedom for which the state is
described by a vector in a finite-dimensional (complex) Hilbert space. In
particular, we will primarily be interested in composite systems composed of
individual two-level systems. The state of each two-level system is described
by a vector in a 2-dimensional Hilbert space. We can encode a qubit in such a
two-level system. We would choose a basis for the corresponding 2-

dimensional space. We would label one of the basis vectors with |0)and the
other basis vector with|1). This is analogous to what is done for classical

computation. For a classical computer, the two-level system may be the voltage

level on awire, which could be zero, or some positive value (say +5 mV). We
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might encode a classical bit in such a system by assigning the binary value ‘O’
to the state in which the voltage on the wire is 0, and the value ‘1’ to the state
in which the voltage on the wire is + 5 mV. The {0),|1)} basis for the state of a

gubit is commonly referred to as the computational basis.
The state of this system is described by a vector in a 2-dimensional Hilbert
space. A convenient basis for this space consists of a unit vector for the state in

which a photon is not present, and an orthogonal unit vector for the state in

which a photon is present. We can label these states with |0)and|1),
respectively. Then the general state of the system is expressed by the vector
00| 0) + )| 1)

where o and o, are complex coefficients, often called the amplitudes of the

basis states |0) and|1) , respectively. Note that a complex amplitude o can be

decomposed unique as a product €°ja| where |o| is the non-negative real number

corresponding to the magnitude of o, and €° = |a—| has norm 1. The value 4 is
(04

known as the ‘phase’, and we refer to the value € as a ‘ phase factor’ .

The condition that the state is described by a unit vector means that |ag|? + |oa|?
= 1. This condition is sometimes called the normalization constraint, and it is
necessary for consistency with the way quantum measurements behave. The
general state of the system is a superposition of a photon being present, and a
photon not being present.

Another example of atwo-level guantum mechanical system is the spin state of
certain types of particles. According to gquantum physics, particles have a
degree of freedom called spin, which does not exist in a classical description.
Many particlesfall into the category of so called spinl/2particles. For these, the
spin state is indeed described by a vector in a 2-dimensional Hilbert space H. A
convenient basis for this space consists of a unit vector for the ‘ spin-up’ state of
the particle, and an orthogonal unit vector for the ‘spin-down’ state of the

particle. We can label these basis vectors by |0)and|1), respectively. The
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general spin state of a spinl/2 particle is a superposition of spin-up and spin-
down.

An important point about state vectors is the following. The state described by
the vector /¥ )is equivalent to the state described by the vector ¥) where e

is any complex number of unit norm. For example, the state [0)+|1) is
equivalent to the state described by the vector €|0) +€|1).

On the other hand, relative phase factors between two orthogonal states in
superposition are physically significant, and the state described by the vector
|0)+|1) isphysically different from the state described by the vector |0) + € |1)
So the State Space Postulate, together with the observation of the previous
paragraph, tells us that we can describe the most general state |y)of a single

qubit by a vector of the form

ly) = cos(%) 0)+€"* sin(%jm .. (11-72)

Consider the analogous situation for a deterministic classical bit. The state of a
classical bit can be described by a single binary value y, which can be equal to
either O or 1(Figurell-3)

0

Figurell-3: The state of a deterministic classical bit can be represented as one
of two points, labelled ‘0" and ‘1’.

In this figure, the state can be indicated by a point in one of two positions,
indicated by the two points labelled 0 and 1.

Next consider the slightly more complicated situation of a classical bit whose
value is not known exactly, but is known to be either O or 1 with corresponding
probabilities py and p;. We might call this a probabilistic classical bit. The
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state of such a probabilistic bit is described by the probabilities pO and p1,
which satisfy py + p; = 1. We can represent these two probabilities by the 2-
Po

dimensional unit vector (p
1

j whose entries are restricted to be real and non-

negative (Figure I1-4). In this figure, the state could be drawn as a point on the
line between the positions 0 and 1. We suppose this line has unit length, and

the position of the point on the line is determined by the probabilities py and p;.

Figurell-4: A probabilistic classical bit. Here the probabilities p, and p; of the
bit being 0 and 1, respectively, are represented by the position of a point on the

line segment between the points representing 0 and 1.

Note that with only one copy of such a probabilistic bit, we cannot determine
Po and p; exactly. If we are given a means to obtain several independent copies
of the probabilistic bit then we could accumulate statistics about the values py
and p;. Otherwise, we cannot in general ‘clone’ this bit and get two or more
independent copies that would allow us to obtain arbitrarily good estimates of
Po and py.

Now return to the state of a quantum bit, which is described by a complex unit

vector |y)in a2-dimensional Hilbert space. Up to a global phase factor, such a

vector can always be written in the form

ly) = cos(%) 0)+€"* sin(%jm .. (11-73)

Such a state vector is often depicted as a point on the surface of a 3-

dimensional sphere, known as the Bloch sphere (Figure 11-5). Two rea
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parameters € and ¢ are sufficient to describe a state vector, since state vectors

are constrained to have norm 1 and are equivalent up to global phase. Points on
the surface of the Bloch sphere can also be expressed in Cartesian coordinates
as

(,y,2)=(Sn6cose,sin@sing,cosh) .. (11-74)

1)

W

Figurell-5: State of aqubit on the Bloch sphere.

[1-4-2- General Quantum Operations
A superoperator or a ‘general quantum operation’ can take as input a system
described by a density operator p;, corresponding to a Hilbert space of
dimension N, add an ancilla of arbitrary size (in fact, it can be shown, using
Caratheodory’ s Theorem, that the dimension of the ancilla never needs to be
larger than N? and that we can assume without loss of generality that the ancilla
is initialized to some fixed pure state), perform a unitary operation U on the
joint system, and then discard some subsystem.
More explicitly, this can be described as the map:

P > Pow = Tr (U (01 ®]00...0)(00..0U ) ... (11-75)
where the state |00...0) is an ancilla state of arbitrary size (but without loss of

generality has dimension at most N%), U is a unitary operation acting on the
joint system, and B is some subsystem of the joint system.
If B isthe original ancilla system, then the superoperator does not change the

Hilbert space of the system. In general, we can describe states that change the
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dimension of the state space. It is shown that the action of such a superoperator
(restricting attention to operators that do not change the Hilbert space) can be

described by afinite sum
plnHZAplnA+ (”_76)

where the A, are called Kraus operators, which are linear operators9 on the

same Hilbert space as pi,, and satisfy
D AA = o (11-77)

Conversely, every set of Kraus operators satisfying the compl eteness condition
(Equation 11-76) can be realized by a map of the form in Equation (11-75) for
some unitary U (which is unique up to a fina unitary on the system that is
traced out).

I1-4-3- The Hadamard transfor mation
One of the most basic transformations in quantum information science is the
so-called Hadamard transformation whose actions on a qubit are
HI0) > (0)+[1)=[Q). HE~>=(0)-[1) .. (179
Applying this to the qubit 1Q > above, resultsin
H|Q) =[0) o (11-79)
That is, a well defined value of the qubit. This is never possible with an

incoherent mixture.

I1-4-4- Single Qubit Transformations:

Insight in some of the most basic experimental procedures in quantum
information physics can be gained by investigating the action of a simple 50/50
beamsplitter. Such beamsplitters have been realized for many different types of
particles not only for photons. For a general beamsplitters, as shown in Figure
I1-6, let us investigate the case of just two incoming modes and two outgoing

modes which are arranged as shown in the figure.
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For a. 50/50 beamsplitter a particle incident either from above or from below
has the same probability of 50% of emerging in either output beam, above or
below. Then quantum unitarily, that is, the requirement that no particles are lost
if the beamsplitter is non-absorbing, implies certain phase conditions on the
action of the beamsplitter with one free phase. A very simple way to describe
the action of a beamsplitter is to fix the phase relations such that the
beamsplitter is described by the Hadamard transformation of the equation (l1-
78).

L ets us again assume that the incident state s the general qubit.

‘Q>in - a‘0>in T ﬂ‘1>|n (I I-8O)
For a single incident particle this means that a is the probability amplitude to
find the particle incident from above and g is the probability amplitude for

finding the particle incident from below. Then the action of the beamsplitter
resultsin thefinal state.

Q),, =H|Q), = %«m B0, +@-BL.) .. (181

Where (o + B) is now the probability amplitude for finding in the particle the
outgoing upper bean and (a - B) is the probability amplitude for finding it in the
outgoing lower bean. For the specific case of a=0 or =0, we find that the
particle will be found with equal probability in either of the outgoing beams.
For another specific case, a = B, we find that the particle will definitely be

found in the upper beam and never in the lower beam.

#0;}1'11 / §O>out
\

i 1 ,;:ﬁin { 1 >out

H —

Figure I1-6: The 50/50 beamspliter (top) and the corresponding diagram using
the Hadamard transform (below) [24].
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It isinteresting and instructiveto consider sequences of such beamsplitters
because they realise sequences of Hadamard transformations.

Furthermore, the mirrors shown only serve to redirect the beams, they are
assumed to have identical action on the two beams and therefore can be
omitted in the analysis. The full action of the interferometer can now simply be
described as two successive Hadamard transformations acting on the general
incoming state of the equation (I1-80).

Qs =HHIQ), =[Q),, - (11-82)

This result from the simple fact double application of the Hadamard
transformation of (I1-78) is the identity operation. It means that the Mach
Zehnder interferometer as sketched in Figure | 1-7, with beamsplitters realizing
the Hadamard transformation at its output reproduces a state identical to the
input. Let us consider again the extreme case where the input consists of one
beam only, that is, without loss of generadlity, let us assume a=1, the lower
beams being empty then, according to the equation (11-82) the particle will
definitely be found in the upper output. Most interestingly, this is because
between the two beamsplitters the particle would have been found (with the
correct relative phase) with equal probability in both beam paths. It is the
interference of the two amplitudes incident on the final beamsplitter which

results in the particle ending up with certainty in one of outgoing beams and
| o >in - 1 o >out
|1 >: i : 11D ot

— H | H —

never in the other.

Figure I1-7: A Mach-Zehner interferometer (top) is a sequence of two
Hadamard transformations (bottom) [24].

In quantum information language, the output qubit of the empty MachZender

interferometer will have a definite value if the input qubit al'so has only because
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between the two Hadamard transformations the value of the qubit was
maximally underlined.

Another important quantum gate besides the hadamard gate is the phase shifter,
which is introduced additionally in Figure 11-8 into the Mach- Zehnder
interferometer. Its operation is simple to introduce a phase change ¢ to the
amplitude of one of the two beams (without loss of generality we can assume
this to be the upper beam because only relative phases are relevant). In our
notation., the action of the phase shifter can be described by the unitary

transformation.

#0 =€|0, ¢ =|1, .. (11-83)

Therefore the output can be calculated by successive application of al proper

transformations to the input qubit:
|Q>Out = H¢H|Q>m .. (11-84)
We will restrict our discussion again to the case where we have only one input

namelyo =1. Andg =0, i.e, |Q), =0. Thefinal state then become

HgH|0) = %((e“" +1)0)+ (e -1)1) ... (11-85)
This has a very ssimple interpretation. First we observe by inspection of the
equation (11-74) that for ¢ =0the value of the qubit is definitely “0”. On the
other hand, for ¢ = = the value of the qubit is definitely “1”. This indicates that
the phase shift ¢ is able to switch the output qubit has the value “0” is
P, =cos’(p/2), and the probability that the qubit carries the value “1” is

P, =sin’(p/2).

105, 10 D0mce
1, 1 ore
— H D H |-

Figurell-8: Top : Mach-Zehnder interferometer including a phase shifter ¢ in

one of the two beams. Bottom: The equivalent representation with Hadamard
transformations and a phase shifter gate.

UH.B.C 56



Chapter |11 The use of spin in quantum computers

[11-1- Introduction:

Technologica growth in the electronics industry has historically been measured by the
number of transistors that can be crammed onto a single microchip. Unfortunately, all
good things must come to an end; spectacular growth in the number of transistors on a
chip requires spectacular reduction of the transistor size. For electrons in
semiconductors, the laws of quantum mechanics take over at the nanometer scale, and
the conventional wisdom for progress must be abandoned. This realization has
stimulated extensive research on ways to exploit the spin (in addition to the orbital)
degree of freedom of the electron, giving birth to the field of spintronics. Perhaps the
most ambitious goal of spintronics is to realize complete control over the quantum
mechanical nature of the relevant spins. This prospect has motivated a race to design
and build a spintronics device capable of complete control over its quantum

mechanical state, and ultimately, performing computations. a quantum computer.

[11-2- Electron Spin

[11-2-1- Toward theworld of spin

Two types of experimental evidence which arose in the 1920s suggested an additional
property of the electron. One was the closely spaced splitting of the hydrogen spectral
lines, called fine structure. The other was the Stern-Gerlach experiment which showed
in 1922 that a beam of silver atoms directed through an inhomogeneous magnetic field
would be forced into two beams [5]. Both of these experimental situations were
consistent with the possession of an intrinsic angular momentum and a magnetic
moment by individual electrons. Classically this could occur if the electron was a
spinning ball of charge, and this property was called electron spin.

Quantization of angular momentum had already arisen for orbital angular momentum,
and if this electron spin behaved the same way, an angular momentum quantum

number s = 1/2 was required to give just two states. This intrinsic electron property

gives
Z-component of angular momentum: S, =ma# ,m, = i% (11-1)
Magnetic moment: i, =—2i gs... (11-2)
m
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An electron spin s = 1/2 is an intrinsic property of electrons. Electrons have intrinsic
angular momentum characterized by quantum number 1/2. In the pattern of other
guantized angular momenta, this gives total angular momentum
so (Y1 o8, (111-3)
2\ 2 2

The resulting fine structure which is observed corresponds to two possibilities for the

z-component of the angular momentum.

1
S,=x=h -4
5 (11-4

z

This causes an energy splitting because of the magnetic moment of the electron

,usz—%gs (111-5)

[11-2-2- Electron Intrinsic Angular Momentum

Experimental evidence like the Stern-Gerlach experiment suggests that an electron has
an intrinsic angular momentum, independent of its orbital angular momentum [5].
These experiments suggest just two possible states for this angular momentum, and
following the pattern of quantized angular momentum, this requires an angular
momentum quantum number of 1/2.

With this evidence, we say that the electron has spin 2. An angular momentum and a
magnetic moment could indeed arise from a spinning sphere of charge, but this
classical picture cannot fit the size or quantized nature of the electron spin. The
property called electron spin must be considered to be a quantum concept without
detailed classical analogy. The quantum numbers associated with electron spin follow
the characteristic pattern:

S=/S(S+1), szé, m, =+

[11-2-3- Electron Spin Magnetic M oment
Since the electron displays an intrinsic angular momentum, one might expect a

(111-6)

NP

magnetic moment which follows the form of that for an electron orbit. The z-
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component of magnetic moment associated with the electron spin would then be
expected to be y, = i%us
but the measured value turns out to be about twice that. The measured value is written
1
uz:izguB (1-7)

Where g is called the gyromagnetic ratio and the electron spin g-factor has the value g
= 2.00232 and g=1 for orbital angular momentum. A natural constant which arisesin
the treatment of magnetic effects is called the Bohr magneton. The magnetic moment
Is usually expressed as a multiple of the Bohr magneton.

€h

He=o == 9.2740154*10* J /T =5.7883826*10 °ev/T = Bohr magneton...  (111-8)

€

The electron spin magnetic moment is important in the spin-orbit interaction which
splits atomic energy levels and gives rise to fine structure in the spectra of atoms. The
electron spin magnetic moment is also afactor in the interaction of atoms with external
magnetic fields (Zeeman Effect).

The term "electron spin” is not to be taken literally in the classical sense as a
description of the origin of the magnetic moment described above. To be sure, a
spinning sphere of charge can produce a magnetic moment, but the magnitude of the
magnetic moment obtained above cannot be reasonably modeled by considering the
electron as a spinning sphere. High energy scattering from electrons shows no "size"
of the electron down to a resolution of about 10 fermi, and at that size a
preposterously high spin rate of some 10% radian/s would be required to match the

observed angular momentum.

I11-2-3-1- Zeeman Interaction and Zeeman Effect
An external magnetic field will exert a torque on a magnetic dipole and the magnetic
potential energy which resultsis

u@)=—u*B ... (111-9)
The magnetic dipole moment associated with the orbital angular momentum is given

by
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2

L I11-10
o (11-10)

Horita = —

For magnetic field in the z-direction this gives

Uu==1B-mT8 .. (111-11)
2m 2m

Considering the quantization of angular momentum, this gives equally spaced energy

levels displaced from the zero field level by
€n
AEzm,%Bzml,uBB (111-12)

This displacement of the energy levels gives the uniformly spaced multiplet splitting of the
spectral lineswhich is called the Zeeman Effect.

The magnetic field also interacts with the electron spin magnetic moment, so it
contributes to the Zeeman effect in many cases. The electron spin had not been
discovered at the time of Zeeman's original experiments, so the cases where it
contributed were considered to be anomalous. The term "anomalous Zeeman effect"
has persisted for the cases where spin contributes. In general, both orbital and spin
moments are involved, and the Zeeman interaction takes the form
AE:%(E+2_))._B):ngijB (111-13)

The factor of two multiplying the electron spin angular momentum comes from the
fact that it is twice as effective in producing magnetic moment. Thisfactor is called the
spin g-factor or gyromagnetic ratio. The evaluation of the scalar product between the
angular momenta and the magnetic field here is complicated by the fact that the S and
L vectors are both precessing around the magnetic field and are not in general in the
same direction. The persistent early spectroscopists worked out a way to calculate the
effect of the directions. The resulting geometric factor g, in the final expression above
is called the Lande g factor. It allowed them to express the resultant splittings of the
spectral lines in terms of the z-component of the total angular momentum, m;. The
above treatment of the Zeeman effect describes the phenomenon when the magnetic
fields are small enough that the orbital and spin angular momenta can be considered to

be coupled.

UH.B.C 60



Chapter |11 The use of spin in quantum computers

[11-2-3-2- The Electron Spin g-factor
When the Zeeman Effect, the observed splitting was consistent with an electron orbit

magnetic moment given by
Hortial = —%f giving energy shift of form

€h

%ml.BzmjuBB (111-14)
where the splittings followed the z-component of angular momentum and the selection
rules explained why you got a triplet of closely-spaced lines for the 3 > 2 transition of
hydrogen. But when the effects of electron spin were discovered by Goudsmit and
Uhlenbeck [5], they found that the observed spectral features were matched by

assigning to the electron spin a magnetic moment
- _gSs (111-15)
:uspm 2m e

where g is approximately 2.
[11-2-4- Spin orbit interaction:

Although neglected up to this lecture, the interaction between the electron-spin and the
orbital angular momentum must also be included in the atomic Hamiltonian. Such

interaction is described according to the spin-orbit Hamiltonian defined as follows,

o= 121(ﬂjﬁé:gﬁ.é (111-16)
2m.c r{ or

Where V is the Coulombic potential of the electron in the field of the atom. Note that
the spin-orbit interaction is proportional to L.S.

A classical description of such interaction also gives a perturbation proportional

toﬁ.é. This is because from the reference frame of the eectron, the nucleus is a
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moving charge that generates a magnetic field B, proportional toL. Such magnetic

field interacts with the spin magnetic moment m, :—_eA_ Therefore, the interaction
m, S

between B and m. is proportional to L.S.
[11-3- General conceptsin spin-transport

[11-3-1- Basic transport mechanism in a magnetic device

Although these concepts are discussed in more details in [21], now let us briefly
maintain some of these concepts. Let us consider the prototypical GMR (Giant
magnetoresistance) device: the spin-valve. A spin valve is formed by two magnetic
layers separated by a non-magnetic spacer. Usually the magnetic layers are metallic
(typically Co, Ni, Fe or some permalloy), while the spacer can be either a metal, a
semiconductor, an insulator or a nanoscale object such as a molecule or an atomic
constriction. The typical operation of a spin-valve is schematically illustrated in
Figure 111-1. Usudly the two magnetic layers have a rather different magnetic
anisotropy with one layer being strongly pinned and the other free to rotate along an
external magnetic field. In this way the magnetotransport response of the device can be
directly related to the direction of the magnetization of the free layer. In our
discussion, we consider only the two extreme cases in which the two magnetization
vectors are either parallel (P) or antiparallel (AP) to each other.

aj)

| sp;a_jjf

Figure I11-1: Scheme of a spin-valve in the two resistance states. a) high resistance,

b)

b) low resistance. [14]
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To fix the idea consider a Co/Cu/Co spin-valve, and let us follow the path of both the
electron spin species across the device. The Fermi surfaces line up for both the P and
AP cases are presented in Figurel l1-2. In the AP case the magnetization vector of the
two magnetic layers points in opposite directions. This means that an electron
belonging to the majority band in one layer will belong to the minority in the other
layer. Consequently in the AP case both the spin currents (usualy called the spin
channels) arise from electrons that have travelled within the Fermi surface of Cu and
of both spins of Co. In contrast in the P case the two spin currents are rather different.
The spin up current is made from electrons that have travelled within the Fermi
surfaces of Cu and of the mgjority spin Co, while the down spin current from electrons
that have traveled within the Fermi surfaces of Cu and of the minority spin Co. If we
naively assume that the total resistance of the device can be obtained by adding in
series the resistances of the materials forming the device (resistor network model) we
obtain:
( co1 . CO1
2R+R 2R +R

where Rp and Rar are the resistance for the parallel and antiparallel configuration

RAP:%(R;% RE+RY).  Re= L (n)

respectively, R® is the resistance of the Cu layer and R®and R™are the resistance of
the Co layer for the mgjority (1) and the minority (|) spins. Usually R << R, hence

Rr < Rap. This produces the GMR effect (see 111-4-1).
Conventionally the magnitude of the effect is given by the GMR ratio rgyr defined as:
remr =(Rar — Rp)/Rp. .. (111-18).
This is usualy caled the “optimistic’ definition (since it gives large ratios). An
aternative definition is obtained by normalizing the resistance difference by either Rap
or Rp + Rap; inthislast case rgyr 1S bounded between 0 and 1.
The discussion so far is based on the hypothesis of treating the spin-valve as a resistor
network. This is strictly true only if Aeys < lo < L, where L is the typical thickness of
the layers forming the spin-valve, but in general adding resistances in series may not
be correct. However it is also clear that the magnitude of the magnetoresistance
depends critically on the asymmetry of the two spin currents in the magnetic material,

which ultimately depends on its electronic structure. It is therefore natural to introduce
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the concept of spin polarization P of a magnetic metalsas P = (I, — 1)/ (;; +1,), where

|, isthe spin-c contribution to the current.

a) Co Cu Co |/—/——™™

oy

b)
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Figurell1-2: Magnetoresistance mechanism in a Co/Cu/Co spin valve (pandl a) in the

two spin current approximation. [14]

[11-3-2- Transport regimes:
the relation between the spin-polarization of a magnetic material and its electronic

structure depends critically on the transport regime that one considers.

[11-3-2-1- Diffusive Transport

In diffusive transport the phase coherence length is rather short and quantum
interference is averaged out. The transport is then described by the Boltzmann's
eguations, which govern the evolution of the electron momentum distribution function.
Within the relaxation time approximation, assuming that the relaxation times does not
depend on the electron spin the current is simply proportional to Ngv2:, where Ng and
Ve are the density of states at the Fermi level and the Fermi velocity respectively.
Thisleads usto the“ Nv*” definition of the spin-polarization:

N ERVEL N AVE

o 111-19
WUNTIVE NV ( )

UH.B.C 64



Chapter |11 The use of spin in quantum computers

[11-3-2-2- Ballistic Transport
In this case lg is much longer than the size of the magnetic device. The energy is not
dissipated as resistance in the device and the current can be calculated using the
Landauer formalism. Also, the current, are simply proportional to Ngve. Moreover in
the Landauer approach, the electron velocity and the density of states exactly cancel.
This means that NgVe is just an integer proportional to the number of bands crossing
the Fermi level in the direction of the transport, or alternatively to the projection of the
Fermi surface on the plane perpendicular to the direction of the transport.
Thisleadsto the “Nv” definition of spin-polarization:
VO "

[11-3-2-3- Tunneling
It is generally acknowledged that in tunneling experiments the GMR ratio of the
specific device is given by some density of states. This was firstly observed by Jullier
amost three decades ago and it is based on the fact that typical tunneling times are
much faster then L/vg, with L being the length of the tunneling barrier. This means that
the electron velocity in the metal is irrelevant in the tunneling process. Although it is
now clear that the relevant density of states for magneto-tunneling processes is not
necessarily that of the bulk magnetic metal, but it must take into account of the
structure of the tunneling barrier and of the bonding between the barrier and the metal,
we can still introduce the “N” definition of polarization:
_N{-Ng

N! + N}

P, (111-21)

[11-3-3- Crossover between different transport regimes

Clearly the three definitions may give rise to different spin-polarizations, since the
relative weight of N and v is different. In particular Py favours electrons with high
density, while Py, electrons with high mobility. In magnetic transition metals, where
high mobility low density s electrons coexist with low mobility high density d
electrons, these differences can be largely amplified. In principle one can speculate
around materials that are normal metals according to one definition and half-metals

according to another. Thisis for instance the case of Lay;A03MnO; with A=Ca, S, ..,
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in which the mgority band is dominated by delocalized example states and the
minority by localized t,y electrons. Therefore Lag7Aq3sMnO; is a conventional
ferromagnet according to the definitions Py, and Py and it is an half-metal according to

2
PNV .

[11-3-3-1- Spin-transport at the atomic level

The main idea is now to shrink the dimensions of the device in such a way that it's
sensitive part will be of a size comparable with the Fermi wave length. In this case the
transport is ballistic and depends critically on the entire device. Therefore it can be
hardly inferred from the properties of its components, such as the spin-polarization of
the current/voltage el ectrodes.

Let us use again the spin-valve as a prototypical example, and consider two magnetic
bulk contacts separated by an atomic scale object. This can be a point contact or for
Instance a molecule. There are two main differences with respect to the bulk case:

1) the Fermi surface of the spacer can be highly degenerate, in the extreme limit
collapsing into a single point, 2) the coupling between the magnetic surfaces and the
spacer can be strongly orbital dependent. The crucia point is that in both cases the
transport characteristics will be given by local properties of the Fermi surfaces of the
magnetic material, which means either from a particular region in k-space, or a
particular orbital manifold.

Consider Figure 111-3 where we present an hypothetical device formed by two
metallic surfaces sandwiching a spacer whose Fermi surface is a single point. For the
sake of simplicity, we consider a model ferromagnet, namely a single orbital two-
dimensional simple cubic lattice, with Fermi surfaces centred at the band center and at
the band edges respectively for majority and minority spins. In this case the Fermi
surface of the spacer overlaps only with the majority Fermi surface of the magnetic
material. For this reason we expect zero transmission for the minority spins and for the

antiparallel configuration, leading to an infinite GMR ratio.
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Figure I11-3: Magnetoresistance mecnanism In a spin vave constructed with an

atomic scaled spacer in the two spin current approximation. [15]

[11-3-3-2- Molecular Spin transport

The growing interest in interfacing conventional electronic devices with organic
compounds has brought to the construction of spin-valves using molecules as a spacer.
These include carbon nanotubes, elementary molecules and polymers. Spin-transport
through these objects can be highly non-conventional and vary from metallic-like, to
Coulomb-blockade like, to tunneling-like. Moreover the molecule can be either
chemisorbed of physisorbed depending on the molecular end groups, and the same
Spacer can giverise to different transport regimes.

In this case the simple requirement of local charge neutrality is not enough to describe
the physics of the spacer and an accurate description of the drop of the electrostatic
potential across the device is needed. Note that the transport can still be completely
ballistic, in the sense that the electrons do not change their energy while crossing the
spacer.

A more complicate situation arises for polymer-like spacers. In most polymers in fact
the transport is not band transport but it is due to hopping and it is associated with the
formation and propagation of polarons. Clearly this adds additional complication to the

problem since now the electronic and ionic degrees of freedom cannot be decoupled in
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the usual Born-Oppenheimer approximation. At present there is very little theoretical

work on spin-transport in polymers.

[11-4- Transport Theory: Linear Response

11-4-1- GMR

As aready mentioned the GMR effect is the drastic change in resistance of a magnetic
multilayer when a magnetic field is applied. Thisis related to the change of the mutual
orientation of the magnetic moments of the magnetic layers. In metallic systems,
adjacent magnetic layers are magnetically coupled to each other, through the non-
magnetic ones. The sign of this exchange coupling, discovered by Stuart Parkin in the
early nineties [17], is an oscillatory function of the separation between the magnetic
layers, whose details depend on the Fermi surface of the non-magnetic one. In
practice, one can tune the thickness of the non-magnetic layers to obtain an overall
antiferromagnetic (AF) state of the multilayer. In this situation the multilayer isin a
high resistance state. When a magnetic field strong enough to align the magnetic layer
along the same direction is applied, thus overcoming the antiferromagnetic exchange
coupling, the multilayer resistance drops. Now the system is in a ferromagnetic (FM)
configuration corresponding to alow resistance state. The relative change in resistance
Is the GMR effect. Early GMR experiments have been conducted with the so-called
current in the plane configuration (CIP) (Figure I11-4) in which the current flows in
the plane of the layers. In these experiments the typical cross sections are of the order
of 1 mm? and the transport is mainly diffusive. This is the favourite configuration for
devices, since the resistances are rather large and they can be measured with
conventional four-probe technique.

An important breakthrough was the possibility to study the transport of a multilayer
with the current flowing perpendicular to the planes (CPP GMR). In this case the
resistances are rather small and difficult to measure, and one must ether use
superconducting contacts or shape the samples to very small cross sections. In these
experiments the electrons have to cross the entire multilayer over distances smaller

than 1 um. The spin filtering is more effective and the transport can be phase-coherent.
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The CPP arrangement is preferred by theoreticians since ab initio calculations can be

carried out.

a)
Contact Contact
b))
Contact “ “ Contact

Figure I11-4: Schematic representation of a typical GMR experiment: a) Current In
Plane (CIP) configuration, b) Current Perpendicular to the Planes (CPP) configuration.
[16]

[11-4-2- TMR (Tunnelling magnetor esistance)

Despite the indisputable success of the CPP GMR either as a scientific tool or as
building block for devices, it presents some disadvantages in practical applications.
Firstly, since the layer thicknesses are rather small there is the need of measuring the
resistance with sophisticated techniques such as superconducting contacts, which
clearly are not practical for applications. Secondly it is generally difficult to
magnetically decouple the layers, large magnetic fields are needed and complex
micromagnetic effects are unavoidable. In order to overcome these difficulties a much
simpler structure has been proposed. This is a tunneling junction, formed by two
magnetic layers sandwiching an insulating material and connected to two
current/voltage probes. The two layers are now magnetically decoupled and
engineered to have different coercive fields, hence their mutual orientation can be
changed by applying a tiny magnetic field. Also in this case the high current state is
the ferromagnetic and the low current state the antiferromagnetic. The quality of the
device is measured by the tunneling magnetoresistance ratio (TMR) using the same
definition of that for GMR.

The main difference between GMR and TMR isthat in TMR the current is atunneling
current and there is no conductance associated with the insulating barrier. From the

point of view of the scattering theory this means that not only the match between the
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asymptotic wave-functions through the scattering region is important, but also how

these wave-functions decay within the tunneling barrier.

[11-4-3- Spin-transport through carbon nanotubes and nanowires

There was a considerable effort in combining the field of molecular and spin
electronics. The typical device consists in a spin-valve that uses a molecular object as
spacer. Potentially this has several advantages compared to more conventional
materials since molecules are free of strong spin-flip scattering mechanisms such as
spin-orbit and hyperfine interaction or scattering to magnetic impurities. In thisraceto
organic spin-devices the use of carbon nanotubes occupies an important place.

Carbon nanotubes are almost defect-free graphene sheets rolled up in forming 1D
molecules with enormous aspect ratios. Their conducting state depends on their
chirality, however in the metallic configuration they are ideal conductors with a
remarkably long phase coherence length. An important aspect is that the relevant
physics at the Fermi level is entirely dominated by the p, orbitals, which are radially
aligned with respect to the tube axis. These include the bonding properties with other
materials and between tubes. Therefore carbon nanotubes appear as an ided
playground for investigating both GMR and TMR through molecules. In fact one can
expect that two tubes with different chirality will bond to a magnetic surface in a
similar way, allowing us to isolate the effects of the molecule from that of the contacts.
Indeed TMR-like transport through carbon nanotubes has been experimentally
reported by several groups. [18,19,20,21,22]

The transport through an interface between such a magnetic metal and the nanotube is
determined by the overlap between the corresponding Fermi surfaces. Three possible

scenarios are possible. First the Fermi-wave vector of the carbon nanotube is smaller
than both kland k: (Figure 111-5-a). In this case in the magnetic metal there is

always a k-vector that matches the Fermi-wave vector of the nanotube for both spins.
Therefore both spins can be injected into the tube and the total resistance will be small

and spin-independent. Secondly the Fermi-wave vector of the carbon nanotube is
larger than both k!and k: (Figurel11-5-b). In this case there are no available states in

the metallic contact whose wave-vectors match exactly the Fermi wave-vector of the
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carbon nanotube. Therefore in the zero-bias zero temperature limit the resistance is
infinite. Neverthel ess as one increases the temperature, phonon assisted transport starts
to be possible. Spin electrons can be scattered out of the Fermi surface into states with
large longitudinal momentum. At temperature T the fraction of electrons with energy
above Er is simply proportional to the Fermi distribution function. However, because
of the exchange energy, spin-up electrons will possess higher momentum than spin-
down. Therefore one can find more spin-up states with a longitudinal momentum
matching the one of the nanotube than spin-down states. This gives a temperature-
induced spin-dependent resistance. Hence one should expect that the increase of the
temperature will decrease the resistance for spin-up electrons, leaving unchanged that

of spin-down electrons.

Finally if the Fermi wave-vector of the carbon nanotube is larger than k:but smaller

than k! (Figure I11-5-c), only the majority electrons can enter the nanotube and the

system becomes fully spin-polarized. In this situation a spin-valve structure made by
magnetic contacts and carbon nanotube as spacer is predicted to show an infinite GMR
at zero temperature, similar to the case of the half-metals. The increase of the
temperature will produce a degradation of the polarization because also the spin-down
electrons may occupy high energy states with large longitudinal momentum. Both the
spins can be injected and the spin-polarization will depend on the number of occupied

states with longitudinal momentum matching the one of the nanotube.

-— o — L=

FigureI11-5: Cartoon showing the levels aignment in the magnetic point contact. The
solid (dashed) line denotes a majority (minority) spin molecular state. a) symmetric
case at zero bias, b) symmetric case at positive bias, and ¢) symmetric case at negative
bias. [18]
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Two important aspects must be pointed out. First all these considerations are based on
the assumption of perfectly crystaline systems. This may not be true in reality and the
effects of breaking the trandational invariance must be considered. From a qualitative
point of view disorder will smear the Fermi surface and eventually produce some
states with large longitudinal momentum. This will improve the conductance through
the nanotube, even if its spin-polarization will be in general dependent on the nature of
disorder.

Second, in contacts made from transition metals the simple parabolic band model
introduced here is largely non-realistic. The Fermi surface of magnetic metal can
comprise different manifolds with different orbital components and the degree of
polarization of a junction depends upon how the different manifolds couple to the
nanotube. In this case, simple theories are only speculative and more realistic
bandstructure calculations are needed. These are rather problematic since the problem
includes the need of describing transition metal leads and a molecule comprising a

large number of degrees of freedom.

[11-5- Conception of quantum computer s and DiVincenzo criteria:

The fields of semiconductor physics and electronics have been successfully combined
for many years. The invention of the transistor meant a revolution for electronics and
has led to significant development of semiconductor physics and its industry. More
recently, the use of the spin degree of freedom of electrons, as well as the charge, has
attracted great interest. In addition to applications for spin electronics (spintronics) in
conventional devices, for instance based on the giant magneto-resistance effect and
spin-polarized field-effect transistors, there are applications that exploit the quantum
coherence of the spin. This was encouraged by ground breaking experiments that
showed coherent spin transport over long distances in semiconductors and long
electron-spin dephasing times, on the order of 100 nanoseconds. In addition, spin-
polarized carrier injection from magnetic to non-magnetic semiconductors has been
demonstrated. Since the electron spin is atwo-level system, it isanatural candidate for
the redization of a quantum bit (qubit). The confinement of electrons in

semiconductor structures like quantum dots allows for better control and isolation of
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the electron spin from its environment. Control and isolation are important issues to
consider for the design of a guantum computer.

The successful implementation of a quantum computer demands that some basic
requirements be fulfilled. These are known as the DiVincenzo criteria[35] and can be
summarized in the following:

1- Information storage-the qubit: We need to find some quantum property of a
scalable physical system in which to encode our bit of information, that lives long
enough to enable us to perform computations.

2- Initial state preparation: It should be possible to set the state of the qubits to 0
before each new computation.

3- Isolation: The quantum nature of the qubits should be tenable; this will require
enough isolation of the qubit from the environment to reduce the effects of
decoherence.

4- Gate implementation: We need to be able to manipulate the states of individual
gubits with reasonable precision, as well as to induce interactions between them in a
controlled way, so that the implementation of gates is possible. Also, the gate

operation time tg has to be much shorter than the decoherence time 7, so that
16/ 7 <<f, Wherer is the maximum tolerable error for quantum error correction schemes

to be effective.

5- Readout: It must be possible to measure the fina state of our qubits once the
computation is finished, to obtain the output of the computation.

To construct quantum computers of practical use, we emphasize that the scalability of
the device should not be overlooked. This means it should be possible to enlarge the
device to contain many qubits, while still adhering to all requirements described
above. In this respect, very promising schemes for quantum computation are the
proposals based on solid-state qubits, which could take advantage of existing

technol ogy.
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I11-6- Experimental achievements

[11-6-1- Single and coupled quantum dots

We first discuss different experimental approaches to construct semiconductor
guantum dot structures that enable control over the spin degree of freedom on the level
of a single electron. The precise control of the number of excess electrons in a
guantum dot is a necessary prerequisite to achieve control over the spin states of
interest. The addition of an electron from the surrounding material to a negatively
charged dot requires the charging energy de. to overcome the electrostatic energy of
other electrons in the dot. The charging energy 6e. depends on the number N of
charges confined in the dot. The regime (gate voltages) where the injection of
additional electrons into the dot is blocked due to é€. is known as the Coulomb
blockade regime (Figure I11-6). In recent years, agreat deal of experimental effort has
focused on the single-electron regime (N = 1) using different types of quantum dot

structures. This regime provides experimental accessto aspin 1/2 in the dot.

01 -0.08 04 -0.02 0

06 -0
Y (V)

Figurelll-6: Device (right) used to read-out the charge state of a quantum dot with
a quantum point contact (QPC) [25]

As an experimental achievement of this, quantum dots can be created by electrical

gating of a 2DEG (two dimensional electron gas) via lithographically defined gate
electrodes (Figures 111-7, 111-8). Applying a negative voltage to the gates depletes the
2DEG underneath them, such that quantum dots are formed in the regions surrounded

UH.B.C 74



Chapter 111 The use of spin in quantum computers

by the gates. Electrically gated dots are typically characterized by an electron level
spacing 6e ~ 0.1...2 meV, acharging energy ée.~ 1. ..2 meV, and adot diameter |
~10...1000 nm. Typical materials for such dots include GaAs, InSh, and Si. Control
of the coupling of electrically gated GaAs quantum dots has been demonstrated and
investigated in-depth in transport experiments.

(a) SDURCE2

0 V. (V) L5
Figure I11-7: (a) Scanning electron micrograph of a gated double dot structure with

two adjacent quantum point contacts (QPCs). (b) Charge stability (“honeycomb”)
diagram of the double quantum dot. [ 26]

As an alternative to electrical gating, etching techniques can also be applied to achieve
lateral confinement in the plane of a 2DEG. For example, Tarucha et al. have produced
gated vertical quantum dots by etching a pillar structure which contained a double-
barrier heterostructure with an InGaAs quantum well as the 2DEG. Figures|11-8, I11-
9 show structures containing dots of thistype.

Further, quantum dot structures can be grown by self-assembly, e.g., using the
Stranski-Krastanov growth technique [26]. In this technique, self-assembled dot
islands form spontaneously during epitaxial growth due to a lattice mismatch between
the dot and the substrate material. Typical sets of dot/substrate materials are
INAg/GaAs, Ge/Si(100), GaN/AIN, InP/GalnP, and CdSe/ZnSe. The electron level
spacing of this type of dot istypically 6e~ 30 . .. 50 meV with a charging energy o€,
~20meV, adiameter | = 10...50 nm, and aheight d= 2. .. 10 nm of the dot. Small
selfassembled dots typically have a pyramidal shape with four facets, whereas larger

dots (containing, e.g., 7 monolayers of InAs) form multi-faceted domes.
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Figure 111-8: (a) SEM micrograph of an electrically gated double quantum dot
structure with neighbouring QPC charge detectors. (b) Large-scale plot of the
differential conductance dGS2/dV6 as a function of the voltages V2 and V6 applied to
gates 2 and 6, respectively. In (c) and (d), GD and dGS2/dV 6 are shown, respectively,
asafunction of V2 and V6 in the region close to the (1,0) to (0,1) transition. [27]

If pyramidal self-assembled dots are covered with athin layer of the substrate material
(called the capping layer), the capped dots take-on an eliptical (or rarely, even a
circular) shape. Additionally, these dots exert strain on the capping layer. If quantum
dots are grown on the capping layer, they tend to grow on the strain field on top of the
capped dots rather than at random positions. This enables the growth of vertically
coupled quantum dots, where the thin capping layer acts as a barrier between the two
dots (Figure 111-10-a). A typica difficulty related to Stranski-Krastanov self
assembled dots is the intrinsic randomness of the growth process, as shown in Figure
[11-10-b. Yet, prepatterning of the substrate has been shown to be a way to achieve a
well-defined growth position of the first dot layer (Figure 111-10-c), paving the way to

site-controlled arrays of single or coupled dots.
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Figurelll-9: Different designsfor etched structures of coupled quantum dots. [28]

[11-6-2- Charge and spin control in quantum dots

Precise control over the number of confined electrons has been demonstrated severa
years ago in InGaAs self-assembled dots, in gated vertical quantum dots, and also in
electrostatically defined single and double dots in GaAs. The single-electron states of
guantum dots in the low-energy range have been shown to be in agreement with a shell
model. Because the quantum dot confinement is much stronger along the growth
direction than perpendicular to it, the dot potential is effectively two-dimensional. The
low-lying confined electron states can be well-approximated by the states of a two-
dimensional harmonic oscillator. Thus, the single-particle ground state has (s)
symmetry and the first excited shell has (p) symmetry. If an external magnetic field is
applied perpendicular to the quantum dot plane, new harmonic oscillator states (Fock-
Darwin states) are the exact eigenfunctions, with a frequency that increases with the
magnetic field [30].

The degeneracy of the two spin states 1) and |{)is lifted in the presence of a

magnetic field due to the Zeeman interaction. This makes the two states energetically
distinguishable (Figure 111-11). The precise control of the occupation number of
electrons in single and double quantum dots has enabled experiments on single spins

in quantum dots.
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Figure 111-10: Self-assembled InAs quantum dot structures. (a) AFM picture of dots
grown at random locations. (b) Transmission electron microscope (TEM) cross-section
of verticaly stacked dots (indicated by arrows), ordered along the growth axis. (c)
AFM picture of laterally ordered dots. Thisimage was generated after prepatterning of
the substrate. (d) Sketch of a three-dimensional lattice of dots that could be obtained
by combining the growth methods of (b) and (c). [29]

[11-6-3- Spin relaxation

Recently, expectations for the stability of spin qubits in quantum dots have grown
considerably as progressively longer spin lifetimes have been reported. A series of
works on electron spin relaxation in quantum dots started with Fujisawa et a. who
reported a triplet-to-singlet relaxation time of 1<+ = 200 ps in vertical quantum dots.
More recently, alower bound on the singlet-triplet relaxation time has been measured
in lateral dots, giving tst > 70 ps. Very quickly thereafter, a substantialy longer
relaxation time (ts—t = (2.58 = 0.09) ms) was measured independently using a novel
spin readout technique. Several groups have since measured T, for single electron
spins. For electrostatically-defined GaAs dots, Hanson et a. [27] have reported a
lower bound T; > 50 pus at a magnetic field of B = 7.5 T which was subsequently
topped by Elzerman et a [29], with T; = (0.85 = 0.11) ms at B = 8 T. In these

experiments, a two-level pulse technique for the quantum dot gate voltage has been
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applied to inject an electron into the dot and to extract it later. In a certain parameter
range, the Zeeman splitting of the two spin states is sufficient that tunnelling into or
out of the dot is not possible for one of the two spin states (Figure 111-11). This
enables spin detection via the detection of charge in the quantum dot, which has been
realized through an adjacent quantum point contact (QPC). In these experiments, the
QPC (Quantum Point Contact) has been tuned via a gate voltage to a conductance G =
€’/h, where the modulation of the current IQPC through the QPC has maximum
sensitivity to changes in the electrostatic environment, including the number of
charges in the quantum dot. Recently, Kroutvar et al. [29] established a lower bound
T, >20msa T =1K and B =4 T for In(Ga)As self-assembled dots. In this
experiment, an optical charge storage device has been excited with circularly polarized
laser excitation. The larger level spacing of self-assembled dots (compared to gated
GaAs dots) is responsible for the longer T1-time seen in this experiment which is

limited by spin-orbit coupling.

%
= N=2 N=1 N=0

/A -
Figure I11-11: Quantum dot spin filter. (a) Only electrons in the state M are

transported through the dot. (b) Only the spin ground state m can pass through the

(empty) dot. In (c) and (d), the measured differential conductance di/dV g is shown for
the cases (a) and (b), respectively, with tunnelling current | and source-drain voltage
V. In (€), we show a scheme of the theoretically predicted di/dV s [30]
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[11-6-4- Optical interaction and optical readout of spins

In this section, we first sketch some basics of optical transitions in quantum dots and
then focus on the optical detection of spin states. The currently very active field of
ultrafast laser technology suggests that single spin states can be optically detected and
manipulated within very short times (picoseconds or even femtoseconds), several
orders of magnitude faster than in schemes based on the transport of electric charge.
Via the absorption of a photon, an electron in a confined valence-band state can be
excited to a confined conduction-band state. For such inter-band transitions, optical
selection rules apply and establish conditions on the quantum numbers of the optically
coupled states. Provided the spin-orbit interaction is nearly isotropic, then it is a good
approximation that the total angular momentum squared, J* = (L + S)?, provides a good
quantum number in semiconductors. Photons with circular polarization ¢* carry an
angular momentum with projection £1 (in units of 7) aong their propagation
direction. For optical interactions, the total angular momentum is conserved, linking
the spin of electrons and the polarization of photons. For a two-dimensional quantum
dot with circular confinement, the z component J, of J is a good quantum number.
When J, is a good quantum number in GaAs or InAs dots, the energetically lowest
optical excitation at zero magnetic field typically includes two degenerate valence
band states with total angular momentum projections J, = +3/2, which are aso called
heavy-hole (hh) states. A circularly polarized photon that is irradiated along the
guantization axis z of J can excite one of the hh states to one of the conduction-band
states with spin +1/2 or —1/2. For a given circular polarization, only one combination
of these states satisfies the selection rules. This leads to a direct correspondence
between the circular polarization of the photon and the spin of the optically excited
electron. Taking advantage of this for the readout of spin states, light-emitting diodes
(“spin-LEDS’) have been fabricated, where the polarization of the emitted photons
indicates the spin polarization of the electrons (or holes) injected into the spin-LED. A
further step in nanoscale photonic and electronic technology has been taken recently
by the growth of semiconductor nanowire superlattices. By modulating the reactants
during catalytic growth of a nanowire, the nanowire finally consists of segments of
different materials, e.g., S and SiGe, InAs and InP, or GaAs and GaP. By alternating
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the two different materials, a superlattice can be formed. The combination of n- and p-
type semiconductors, e.g., n-Si and p-Si or n-InP and p-InP, enables the bottom-up

assembly of nanoscale (spin-)LEDs.

[11-6-5- Spin initialization

To initialize the spin qubits, a strong polarization can be achieved by applying a strong
magnetic field B, such that the Zeeman splitting is larger than the thermal energy.
Further, electrons with parallel spins can also be injected via spin-polarized currents.
The injections of spins from ferromagnetic semiconductors into normal
semiconductors have been reported with polarizations up to 90%. Initialization can

also be achieved using a spin filter or by optical schemes.
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Figure I11-12: Experimental demonstration of a spin filter. The figures (a) and (b)

show the focusing peak height as afunction of the quantum dot gate voltage Vg. [30]

[11-7- Proposals for quantum computing

The first proposals for quantum computing made use of cavity quantum
electrodynamics (QED), trapped ions, and nuclear magnetic resonance (NMR). All of
these proposals benefit from potentialy long decoherence times, relative to their
respective gating times. The long decoherence times for these proposals and existing
experimental expertise led to quick success in achieving experimental realizations. A
conditional phase gate was demonstrated early-on in cavity-QED systems. The two
qubit controlled “Not gate”, which, along with single-qubit rotations allows for
universal quantum computation has been realized in single-ion and two-ion versions.

The most remarkable realization of the power of quantum computing to date is the
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implementation of Shor’s algorithm to factor the number 15 in a liquid-state NMR
guantum computer. In spite of their great successes, the proposals based on cavity-
QED, trapped ions and NMR may not satisfy the first DiVincenzo criterion (see
chapter 111-5). Specifically, these proposals may not meet the requirement that the
guantum computer can be scaled-up to contain a large number of qubits. The
requirement for scalability motivated the Loss-DiVincenzo proposal for a solid-state
guantum computer based on electron spin qubits. This proposal was quickly followed
by a series of proposals for aternate solid-state realizations and realizations for
trapped atoms in optical lattices that may also be scalable.

[11-7-1- Quantum dot quantum computing

The qubits of the Loss-DiVincenzo quantum computer are formed from the two spin

states (|1),(}|) of a confined electron. The original proposal focuses on electrons

localized in quantum dots. These dots are typically generated from a two-dimensional
electron gas, in which the electrons are strongly confined in the vertical direction.
Lateral confinement is provided by electrostatic top gates, which push the electrons
into small localized regions (Figures|11-13-a and 111-14-b).

back gates magnetized or N heterostructure
high-g layer quantum well

Figurelll-13: a- Two neighbouring electron spins confined to quantum dots b- An
array of exchange-coupled quantum dots. [31]

Initialization of the quantum computer can be achieved by allowing al spinsto reach
their thermodynamic ground state at low temperature T in an applied magnetic field B
I.e., virtually al spinswill be aligned if the condition

lgusB|== ke T ... (11-22)
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Issatisfied g factor , pg isthe Bohr magneton, and kg is the Boltzmann’ s constant.
Single-qubit operations can be performed, in principle, by changing the local effective
Zeeman interaction at each dot individually. To do this may require large magnetic
field gradients, g-factor engineering, magnetic layers (Figure 111-13-b), the inclusion
of nearby ferromagnetic dots, polarized nuclear spins, or optical schemes. In the Loss-
DiVincenzo proposal, two-qubit operations are performed by pulsing the electrostatic
barrier between neighbouring spins. When the barrier is high, the spins are decoupled.
When the inter-dot barrier is pulsed low, an appreciable overlap develops between the
two electron wave functions, resulting in a non-zero Heisenberg exchange coupling J.
The Hamiltonian describing this time-dependent processis given by

H(t) = Jt)S.-Sk. .. (111-23)
wher Sy is the right spin and S, is the left spin. This Hamiltonian induces a unitary

evolution given by the operator
U=Texpli[HOd/], .. (111-24)

where T is the time-ordering operator. If the exchange is pulsed on for a time tg such
that

[amd/ =3,7/ =z, (111-25)

the states of the two spins, with associated operators S, and Sg, as shown in (Figure
[11-13-a), will be exchanged. This is the swap operation. Pulsing the exchange for the
shorter time t¢/2 generates the “sguare-root of swap” operation, which can be used in
conjunction with single qubit operations to generate the controlled-Not (see chapter
V) gate.
In addition to the time scale tg, which gives the time to perform a two-qubit operation,
there is a time scale associated with the rise/fall-time of the exchange J(t). This is the
switching time tg,. When the relevant two-spin Hamiltonian takes the form of an ideal
(isotropic) exchange, the total spin is conserved while switching.
However, to avoid jumps to higher orbital states during gate operation, the exchange
coupling must be switched adiabatically. More precisaly,

Towss oo~ 10 ¥ s, (111-26)

UH.B.C 83



Chapter |11 The use of spin in quantum computers

where 7 ®g ~ 1meV is the energy gap to the next orbital state. We stress that this time
scaleis valid only for the ideal case of a purely isotropic exchange interaction. When
the exchange interaction is anisotropic, different spin states may mix and the relevant
time scale for adiabatic switching may be significantly longer. For scalability, and
application of quantum error correction procedures in any quantum computing
proposal, it isimportant to turn off inter-qubit interactions in the idle state. In the L oss-
DiVincenzo proposd, this is achieved with exponential accuracy since the overlap of
neighbouring electron wave functions is exponentially suppressed with increasing

separation.

[11-7-2- Quantum computing and the quantum Hall effect

Based on observed long lifetimes for nuclear spin states, Privman et a. [31] have
proposed a quantum computer composed of nuclear spins embedded in a two
dimensional electron gas (2DEG) in the quantum-Hall regime. The qubits of their
proposal are encoded in the states of nuclear spins, which must be sufficiently
separated to avoid dipolar coupling, but close enough (10~nm) to allow significant
interaction via the electron gas. Initialization of the qubits is achieved by placing spin-
polarized conducting strips with a current of electrons above the nuclear spin qubits.
The contact hyperfine interaction between electron and nuclear spins causes a
polarization transfer from the electrons in the strips to the nuclear spins, preferentially
orienting the nuclear spins along the electron spin polarization direction. Readout is
performed in a complementary manner, with atransfer of polarization from the nuclear
spins to electrons in the conducting strips. Single-qubit operations are performed via
standard NMR pulses, which would require strong magnetic field gradients or many
different nuclear spin species to bring single specific nuclear spins into resonance,
while leaving the other qubits unchanged. A pairwise interaction between the nuclear
spin qubits is necessary for the implementation of two-qubit gates. This interaction is
generated by a superexchange, mediated by electrons in the quantum Hall fluid that
surrounds the nuclear spins (Figure 111-14-c). The electron gas that couples the
nuclear spins should be in the quantum Hall regime to avoid Friedel oscillations in the

electron density. To perform computations, it is necessary to switch the interaction on
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and off. In the original work of Privman et al, it was not clear how best to pulse the
inter-qubit interaction. Topics such as switching error and perhaps the most important
of all, decoherence, are not addressed in the original work of Privman et al. However,
subsequent studies of the decoherence of nuclear spins in the integer quantum Hall
regime have led to the prediction that the decoherence time for these qubits could be as

longas r,~ 10 *s.

Figurell1-14: Schematic diagram illustrating the Fermi contact hyperfine interaction.
[31]

[11-8- Obstaclesto quantum dot quantum computing

Several mgjor obstacles to quantum dot quantum computation were identified and
addressed in the original work of Loss and DiVincenzo, and later elaborated upon.
These obstacles include entanglement, gating error, and perhaps most importantly,
coherence.

[11-8-1- Flying qubits and entanglement generation

In addition to the five DiVincenzo criteria for quantum computation, there are two
“desiderata’, which are important for performing gquantum communication tasks.
These desiderata are summarized in the following statements:

1- The ahility to inter-convert stationary and flying qubits.

2- The ability to faithfully transmit flying qubits between distant locations.
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The whimsical term “flying qubits’ refers to qubits that can be conveniently moved
from place to place. The most obvious choice for a flying qubit is provided by the
polarization states of photons. In the context of quantum-dot quantum computing, this
has led to a number of proposals for the conversion of quantum information or
entanglement from spin to light, and vice versa. More recent work has suggested that
“free electron quantum computation” may be possible in principle, in which mobile
electrons travelling between dots could replace photons as the flying qubit medium of
choice.

Deeply connected to the implementation of flying qubits is the creation of nonlocal
entanglement. The race to create and measure entangled particle pairs has led to a
virtual industry of so-called “entangler” proposals for the spin and orbital degrees of
freedom. These proposals have the very ambitious goal of generating and spatially
separating a many-particle quantum superposition that can not be factorized into

single-particle states. The canonical example of such a state for the spin degree of

freedom is the singlet formed from two spin 1/2 particl%:(]’l‘i>—‘¢’l‘>/\/§). The

various efforts related to spin entanglement include proposals to extract and separate
spin-singlet pairs from a superconductor through two quantum dots or Luttinger-liquid
leads and proposals that generate entanglement near a magnetic impurity, through a
single dot, from biexcitons in double quantum dots, through a triple dot, and from
Coulomb scattering in a two-dimensional electron gas. Entanglement generation and
measurement remains a lofty goal for those working on solid-state quantum
computing, theorists and experimentalists alike. Recent experiments that have
measured the concurrence (an entanglement measure) for electrons in the ground state
of a two-electron guantum dot point to a promising future for entanglement-related

phenomenain the solid state.

[11-8-2- Gating error

Hu and Das Sarma [48] have evaluated the probability for double-occupancy of one of
the dots in the Loss-DiVincenzo proposal using Hartree-Fock and molecular orbital
technigues. They suggest that it may be difficult to achieve both a significant exchange

coupling and low double-occupancy probability. Schliemann et al.[31] and more

UH.B.C 86



Chapter |11 The use of spin in quantum computers

recently Requist et al. [31] have investigated the probability for double-occupancy
gating errors in a pair of coupled quantum dots during swap gate operation. Through
numerical and analytical study they have found that the Loss-DiVincenzo proposal is
very robust against double-occupancy errors when operated in the adiabatic regime.
Barrett and Barnes [31] have subsequently shown that orbital dephasing can result in a
significant error rate (10 >~10" errors per gate operation). This is comparable to
current estimates for the maximum error rate allowable for quantum error correction to
be effective, but further studies on the nature of the spin-orbit interaction have
suggested that the spin-orbit coupling can be minimized with careful pulsing of the
exchange during gate operations. When the potential barrier between quantum dots is
pulsed low, the overlap between nearest neighbour dots is appreciable, while that
between next-nearest and next-next-nearest neighbours is exponentialy suppressed
with distance. In spite of the smallness of these interactions, Mizel and Lidar have
recently suggested that three- and four-spin interactions in a realistic quantum
computing proposal may lead to substantial gating errors. These problems are,
however, specific to a particular architecture, and it is possible that they could be

corrected or exploited by adjusting the device design.

[11-9- Future Goals

[11-9-1- Detection of single-electron spin decoher ence

After the recent successful measurements of the T,-lifetime of single electron spinsin
guantum dots, measurements of the decoherence time T, are due. To achieve such an
experiment, an initial coherent evolution of the electron spin must be produced. This
can be done, e.g., with electron spin resonance (ESR) or by inducing spin precessionin
a transverse magnetic field. The decay of the spin coherence can then be measured.
Several proposals of this type have been made. Engel and Loss [30] have proposed a
measurement of the sequential tunnelling current through a dot containing a single
electron spin in the presence of ESR excitation. Sequential tunnelling, in generdl,
describes a regime where charge transport only occurs via a sequence of first-order
tunnelling processes. In the regime when sequential tunnelling is only possible via an

intermediate singlet state on the dot, the stationary current | is a Lorentzian as a
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function of the ESR detuning dgsg = ®esk — QelteB, Where ogsr is the ESR frequency.
The inverse of the linewidth of [(6gsr) provides alower bound for the intrinsic T, time
of asingle eectron spin. Further, the coherent Rabi oscillations due to ESR pulses can
be observed in the time-averaged current I(tp) as afunction of the ESR pulse length tp.
Gywat et al.[31] have theoretically studied the optical detection of magnetic resonance
(ODMR) to measure the T,-time of a single electron spin in a quantum dot. In this
approach, the dot initially contains a single excess electron that is subject to ESR
excitation. Unlike a tunnelling experiment, optical transitions are subject to selection
rules and are not restricted to the Coulomb blockade regime, e.g., if the excess electron

IS present due to n-doping and is not electrically injected.

[11-9-2- Single-qubit rotations

A further important step towards the goal of quantum computation is the
implementation of a single-qubit gate. To achieve this for the Loss-DiVincenzo
proposal, severa possible strategies have been developed. The simplest way to rotate a
spin is by applying a pulsed magnetic field. In an array of quantum dots, such fields
could be applied to single spins. Further, in the presence of an rf magnetic field
applied to an ensemble of electron spins, the tenability and precise control of the
individual Zeeman splittings is sufficient to produce single spin rotations. When the
ESR resonance condition is matched, the spin rotates with maximum amplitude,
according to the well-known Rabi formula. Detuning of the Zeeman splitting of an
individual spin from the ESR resonance slows its precession frequency and the spin
stops rotating entirely when the detuning is larger than the ESR linewidth. Control of
the Zeeman gplitting at the single-spin level is therefore another way to perform
single-spin rotations. This can be achieved in principle by controlling local magnetic
fields or local Overhauser fields. For a structure designed to apply ESR excitation to a
single quantum dot (Figure I11-15). Another approach is the individual control of the
electron g-factor instead of the local magnetic field. Salis et al.[32] have demonstrated
electrically controlled modulation of the g-factor in an AlGaAs quantum well

containing a gradient in the Al concentration. Here, the electron wave function was
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shifted between regions with different Al concentration via applied gate voltages,
which resulted in the observation of a different electron g-factor.

Alternative proposals to produce single-spin rotations are related to all-optical Raman
transitions and stimulated Raman adiabatic passage (STIRAP), a method based on
two-photon Raman transitions which has already been applied to atoms and molecules
to transfer a precisely controlled population between two quantum states. While
Troiani et a.[32] have aso considered the realization of conditional and unconditional
guantum gates using an additional adjacent quantum dot, Chen et a.[32] have
proposed a STIRAP process with no auxiliary state, but in the presence of atransverse
magnetic field. In this setup, control of the relative phase and the relative intensity of
two applied laser pulses enable an arbitrary spin rotation for a given polarization of the
light and direction of the transverse magnetic field. As an alternative method of
performing a spin rotation on an excess electron confined to a quantum dot, Calarco et
a. [31] have proposed to excite |h states via a sequence of a linearly and then a
circularly polarized laser n-pulse. Given this abundance of proposals for single-qubit

gates, there is great hope for working experimental realizationsin the near future.

(3385

[z e

L)
LC current
barriers ga‘lte

Figure I11-15: SEM picture and scheme of a structure to apply a local rf magnetic
field to a quantum dot. [32]

111-9-3- Two-Qubit Gates
Swapping of the spin states of two electrons located in closely spaced quantum dots

seems by now to be a redlistic first experimental step towards a two-qubit gate for
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spins. This can be achieved by controlling the overlap of the two wave functions of the
electrons and thus the singlet-triplet splitting J. The interdot tunnel splitting and J can
be determined from a transport experiment in the sequential tunnelling regime.
Recently, J has been measured for two electrons in a single gated quantum dot by
detecting inelastic cotunnelling above and below a magnetic field driven singlet-tripl et
transition. In the cotunnelling regime, only second-order tunnelling processes
contribute to charge transport. Because the dot was dliptical, a two-electron wave
function similar to that in a double dot was expected. Two different samples yielded
J~0.2meV and J~ 0.57 meV a B = 0. The critical magnetic field for the singlet-
triplet transition (where J = 0) has been measured to be B* ~ 1.3 T. For the interaction

parameter, ¢ ~ 0.5 = 0.1 has been obtained, indicating that the ground state given by

|+T,+¢>—¢|—T,—¢>/F(Whae + stands for the symmetric/antisymmetric
+@

orbital wave function) consists of a singlet with a significant admixture of single-
electron orbitals due to the electron-electron interaction. The entanglement of the two
electron spinsin the state above can be quantified by the concurrence C = 2¢/(1 + ¢?).
The experimental result C = 0.8 shows that electron-electron interaction reduces the
degree of spin entanglement from its maximum (C = 1), which is obtained for a singlet
(having ¢ = 1). This demonstration strongly encourages that similar results might be
soon obtained in double dots (which are needed for spatialy separating the two
gubits).

[11-10- Conclusions

A decade after the discovery of the GMR effect the future of spin-electronics in
nanoscale systems looks bright. This is mainly due to the improved understanding of
the spin-transport mechanisms and the better control over the device processing. At the
same time the possibility of conducting spin-transport measurements in systems
comprising a handful of atoms has opened completely new prospectives. We can
envision in anear future new devices where the spin and molecular functionalities will
be combined achieving a broad range of applications, from biological sensors to tools

for coherent quantum data processing.
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From the theoretica side the last decade has also witnessed a rapid evolution of
computational methods for both electronic structure and quantum transport. Several
numerical implementations are currently available. The most advanced of them are
based on ab initio schemes and therefore do not depend on parameters obtained from
experiments. These open the way to a physics “without compromises’, where the
numerical predictions must reproduce the experimental data, if the systems under
investigation are the same. For this reason ab initio transport schemes have became
invaluable tools. Certainly the future of modeling spin transport at the nanoscale is
dawning.

The demonstration of working single and two-qubit gates and finally the production of
guantum dot arrays that enable the application of an entire quantum agorithm
including error correction are the major problems to tackle towards the goal of a solid-

state implementation of quantum information processing.
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IV-1- Introduction

Let usrecall that Grover's algorithm is a quantum algorithm for searching an unsorted
database with N entries in O(N¥?) time and using O(logN) storage space. It was
invented by Lov Grover in 1996 [39].

Classically, searching an unsorted database requires a linear search, which is O(N) in
time. Grover's algorithm, which takes O(N"?) time, is the fastest possible quantum
algorithm for searching an unsorted database. It provides "only" a quadratic speedup,
unlike other quantum algorithms, which can provide exponential speedup over their
classical counterparts. However, even quadratic speedup is considerable when N is
large.

Like al quantum computer algorithms, Grover's algorithm is probabilistic, in the sense
that it gives the correct answer with high probability. The probability of failure can be
decreased by repeating the algorithm.

IV-2-1- The way to the quantum computation

Let us now have a closer look at the way a quantum computer works. We will do so by
comparing the concepts of classical computing with the basics of quantum computing.
In fact, many classical concepts have very similar quantum counterparts, like bits

become qubits and still the logic is often best explained within a circuit model.

|V-2-2- Qubitsand quantum parallelism
The elementary information carriers in a quantum computer are the qubits — quantum
bits. In contrast to classical bits which take on either the value zero or one, qubits can

be in every superposition of the state vectors |0)and |1). This means that the vector
lw)describing the (pure) state of the qubit can be any linear combination
lw)=al0)+ B|1) of the vectors |0)and |1) with complex coefficients a and B. In the

same way a system of many qubits can be in a superposition of al classically possible

states 100....,0)+[10,...0)+..+|11..1) ... (1V-1)
The basis|0,0....,0),]1,0....,0),...,|11,....1) that corresponds to the binary words of length n

in a quantum system of n qubits is called the computational basis. Using the
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superposition of Equation (I1V-1) as an input for an algorithm means somehow to run
the computation on all classically possible input states at the same time. This
possibility is called quantum parallelism and it is certainly one of the reasons for the
computational power of a quantum computer. The mathematical structure behind the

composition of quantum systems is the one of the tensor product. Hence, vectors like
0,0,...,0) should be understood as|0) ®...®|0) =|0)"". This implies that the dimension

of the space characterizing the system grows exponentially with the number of qubits.
A Physically, qubits correspond to effective two-level systems like the ground state
and excited state of an atom, the polarization degree of freedom of up-and down
orientation of a spin 1/2 particle. Such a physical system can be in any pure state that
can be represented by a normalized vector of the above form. A pure state of a
composite quantum system that is not a product with respect to all constituents is
called an entangled pure state.

IV-2-3- Readout and probabilistic nature of quantum computers

An important difference between classical and quantum computers lies in the readout
process. In the classical case there is not much to say: the output is a bit-string whichis
obtained in a deterministic manner, i.e., repeating the computation will lead to the
same output again. However, due to the probabilistic nature of quantum mechanics,
this is different for a quantum computer. If the output of the computation is for

instance the state vector |y), a and B cannot be determined by a single measurement

on a single specimen. In fact, |of and B[ are the probabilities for the system to be

found in |0)and |1) respectively. Hence, the absolute values of these coefficients can
be determined by repeating the computation, measuring in the basis |0), |1) and then

counting the relative frequencies. The actual outcome of every single measurement is
thereby completely undetermined. In the same manner, the state of a quantum system
consisting of n qubits can be measured in the computational basis, which means that
the outcome corresponding to some binary word occurs with the probability given by
the square of the absolute value of the respective coefficient. So in effect, the

probabilistic nature of the readout process on the one hand and the possibility of
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exploiting quantum parallelism on the other hand are competing aspects when it comes

to comparing the computational power of quantum and classical computers.

IV-3- The Quantum Circuit Model

In the quantum circuit model, we have logical qubits carried along ‘wires’, and
guantum gates that act on the qubits. A quantum gate acting on n qubits has the input
qubits carried to it by n wires, and n other wires carry the output qubits away from the
gate. A quantum circuit is often illustrated schematically by a circuit diagram as
shown in Figure 1V-1. The wires are shown as horizontal lines, and we imagine the
gubits propagating along the wires from left to right in time. The gates are shown as
rectangular blocks. For convenience, we will restrict attention to unitary quantum
gates (which are also reversible). Recall that non-unitary (non-reversible) quantum
operations can be simulated by unitary (reversible) quantum gates if we alow the
possibility of adding an ancilla and of discarding some output qubits. A circuit
diagram describing a superoperator being implemented using a unitary operator is
illustrated in Figure I V-2.

U @ — <
) i |
0 “ |

) m

i) =[0)[0)0}0)

FigurelV-1: A quantum circuit. [33]

In the example of Figure 1V-1, the 4-qubit state |y,)=(0)®|0)®|0)®|0) enters the
circuit at the left. These qubits are processed by the gates U;, U,, Us, and U,. At the
output of the circuit we have the collective (possibly entangled) 4-qubit state|y, ). A

measurement is then made of the resulting state. The measurement will often be a
simple qubit-by-qubit measurement in the computational basis, but in some cases may

be a more general measurement of the joint state. A measurement of a single qubit in
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the computational basis is denoted on a circuit diagram by a small triangle, as shown

in Figurel V-1.

5

|
| . af
) ZEA”U]';P ;

4

Pin { ——

0} —

Ancilla 10)

10} —

|0} ——

Carbaoe

Figure IV-2: A general (possibly irreversible) quantum operation or superoperator can
be realized using a unitary operation by adding an ancilla and tracing out part of the
output. [33]

The triangle symbol will be modified for cases in which there is a need to indicate
different types of measurements. Recall that the measurement postulate stated that a
measurement outputs a classical label ‘i’ indicating the outcome of the measurement
and a quantum state|¢,). Thus, we could in general draw our measurement symbol
with a ‘quantum’ wire carrying the quantum state resulting from the measurement,

together with a classical wire carrying the classical label, as depicted in Figure | V-3.

ap|0) + a|1) ——

Clazsical
dizplay

Figure 1V-3: The measurement of the quantum state «,|0) + a;|1) results in a quantum
output |b) with probability low|> (b € {0, 1}) together with a classical label ‘b’

indicating which outcome was obtained. [33]
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Quite often, the quantum outcome is discarded or ignored, and we are only interested
in the classical information telling us which outcome occurred. In such cases, we will
not draw the quantum wire coming out of the measurement symbol. We will usualy

omit the classical wire from circuit diagrams as well.

IV-3-1- Quantum Gates

IV-3-1-1- Qubit Gates

We said in the second chapter that any unitary operator acting on a 2-dimensional
guantum system (a qubit) is called a ‘ 1-qubit quantum gate’. We gave the “quantum
NOT gate” (sometimes called the Pauli X gate) as an example. Every 1-qubit pure state
is represented as a point on the surface of the Bloch sphere, or equivalently as a unit

vector whose origin is fixed at the centre of the Bloch sphere. A 1-qubit quantum gate

U transforms a quantum state|y) into another quantum state U |y). In terms of the
Bloch sphere (see chapter 1), the action of U on |y) can be thought of as a rotation of
the Bloch vector for |y) to the Bloch vector for U |y). For example, the not gate takes
the state|0) to the state |1) (and takes |1) to|0) ). In terms of the Bloch sphere, this action

can be visualized as a rotation through an angle = about the x axis, as illustrated in
Figurel V-4.

s
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FigureIV-4: The NOT gate rotating the state |0) to the state|1) . [34]

We saw in chapter Il how to compute the exponential (and other functions) of

operators. If we exponentiate the Pauli matrices, we get unitary operators
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corresponding to very important classes of 1-qubit gates. These are the rotation gates,
which correspond to rotations about the x-,y-, and z- axes of the Bloch sphere. They
are defined in terms of the Pauli gates, and so for convenience, we remind you now of

the definitions of the Pauli gates:

oal  xhal iG] e &) oove

The rotation gates are defined as follows:

—-ioX

R, =€ ?
—igy

R, =€ ? (1v-3)
-z

R,=¢€?

It is easy to check that the Pauli matrices X, Y , and Z satisfy the conditions X?=1, Y 2=

|, and Z? =1, and so we can write the rotation gates as:

—-ioX

R (0)=€ 2 =cos 9N —isin 2 |x
2 2
—igy
R,(0)=¢ 2 —cod O )i —isinf Ly (1V-4)
2 2
-6z
R,(0)=€ 2 =cos 9N Zisin 2 )z
2 2

Knowing the matrices for I,X, Y, and Z in the computational basis, we can now write

the rotation gates as matrices in the computational basis:
2 )
COS —isin
R
=i sm( COC( j

(1V-5)

\_/ \ /
|
.
-}
h
;/

Consider an arbitrary 1-qubit state, written in terms of its Bloch vector angless and 7 :
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cos( j| 0)+€”* sin(%jﬁ) (1V-6)
In the computational basis, this can be written as the column vector
3)
cos| —
2 . (IV-7)

7T o
€ Sn —
(ZJ

The effect of applying R,(0) on this state can be seen by performing a matrix
multiplication:

=€ 2(cos[ j|0>+e"”9)sm[ j|1> (1V-8)

Since aglobal phaseisinsignificant, we have the state

cog — [0)+ €™ sin| — |1 (1V-9)
(2 Joreosn Sy

We see that effect of R,(#) has been to change the angle 7 to 7 + 4, which is a rotation
of 6 about the z-axis of the Bloch sphere. To see that Ry(6) and R,(6) implement
rotations about the x- and y-axes of the Bloch sphere is trickier, because such rotations
involve changes to both angleso and 7 .

It will be useful to show how to decompose any given 1-qubit gate into a sequence of
rotations about the main axes of the Bloch sphere. The following theorem tells us that
we can decompose any 1-qubit gate into a sequence of two rotations about the z-axis
and one rotation about the y-axis, along with a suitable phase factor.

Theorem 1V-1: [34]

Suppose U is a 1-qubit unitary gate. Then there exist real numbers a, £, y, and ¢ such
that
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U=€RBRGRL) ... (1V-10)
The proof of this follows from the fact that U is unitary, and the definition of the
rotation matrices. There is nothing special about the y- and z-axes of the Bloch sphere.
We can also give decompositions of 1-qubit gates in terms of rotations about any other
two non-parallel axes of the Bloch sphere.
Theorem 1V-2: [34]
Suppose U is a 1-qubit unitary gate. Let | and m be any two non-parallel axes of the
Bloch sphere. Then there exist real numbers a, S, y, and ¢ such that
U=€eRBRRG) ... (1V-11)

Asaresult any 1-qubit gate U can be written in the form

U = €"AXBXC, ... (1V-12)
where A,B,C are unitary operators satisfying ABC = |. (Recall that the Pauli gate X is
the NOT gate).

|V-3-1-2- Controlled-U Gates
A controlled-not (CNOT) gate is a 2-qubit quantum gate that conditionally applies the
not gate on the second (target) qubit when the first (control qubit) is in state|1).

Remember that such a gate acts on quantum states in quantum superposition.
Given any 1-qubit gate U, we can similarly define a controlled-U gate, denotedc-U,
which will be a 2-qubit gate corresponding to the following operation:
c-U0)y)=|0)y)
c-U1ly) =|1ulw)
The symbol commonly used for the c-U gate in a quantum circuit diagram is shown in
FigureV-5.

(1V-13)

?

FigurelV-5: The c-U gate. [34]
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The construction of a controlled-U for any 1-qubit gate U can be generalized to allow
the implementation of a controlled version of any quantum circuit implementing a
unitary operation U. Suppose we are given a circuit Cy implementing a unitary U, and
we wish to implement a circuit for the controlled-U operation. The basic technique is

to replace every gate G in Cy by a controlled gate ¢-G, as shown in Figure V-6.

— -

[l
I
-
|

] |
i 1
ol

i s i

Figure I V-6: Given acircuit CU implementing a unitary U. [ 34]
We can assume without loss of generality that Cy consists only of 1-qubit gates and
CNOT gates. So the only thing that remains is to construct a controlled version of the
CNOT gate. By the way a controlled-cnot gate is called a Toffoli gate. The Toffoli
gate can be implemented by a circuit containing cnot gates and some 1-qubit gates. So
we can use this replacement for each of the Toffoli gates generated in our construction
of the controlled-U circuit. This completes the construction of a circuit for

implementing the controlled-U operation.

IV-3-2- Universal Setsof Quantum Gates:

The gates we have seen so far have acted on either a single qubit, or on two qubits. An
interesting quantum algorithm would, in general, be some complicated unitary
operator acting non-trivially on n-qubits. In classica computing, we implement
complicated operations as a sequence of much simpler operations. In practice, we want
to be able to select these simple operations from some set of elementary gates. In
guantum computing, we do the same thing. The goal is to choose some finite set of
gates so that, by constructing a circuit using only gates from that set, we can

implement non-trivial and interesting quantum computations.
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When we use a circuit of quantum gates to implement some desired unitary operation,
in practice, it suffices to have an implementation that approximates the desired unitary
to some specified level of accuracy. We need to make precise the notion of the quality
of an approximation of a unitary transformation. Suppose we approximate a desired
unitary transformation U by some other unitary transformation V . The error in the

approximation is defined to be
EU.V)= rpsx”(u V)| - (1V-14)

When we say that an operator U can be * approximated to arbitrary accuracy’, we mean
that if we are given any error tolerance ¢ > 0, we can implement some unitary V such
that E(U, V) < ¢. Having
E(UyUy, VoV1) <E(U,, Vo) + E(Ug, Vo) ... (Iv-15)
It follows that
E(UUp-1. ..U, VVao1. .. V1) <E(Up, VR)+E(U-1, Vo)t - +E(U4, V7)...(1V-16)

Definition I'V-1:

A set of gates is said to be universal if for any integer n > 1, any n-qubit unitary
operator can be approximated to arbitrary accuracy by a quantum circuit using only
gates from that set.

Finding convenient universal sets of gatesis of great practical importance as well as of
theoretical interest. Since a universal set of gates must be able to implement, for
example, the CNOT, it will have to contain at |east one non-trivial gate on two or more
qubits.

Definition 1V-2:

A 2-qubit gate is said to be an entangling gate if for some input product state|y )| ¢) the

output of the gate is not a product state (i.e. the output qubits are entangled).

The following universality result is auseful starting point.

Theorem 1V-3:[35]

A set composed of any 2-qubit entangling gate, together with all 1-qubit gates, is

universal.
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Theorem V-3 implies, for example, that the CNOT gate together with all 1-qubit gates
is universal. The theorem gives sets that are universal in a stronger sense required by
Definition 1V-1. With an entangling 2-qubit gate and all 1-qubit gates, we can
implement any n-qubit unitary exactly. A shortcoming of Theorem V-3 is that the
universal sets of gates it provides are infinite. It is useful to find a finite set of gates
that isuniversal. A natural starting point in this direction isto look for afinite set of 1-
gubit gates that can be used to approximate any 1-qubit gate to arbitrary accuracy.
Definition 1V-3:

A set of gatesis said to be universal for 1-qubit gatesif any 1-qubit unitary gate can be
approximated to arbitrary accuracy by a quantum circuit using only gates from that
Set.

Theorem 1V-2 states that for any two non-parallel axes | and m of the Bloch sphere,
the set consisting of the rotation gates RI(5) and Rm(y) for al g, y € [0, 2z] is universal
for 1-qubit gates.

Theorem 1V-4:[35]

If a set of two 1-qubit gates (rotations) G = {R,(5),R(y)} satisfies the conditions:

1- | and mare non-parallel axes of the Bloch sphere

2- B,y € [0, 2] are real numbers such that g/z and y/z are not rational then G is
universal for 1-qubit gates.

As a concrete example, we give a simple set satisfying the conditions of Theorem |V-

4. Inthisdirection is the Hadamard gate, H, and the %-phase gate, T, where

11 1 1 O
Hzﬁ{l _J and T:{O ei“:l (1v-17)

The set G = {HTHT,THTH} satisfies the conditions of Theorem 1V-4, this gives:
The set {H, T} is universal for 1-qubit gates. We now have the following universality
result.

Theorem 1V-5:[35]
The set {CNOT,H, T} isa universal set of gates.
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IV-3-3- Efficiency of Approximating Unitary Transfor mations

In the previous section, we have stated that an arbitrary unitary transformation can be
simulated using gates from a fixed universal set, such as {H, CNOT, T}(Theorem | V-
5). We have said nothing about how efficiently this can be done however. If we wish to
implement a given unitary transformation U (corresponding to some computation), we

would be interested in being able to do this using a polynomial number of gates from

our universal set. Here, ‘polynomial’ is taken to mean ‘polynomial in 1and in the
S

number of qubitsn’, where¢ isthe desired quality of the estimate of U.

In fact, most unitary transformations cannot be efficiently approximated using gates
from our universal set; this can be shown by counting arguments (since there are many
more transformations than efficient circuits).

The difficulty in efficiently implementing some unitary transformations does not lie in
the complexity of simulating arbitrary 1-qubit gates from a finite set of 1-qubit gates,

since the decomposition described before can be done in time polynomia in

1 provided n-bit approximations of al the coefficients of the gates can be computed in
S

time polynomial in n. A result known as the Solovay—Kitaev theorem promises that we
can do much better and find a set G of 1-qubit gates such that any arbitrary 1-qubit
gate can be approximated to arbitrary accuracy using a sequence of a poly-logarithmic
number of gates from G. In other words, if we want to approximate a given unitary
with error less than ¢, we can do so using a number of gates that is polynomial in
log(L/e ).

It is worth discussing some of the consequences of the Solovay-Kitaev theorem.
Suppose we are given a quantum circuit consisting of several CNOT gates, and m 1-
gubit gates, and we wish to approximate this circuit using only gates from the

universal set {CNOT} e G. Suppose we approximate each 1-qubit gate in the circuit

with error at most . Then the overal error in the approximation of the circuit is
m

bounded by¢. So, if we want to approximate the circuit using only gates from our

universal set {CNOT} e G, and if we want the total error in the approximation to be at
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most¢ , we should aim to approximate each 1-qubit gate in the circuit with error at% .
We are now faced with the following question of efficiency: ‘how many gates from G
are required to approximate each 1-qubit gate with error at most %? A special case of

the Solovay—Kitaev theorem answers this question.

Theorem V-6 [35]

(Solovay—Kitaev) If G is a finite set of 1-qubit gates satisfying the conditions of
Theorem V-4 and also

3-for any gateg G, itsinverse g ' can be implemented exactly by a finite sequence

of gates in G, then any 1-qubit gate can be approximated with error at most¢ using
Olog® (Ej gates from G, where c is a positive constant.

Thus, according to the Solovay-Kitaev theorem, any 1-qubit gate can be approximated

with error at most-> using Ologc(lj gates from afinite set G that is universal for 1-
m S

gubit gates, and that contains its own inverses (or whose inverses can be constructed
exactly from a finite sequence of gates from G). It is worth noting that if n-bit
approximations of the coefficients of the gates in G can be computed in time

polynomial in n, then the efficient decompositions can be found in time polynomial

el

Notice that the set {H, T} satisfies these conditions. For acircuit having m
1-qubit gates, the approximation of these gates requires at most

O(mlogc(m]) (I'vV-18)
S

gates from a universal set. This is a poly-logarithmic increase over the size of the

original circuit.
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IV-3-4- Implementing M easur ements with Quantum Cir cuits

Given an orthonormal basis|¢; ), suppose we have a state|y ), which we write in this
basis:

|1//>:Zaj|qoj> (1vV-19)

Recall that a Von Neumann measurement of |y) with respect to the basis ﬂ<pj>}is

described by the orthogonal projectorsﬂgojxgoj |} and will output the result ‘j’ with
probability

2
(v )y oMo, )=l - (1V-20)
Given a device that will measure individual qubits in the computational basis, we can
use a quantum circuit to implement Von Neumann measurements of a multi-qubit

register with respect to any orthonormal basis ﬂq; j >} This can be done as follows. First,
we construct a quantum circuit that implements the unitary transformation U|(p j > =),
where| j)is the corresponding n-qubit computational basis state). The operator U
performs a basis change from the {|¢j>}basis to the computational basis. Given a

general stateZa j|(pj>, we use the circuit to perform the basis change U, and then
j

make a measurement of the register in the computational basis. Finally, we perform
the inverse basis change U™ (by running the circuit for U backwards, replacing each
gate by itsinverse). This network is shown in Figure I V-7. An alternative approach is
illustrated in Figure 1'V-8. In the alternative approach, we do not directly measure the
state (with respect to the computational basis) after the basis change, but instead we
“copy” the values onto an ancillary register, which we then measure in the

computational basis.

>, asles) U —<F i) —U~"—— le)
<l L —
|

With pI'L‘JlIT;ahi]il_y' ||
Figure 1'V-7: Circuit implementing a Von Neumann measurement with respect to the
basis{p, ). [34]
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\ ] - — _
Zj o) U - ! ;)
[%] 3
- Y] <11
|000) X1 <] L

7
I
II
With probability |o|?

Figure I V-8: Another circuit implementing the Von Neumann measurement. [34]

It will be very important for quantum computing to be able to implement general
projective measurements, and not complete Von Neumann measurements. Consider a

projective measurement with respect to the decomposition

=R (1V-21)
where P; has rank r;. In other words
=> v i | (1V-22)
j=1

where the the states ﬂl//i’ | >}are an orthonormal basis for the Hilbert space of dimension
N=) .

Let Up be a circuit that maps|y, ;}|0) - |y, ;)|i}. One way (but not the only way) to
implement Up is to perform a basis changeU Z|l//i'j>H|i,j>, ‘copy’ | to the ancilla

register, and then apply U™
One can implement Up with a sequence of CNOT gates, as illustrated in Figure | V-9.

Thus after the Up circuit, we have the state

Za x)| parity(x)) = > o« Za ) = ao| v )| 0) + oy wy )| >

parity(x)=0 parity(x)=1 .. (IV-23)
1) ’ 1)

|z2) T |z2)
|z3) x3)
) — XHXHX——menow

FigurelV-9: A circuit computing the parity of three qubits. [34]
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Thus measuring the ancilla qubit will leave the first register in the state |y, )with
probability |ac|® and in the state |y, ) with probability |a,|®, as required. Therefore, this

circuit will implement a parity measurement on an arbitrary 3- qubit state, as depicted
in Figure 1V-10.

)

A | o\
?'.'.‘ / <| . |>- ‘?-'I'Illlln'l
|

With probability |ay|*
bhe {0,1}

. ®
—XHxHx}—<»

Figure I V-10: A circuit implementing a parity measurement. [34]

It is worth emphasizing what differentiates this projective parity measurement from a
Von Neumann measurement followed by classical post-processing to compute the
parity. The projective measurement measures only the parity of the strings in the
guantum state, and no other information, leaving one of the superposition states

lwo)or|y,). A complete Von Neumann measurement would have extracted more
information than needed, and we would have been left with a random basis state | x) of

a specific parity instead of a superposition of al strings with the same parity.

IV-4- The programation process of a quantum computer

The good thing about the classical computer is that it is programmable. It is a single
device capable of performing different operations depending on the program it is
given: word processing, algebraic transformations, displaying movies, etc.. To putitin
more abstract words a classical computer is a universal gate array: we can program
every possible function with n input and n output bits by specifying a program of
length n2". That is, a fixed circuit with n(1 + 2") input bits can be used in order to
compute any function on the first n bits in the register. Is the same true for quantum
computers? Or will these devices typically be made-to-measure with respect to asingle
task?
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Nielsen and Chuang [34] showed that quantum computers cannot be universal gate
arrays. Even if the program isitself given in form of a quantum state it would require a
program register of infinite length in order to perform an arbitrary (unitary) operation
on a finite number of qubits — universality was shown to be only possible in a
probabilistic manner. In this sense, quantum computers will not be the kind of all
purpose devices which classical computers are. In practice, however, any finite set of
guantum programs can run on a quantum computer with a finite program register. This
Issue applies, however, to the programming of a quantum computer with a fixed

hardware, which is, needless to say, still in the remote future as a physical device.

IV-5- Elementary quantum algorithms

In the same scientific paper in which David Deutsch [44] introduced the notion of the
universal quantum computer, he also presented the first quantum agorithm. The
problem that this algorithm addresses, later referred to as Deutsch’s problem, is avery
simple one. Yet the Deutsch algorithm already exemplifies the advantages of a
guantum computer through skilfully exploiting quantum parallelism. Like the Deutsch
algorithm, all other elementary quantum algorithms amount to deciding which black
box out of finitely many alternatives one has at hand. Such a black box is often also
referred to as oracle. An input may be given to the oracle, one may read out or use the
outcome in later steps of the quantum agorithm, and the objective is to find out the
functioning of the black box. It is assumed that this oracle operation can be
implemented with some sequence of quantum logic gates. The complexity of the

guantum algorithm is then quantified in terms of the number of queries to the oracle.

IV-5-1- Probabilistic Versus Quantum Algorithms

We begin by considering a simple probabilistic computation. Figure 1V-11 illustrates
the first two steps of such a computation on a register that can be in one of the four
states, labelled by theintegers 0, 1, 2, and 3. Initially the register isin the state 0. After
the first step of the computation, the register is in the state j with probability po; . For
example, the probability that the computation is in state 2 after the first step is pg». In
the second step of the computation, the register goes from state j to state k with
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probability q; . For example, in the second step the computation proceeds from state 2
to state 3 with probability s s.

Figure 1V-11: A classical probabilistic computation acting on a register that can be in
one of four states labelled 0, 1, 2, 3. [23]

Suppose we want to find the total probability that the computation ends up in state 3
after the second step. Thisis calculated by first determining the probability associated
with each computation ‘path’ that could end up at the state 3, and then by adding the
probabilities for all such paths. There are four computation paths that can leave the
computation in state 3 after the first step. The computation can proceed from state O to
state j and then from state j to state 3, for any of the four j € {0,1,2,3}. The probability
associated with any one of these paths is obtained by multiplying the probability pg; of
the transition from state O to state j, with the probability g; ; of the transition from state
] to state 3. The total probability of the computation ending up in state 3 is given by
adding these four possibilities. So we have

prob(final outcomeis3) => p,;q; (1V-24)

j

Another way of looking at this computation is to suppose the register consists of two
qubits, and let the labels 0, 1, 2, 3 refer to the four basis states|00),|01),|10),/11),

respectively. Then view each of the transition probabilities as a squared norm of a

quantum probability amplitude, so that po; = oo, [ and ¢« = [Bj«*. This approach is

UH.B.C 109



Chapter 1V Quantum computers

shown in Figure 1'V-12, which can be viewed as a quantum computation in which the
state is measured after each step.

Figure 1V-12: The classical probabilistic computation viewed in a quantum setting.
[23]

As before, the total probability of measuring outcome 3 after the second step is
prob(final outcomeis3) =>" |ao; FIBjaf = looiBial .. (1V-25)
j i

which is the same probability asin Equation (1V-24).

In this example, since we assume that the state is measured after each step, we would
know the intermediate state j, and thus we would know which computation path
leading to the final state 3 was taken. The total probability of arriving at the fina state
3 is determined by adding the sgquared norm of the probability amplitude ag;f;s
associated with each path (i.e. we add the probabilities for the four paths, and not the
probability amplitudes).

In a fully quantum algorithm, we would not measure the state immediately after the
first step. This way the quantum probability amplitudes will have a chance to interfere.
For example, some negative amplitudes could cancel with some positive amplitudes,
significantly affecting the final probabilities associated with a given outcome. A
guantum version of the algorithm above isillustrated in Figure I V-13.

This time the calculation of the total probability associated with outcome 3 in the
measurement after the second step is different. Since there is no measurement after the
first step of the computation, we do not learn the path taken by the computation to the

final state 3. That is, when we obtain the output 3, we will have no information telling
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us which of the four paths was taken. In this case, instead of adding the probabilities
associated with each of these four paths, we must add the probability amplitudes. The
probability of a measurement after the second step giving the result 3 is obtained by
taking the squared norm of the total probability amplitude.

2

prob(final outcome is 3) :‘z oy B (1V-26)
j

FigurelV-13: A fully quantum computation. [23]

Whichis clearly distinct from the classical result; Equation (1V-24)

Now consider the quantum circuit in Figure IV-14. This circuit does not perform a
purely quantum computation, because we make a measurement immediately after the
first Hadamard gate.

0 —H H

[ ] i
|".3| )

Figure I V-14: A quantum circuit exhibiting no quantum interference. [23, 36]

The state |¢,) immediately after this measurement is

| O)with probability1
16,) = f (1V-27)
| Dwith probabilityz

The state immediately after the second Hadamard gate is then
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1 ) .
—(|O>+|1>)vv|th probability
0)=1 2 | N
ﬁ([0>—|1>)w|th probability

In either case, the final measurement will give the result O or 1 with equal probability.

(1V-28)

NI N

Compare the above with the quantum circuit shown in Figure 1 V-15. This time there
IS no measurement after the first Hadamard gate, and the application of the second
Hadamard gate will give rise to interference in the quantum amplitudes. The state

immediately after the first Hadamard gate is
1 1
|W1>:ﬁ|o>+ﬁ|l> (1V-29)
This state is input directly to the second Hadamard gate, and the state after the second
Hadamard gate is

o) =510+ 5]

1 1
N B PSP ST P GO TS :

1, 1. 1,. 1
—§|0>+§|1>+§|0>—§|1>

=(0)
The total probability amplitude associated with |1)is O, meaning that the probability

for the second measurement giving result ‘1’ is now 0. The second Hadamard gate

acted on the basis states |0) and |1) in superposition, and the amplitudes of state |1) for

the two paths in this superposition interfered, causing them to cancel out.

0 —H}-

|T,-'.} 1 j:. |‘T": !

FigureIV-15: A quantum circuit exhibiting interference. [23, 24]
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| V-5-2- Deutsch algorithm

The Deutsch algorithm is a very simple example of a quantum algorithm based on the
Quantum Fouries Transform it illustrates the key ideas of quantum parallelism and
guantum interference that are used in all useful quantum algorithms.

The problem solved by the Deutsch algorithm is the following. Suppose we are given a
reversible circuit for computing an unknown 1-bit function f : {01}~ {0,1}. We treat
this reversible circuit as a ‘black box’ or ‘oracle’. This means that we can apply the
circuit to obtain values of f(x) for given inputs x, but we cannot gain any information
about the inner workings of the circuit to learn about the function f. The problemisto
determine the value of f(0) ®f(1). If we determine that f(0) @ f(1) = 0, then we know
that f(0) = f(1) (although we do not know the value), and we say that f is ‘constant’. If
on the other hand we determine that f(0) @ f(1) = 1, then we know that f(0) =f(1), and
we say the function is ‘balanced’. So determining f(0) @ f(1) is equivaent to
determining whether the function f is constant or balanced.

How many queries to the oracle for f must be made classicaly to determine f(0)
®f(1)? Clearly the answer is 2. Suppose we compute f(0) using one (classical) query.
Then the value of (1) could be 0, making f(0) ®f(1) = O, or the value of f(1) could be
1, making f(0) @ f(1) = 1. Without making a second query to the oracle to determine
the value of f(1), we can make no conclusion about the value of f(0) ®f(1). The
Deutsch algorithm is a quantum agorithm capable of determining the value of  f(0)
®f(1) by making only a single query to a quantum oracle for f.

The given reversible circuit for f can be made into a quantum circuit, by replacing
every reversible classical gate in the given circuit with the analogous unitary quantum

gate. This guantum circuit can be expressed as a unitary operator
U, ¥y Xy @ £(x)
Having created a quantum version of the circuit for f, we can supply guantum bits as

inputs. We define Us so that if we set the second input qubit to be in the state|y) =|0),
then|x) =|0) in the first input qubit will give |0@ f(0))=| f (0))in the second outpuit bit,
and|x) =|1) in the first input qubit will give | f(1)). So we can think of |x)=|0)as a

quantum version of the (classical) input bit 0, and |x) =|1) as a quantum version of the
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input bit 1. Of course, the state of the input qubit can be some superposition of
|0)and|1) . Suppose, still keeping the second input qubit|y) =|0), we set the first input

gubit to be in the superposition state

1 1
ﬁ|o>+ﬁ|l> (1V-31)
Then the two qubit input to Us is
1 1
(=10 +—=[1)/0)
\/51 V2 1 (1v-32)
- 519/0)+jo)

The output of U will be the state

1 1
U, (510/0)+—-[1}0)

1

J2

Joe 1(0)+

_ 1

U, oo+

U[2/0)
1 1

=50 Zloe @)
1 1

=510/ 1(©)+ [njoe 1)

In some sense, U; has simultaneously computed the value of f on both possible inputs O
and 1 in superposition. However, if we now measure the output state in the

computational basis, we will observe either |0)| f(0))(with probability 1/2), or
D)o@ f (1)) (with probability 1/2 ). After the measurement, the output state will be
either | f(0))or | f (1)) respectively, and so any subsequent measurements of the output

state will yield the same result. So this means that athough we have successfully
computed two values in superposition, only one of those values is accessible through a
guantum measurement in the computational basis. Fortunately, this is not the end of
the story.

Recall that for the Deutsch problem we are ultimately not interested in individual
values of f(x), but wish to determine the value of f(0) ®f(1). The Deutsch algorithm

Illustrates how we can use quantum interference to obtain such global information
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about the function f, and how this can be done more efficiently than is possible
classically. The Deutsch algorithm is implemented by the quantum circuit shown in
FigurelV-16.

ml i

T -
. | | |
o) ) ) )
Figure IV-16: A circuit implementing the Deutsch algorithm. The measured value
equalsf(0) ®f(1).[37]

1
Note that the second input bit has been initialized to the state |O> Y . This state can

V2
easily be created from the state |1) by applying a single Hadamard gate. We do not

show this gate, however, to emphasize a certain symmetry that is characteristic of
these algorithms. A convenient way to analyse the behaviour of a quantum agorithm

isto work through the state at each stage of the circuit. First, the input stateis

wel-lof L8] (V-39

After the first Hadamard gate is applied to the first qubit, the state becomes
0~
)
|>[|0> |1>j |>(|0> |1>j
"2 72

Recalling from Appendix A-3, after applying the U; gate we have the state

(1V-34)
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r ](|o> |1] .. (IV-35)
-y {'°> )

where the last equality uses the fact that (—1)f(°>(—1)f(1> = (1)@ @D |f fjs a constant
function (i.e. f(0) @ f(1) = 0), then we have

—(-1)"© | 1V-36

Vs, ( ) ( /—2 j{ /—2 ( )
and so the final Hadamard gate on the first qubit transforms the state to

_ (@) 12 IV-37

Vs ( ) | >( 5 ( )

The squared norm of the basis state |0)in the first qubit is 1. This means that for a
constant function a measurement of the first qubit is certain to return the value 0 = f(0)
®f(1).

If fisabalanced function (i.e. f(0) ®f(1) = 1), then we have

0O-11Y|0)—-(1
v, =(—1)f(°’(| >\/_2| >](| >\/_2| >j (1V-39)
and so the final Hadamard gate on the first qubit transforms the state to
W, = (—1)f(°)|1>[|0>\/_2|1>j (1V-39)

In this case the squared norm of the basis state [1)in the first qubit is 1. This means

that for a balanced function a measurement of the first qubit is certain to return the
value 1 = f(0) @f(1). So a measurement of the first qubit at the end of the circuit for
the Deutsch algorithm determines the value f(0) @ f(1) and thus whether the function is
constant or balanced.

To gain some insight into how the Deutsch algorithm can generalize, it is helpful to

remember that the operator U, :|x)|y) > |x)|y @ f(x))in the Deutsch algorithm can be

viewed as a single-qubit operator 0 t(x), Whose action on the second qubit is controlled
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by the state of the first qubit (Figure IV-17). The state(%j is an eigenstate of

U 1 with eigenvalue (—1)™®. By encoding these eigenvalues in the phase factors of

the control qubit, we are able to determine f(0) ® f(1) by determining the relative

o 0)+|1) 10)—[1)). .
hase factor between [0) and|1) . Distinguishin | and | ——"L |isdone usin
p 0)and|1). Disting g( - j ( = g

the Hadamard gate.

0)— [ ' g

I0)=11} f} \
can U0

Figure IV-17: The circuit for Deutsch’s agorithm with the ¢-U , drawn instead of

Us [37]
| V-5-3- Deutsch-Jozsa algorithm [44]
The Deutsch-Jozsa algorithm solves a problem that is a straight forward generalization
of the problem solved by the Deutsch algorithm. The agorithm has exactly the same
structure. As with the Deutsch algorithm, we are given a reversible circuit
implementing an unknown function f, but this time f is a function from n-bit strings to
asinglebit. That is,

f:{oy" > {01 .. (1V-40)
We are also given the promise that f is either constant (meaning f(x) is the same for al
x), or f is balanced (meaning f(x) = O for exactly half of the input strings x, and f(x) = 1
for the other half of the inputs). The problem here is to determine whether f is constant,
or balanced, by making queries to the circuit for f.
Consider solving this problem by a classical agorithm. Suppose we have used the
oracle to determine f(x) for exactly half of the possible inputs x (i.e. you have made
2" queries to f), and that all queries have returned f(x) = 0. At this point, we would

strongly suspect that f is constant. However, it is possible that if we queried f on the

UH.B.C 117



Chapter 1V Quantum computers

remaining 2" inputs, we might get f(x) = 1 each time. So it is still possible that f is
balanced. So in the worst case, using a classical algorithm we cannot decide with
certainty whether f is constant or balanced using any less than 2" '+1 queries. The
property of being constant or balanced is a global property of f. As for the Deutsch
problem, a quantum agorithm can take advantage of quantum superposition and
interference to determine this global property of f. The Deutsch—-Jozsa algorithm will
determine whether f is constant, or balanced, making only one query to a quantum
version of the reversible circuit for f.
Analogous to what we did for the Deutsch algorithm, we will define the quantum
operation

U, | X)y)= | X)y® f(x) ... (1V-41)

This time we write x in boldface, because it refers to an n-bit string. As before, we

think of U; as a 1-qubit operanrLAJ t(x), this time controlled by the register of qubitsin

the state|x) . We can see that 19-1) is an eigenstate of U () with eigenvalue (—1)®.

J2
The circuit for the Deutsch-Jozsa algorithm is shown in Figure 1V-18. Notice the
similarity between the circuit for the Deutsch algorithm, and the circuit for the
Deutsch—Jozsa algorithm. In place of a simple 1-qubit Hadamard gate, we now have

tensor products of n 1-qubit Hadamard gates (acting in parallel).

Thisis denoted H®™ , We use|0)”", or |0) to denote the state that is the tensor product

of n qubits, each in the state |0) .

0y ——H H '::f
0) —H H—]
0) 4 H H
-1} f?— |0 —]1)
V2 L f(x) V2

|90} ) e} hs)

FigurelV-18: A circuit for the Deutsch—Jozsa algorithm. [ 37]
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As we did for the Deutsch algorithm, we follow the state through the circuit. Initially
the stateis

o) = |o>®”(%j (1V-42)

Consider the action of an n-qubit Hadamard transformation on the state|0)”"

1

H " 0)*" :(ﬁj (0)+|n)e(0)+|Y)®..®(0)+|y) ...  (1V-43)
By expanding out the tensor product, this can be rewritten as

H ®"|0)” (1V-44)

-

Thisis avery common and useful way of writing this state; the n-qubit Hadamard gate

acting on the n-qubit state of all zeros gives a superposition of all nqubit basis states,

al with the same amplitude 1 (called an ‘equally weighted superposition’). So the

V2

state immediately after the first H ®1in the Deutsch- Jozsa algorithmis

110 _
V== 3 | >( - ] (1V-45)

Notice that the query register is now in an equally weighted superposition of all the
possible n-bit input strings. Now consider the state immediately after the Us

(equivalently the c-U t(x)) gate. The state is

vl ui 3 22

_ L o190 ]
|"’2>_Jz_nx6{%}n( 1)!9) >( j (1V-46)

where we have associated the phase shift of (—1)™ with the first qubit.

To facilitate our analysis of the state after the interference is completed by the second

Hadamard gate, consider the action of the n-qubit Hadamard gate on an n-qubit basis

state|x) .
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It is easy to verify that the effect of the 1-qubit Hadamard gate on a 1-qubit basis state

| x) can be written as
(I'v-47)

Then we can see that the action of the Hadamard transformation on an n-qubit basis
state |x) =[x, )| x,)-.{x,) isgiven by
H %)= H ()] %) x0)) = Hx)H| X, ). x, )

1 X 1 % 1 %,
= 0o Slo ol o+ o) ov-49

\/1_ z ><121+x222+...+xnzn | 21>| 22>...| 2n>
4,

2y,.,2,€{0

The above equation above can be written more succinctly as

J— 3 (-1 (1V-49)

2e(01)"
where x - z denotes the bitwise inner product of x and z, modulo 2 (we are able to
reduce modulo 2 since (—1)? = 1). Note that addition modulo 2 is the same as the xor
operation. The state after the final n-qubit Hadamard gate in the Deutsch-Jozsa
agorithmis

v (s 2 0 g e %
5 3z 75

At the end of the algorithm a measurement of the first register is made in the

(1V-50)

=

computational basis (just as was done for the Deutsch algorithm). To see what
happens, consider the total amplitude (coefficient) of |z) =|O>®n in the first register of

state|y ;). Thisamplitude s

Ly (IV-51)
2" xe{0,1}"
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Consider this amplitude in the two cases:. f constant and f balanced. If f is constant, the
amplitude of |0)*"is either +1 or —1 (depending on what value f(x) takes). So if f is

constant, a measurement of the first register is certain to return all Os (by ‘all 0s' we
mean the binary string 00 - - - 0). On the other hand, if f is balanced, then it is easy to

see that the positive and negative contributions of the amplitudes cancel, and the
overall amplitude of |0)”"is 0. Soiif f is balanced, a measurement of the first register is

certain not to return all 0s. So to determine whether f is constant or balanced, the first
register is measured. If the result of the measurement is all Os, then the algorithm

outputs ‘ constant’, and otherwise it outputs ‘ balanced’.

IV-6- Shor’sfactoring algorithm [45]

IV-6-1- Exponential speed-up in Shor’sfactoring algorithm

Shor’s algorithm is without doubt not only one of the cornerstones of quantum
information theory but also one of the most surprising advances in the theory of
computation itself: a problem, which is widely believed to be hard becomes tractable
by referring to (quantum) physics — an approach completely atypical for the theory of
computation, which usually abstracts away from any physical realization.

The problem Shor’s algorithm deals with is factorization, a typica NP problem.
Consider for instance the task of finding the prime factors of 421301.With pencil and
paper it might probably take more than an hour to find them. The inverse problem, the
multiplication 601x701, can, however, be solved in afew seconds even without having
pencil and paper at hand. The crucial difference between the two tasks multiplication
and factoring is, however, how the degree of difficulty increases with he length of the
numbers. Whereas multiplication belongs to the class of “tractable” problems for
which the required number of elementary computing steps increases polynomially with
the size of the input, every known classical factoring algorithm requires an
exponentially increasing number of steps. This is what is meant by saying that
factoring is an “intractable” or “hard” problem. In a nutshell the idea of Shor's

factoring algorithm is the following:
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(1) Classical part: Using some elementary number theory one can show that the
problem of finding a factor of a given integer is essentially equivalent to determining
the period of a certain function. [34]

(2) Implement the function from step (1) in a quantum circuit and apply it to a
superposition of all classical input states. Then perform a discrete quantum Fourier
transform (QFT) and measure the output. The measurement outcomes will be
probabilisticaly distributed according to the inverse of the sought period. The latter
can thus be determined (with certain probability) by repeating the procedure.

(3) Efficient implementation: The crucial point of the algorithm is that the QFT as well
as the function from step (1) can be efficiently implemented, i.e., the number of
required elementary operations grows only polynomially with the size of the input.
Moreover, the probability of success of the algorithm can be made arbitrary close to
one without exponentially increasing effort.

Clearly, the heart of the algorithm is an efficient implementation of the QFT. Since
Fourier transforms enter in many mathematical and physical problems one might
naively expect an exponential speedup for al these problems as well. However, the
outcome of the QFT is not explicitly available but “hidden” in the amplitudes of the
output state, which can not be measured efficiently. Only globa properties of the
function, like its period, can in some cases be determined efficiently.

Nevertheless, a couple of other applications are known for which the QFT leads again
to an exponential speed up compared to the known classical algorithms. The abstract
problem, which encompasses all these applications is known as the “hidden subgroup
problem” and another rather prominent representative of this type is the discrete
logarithm problem. Let us now have a more detailed look at the ingredients for Shor’'s

algorithm.

IV-6-2- Classical part

Let N be an odd number we would like to factor and a < N an integer which has no
non-trivial factor in common with N, i.e., gcd(N, a) = 1. The latter can efficiently be
checked by Euclid's algorithm. A factor of N can then be found indirectly by
determining the period p of the function f : Z—Zy defined as f(x) = & modN.
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Hence, we are looking for a solution of the equation & —1 = 0 modN. Assuming p to
be even we can decompose & — 1 = (8”2 + 1)(8”? — 1) = 0 modN, and therefore either
one or both terms (&”2+ 1) must have a factor in common with N. Any non-trivial
common divisor of N with (8”?+ 1), again calculated by Euclid’s algorithm, yields
thus a non-trivial factor of N.

Obvioudly, the described procedure is only successful if p is even and the final factor
Is a non-trivial one. Fortunately, if we choose a at random, this case occurs with
probability larger than one half unless N is a power of a prime. The latter can,
however, be checked again efficiently by a known classical algorithm, which returns
the value of the prime. Altogether a polynomial time algorithm for determining the
period of the function above leads to a probabilistic polynomial time algorithm which

either returns afactor of N or tellsusthat N is prime.

IV-6-3- Quantum Fourier Transform
The step from the ordinary discrete Fourier transform (based on matrix multiplication)
to the Fast Fourier Transform (FFT) has been of significant importance for signal and
Image processing as well as for many other applications in scientific and engineering
computing. Whereas the naive way of calculating the discrete Fourier transform

N

1n—1
Cy =— Cc.e
O3

E (IV-52)

by matrix multiplication takes O(n®) steps, the FFT requires O(n log n). The quantum
Fourier transform (QFT) is in fact a straightforward quantum generalization of the
FFT, which can, however, be implemented using only O((log n)®) elementary
operations — an exponentia speedup.

Let now the computational basis states of g qubits be characterized by the binary

representation of numbers
|x>:zq“xi2i’l via | xX) =[X,.., X, ) (1V-53)
i=1

That is, in this subsection x denotes from now on a natural number or zero and not a

binary word. Then for n = 29 the QFT acts on a general state vector of q qubits as
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D lxy>>c|y) (1V-54)
x y
This transformation can be implemented using only two types of gates. the Hadamard
gate and conditional phase gates Py acting as |a,b) —>|a,b>e5“b'2”%“ , which rotate the

relative phase conditionally by an angle 2 ¢, where d is the “distance” between the
two involved qubits. Figure I'V-19 shows the quantum circuit, which implements the
QFT on g = 3 qubits. The extension of the circuit to more than three qubits is rather
obvious and since q(q + 1)/2 gates are required its complexity is O(q?) = O((log n)?).
Being only interested in an approximate QFT we could reduce the number of gates
even further to O(log n) by dropping all phase gates Pd with d > m. Naturally, the

accuracy will then denend on m.

o
- gt o !
=Y ] 5

oo
) | T
] I\H_.-"l_ vl

Figure V-19: The circuit of a discrete quantum Fourier transform on three qubits. [37]

| V-6-4- Joining the pieces
Let us now sketch how the QFT can be used to compute the period p of the function in

the equation above efficiently. Consider two registers of g qubits each, where 29=n >

N? and all the qubits are in the state vector |0) initially. Applying a Hadamard gate to

each qubit in the first register yields
Lyxo (1V-55)
ns

Now suppose we have implemented the function above in a quantum circuit which

acts as|x,0) - | x, f (x)), where x is taken from Z,,. Applying this to the state vector and

then performing a QFT on the first register we obtain

[

ﬁnz 2y ) (1V-56)
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How will the distribution of measurement outcomes look like if we now measure the
first register in computational basis? Roughly speaking, the sum over x will lead to
constructive interference whenever y/n is close to a multiple of the inverse of the
period p of f and it yields destructive interference otherwise. Hence, the probability
distribution for measuring y is sharply peaked around multiples of n/p and p itself can
be determined by repeating the whole procedure O(log N) times. At the same time the
probability of success can be made arbitrary close to one. In the end we can anyhow
easly verify whether the result, the obtained factor of N, isvalid or not. What remains

to be shown is that the map |x,0) - |x, f(x)), f(x)=a*modN can be implemented

efficiently. This can be done by repeatedly squaring in order to get 8 mod N and then
multiplying a subset of these numbers according to the binary expansion of x. This
requires O(log N) sguarings and multiplications of log N-bit numbers. For each
multiplication a standard algorithm requires O((logN)?) steps. Hence, implementing
this simple classical algorithm on our quantum computer we can compute f(x) with
O((logN)?) elementary operations. In fact, this part of performing a standard classical
multiplication algorithm on a quantum computer is the bottleneck in the quantum part
of Shor’sagorithm. If there would be a more refined quantum modular exponentiation
algorithm we could improve the asymptotic performance of the algorithm.

Altogether, the quantum part of Shor's factoring algorithm requires of the order
(logN)® elementary steps, i.e., the size of the circuit is cubic in the length of the input.
As described above, additional classical preprocessing and postprocessing is necessary
in order to obtain a factor of N. The time required for the classical part of the
algorithm is, however, polynomial in logN as well, such that the entire algorithm does
the job in polynomial time. In contrast to that, the running time of the number field
1/3 (log
logN)??)]. Moreover, it is widely believed that factoring is a classically hard problem,

sieve, which is currently the best classical factoring algorithm, is exp[O((logN)

in the sense that there exists no classical polynomial time algorithm. However, it is
also believed that proving the latter conjecture (if it is true) is extremely hard since it

would solve the notorious P = NP problem.
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|V-7- Case of study “comparison between thelinear ’'classical’ search algorithm
and Grover’ssearch algorithm”

Asan illustration of how quantum algorithms are faster than classical algorithms, let
us discuss the Grover’ s search algorithm comparing to classical “linear” search

algorithm.

IV-7-1- The classical search algorithm
In computer science, linear search is a search algorithm, also known as sequential
search, which is suitable for searching a set of datafor aparticular value.
It operates by checking every element of alist one at atime in sequence until a match
is found. Linear search runs in O(N). If the data are distributed randomly, on average
(N+1)/2 comparisons will be needed. The best case is that the value is equal to the first
element tested, in which case only 1 comparison is needed. The worst case is that the
value is not in the list (or is the last item in the list), in which case N comparisons are
needed.
The ssimplicity of the linear search means that if just afew elements are to be searched
it is less trouble than more complex methods that require preparation such as sorting
the list to be searched or more complex data structures, especially when entries may be
subject to frequent revision. Another possibility is when certain values are much more
likely to be searched for than others and it can be arranged that such values will be
amongst the first considered in the list.
The following pseudocode describes the linear search technique.
For each itemin the list:
Check to seeif theitem you're looking for matches theitem in the list.
If it matches.
Return the location where you found it.
If it does not match.
Continue searching until you reach the end of thelist.
If we get here, we know the item does not exist in thelist. Return -1.
In computer implementations, it is usual to search thelist in order, from element 1 to N

(or 0Oto N - 1, if array indexing starts with zero instead of one) but a slight gain is
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possible by the reverse order. Suppose an array A having elements 1 to N is to be
searched for avalue x and if it is not found, the result is to be zero.
for i:=N:1:-1 do %Search from N down to 1. (The step is-1)
if A[i] =x then QuitLoopi;
nexti;
Return(i); %0r otherwise employ the value.
Implementations of the loop must compare the index value i to the final value to
decide whether to continue or terminate the loop. If this final value is some variable
such N then a subtraction (i - N) must be done each time, but in going down from N the
loop termination condition is for a constant, and moreover a special constant. In this
case, zero. Most computer hardware allows the sign to be tested, especially the sign of
avalue in aregister, and so execution would be faster. In the case where the loop was
for arrays indexed from zero, the loop would be for i:=N - 1:0:-1 do and the test on the
index variable would be for it negative, not zero.
Finally thisis the representation of the linear search algorithm by pascal programming
language:
Linear search algorithm
Function linear {var A: list type: n, X : integer}: integer;
Var
I: integer;
answer: integer;
begin {linear}
answer:= 0;
=1
while {i<=n} and {answer:=0} do
begin
if A{i}=x
then answer:=i
elseincr {i}
end;

linear:= answer
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end; {linear}

IV-7-2- Quantum Mechanical Algorithms

A good starting point to think of quantum mechanical algorithms is probabilistic
algorithms. In these algorithms, instead of having the system in a specified state, it is
in adistribution over various states with a certain probability of being in each state. At
each step, there is a certain probability of making a transition from one state to
another. The evolution of the system is obtained by premultiplying this probability
vector (that describes the distribution of probabilities over various states) by a state
transition matrix. Knowing the initial distribution and the state transition matrix, it is
possiblein principle to calculate the distribution at any instant in time.

Just like classical probabilistic agorithms, quantum mechanical algorithms work with
a probability distribution over various states. However, unlike classical systems, the
probability vector does not completely describe the system. In order to completely
describe the system we need the amplitude in each state which is a complex number.
The evolution of the system is obtained by premultiplying this amplitude vector (that
describes the distribution of amplitudes over various states) by a transition matrix, the
entries of which are complex in general. The probabilitiesin any state are given by the
square of the absolute values of the amplitude in that state. It can be shown that in
order to conserve probabilities, the state transition matrix has to be unitary.

The machinery of quantum mechanical algorithmsisillustrated by discussing the three
operations that are needed in Grover algorithm. The first is the creation of a
configuration in which the amplitude of the system being in any of the 2" basic states
of the system is equal; the second is the Walsh-Hadamard transformation operation
and the third the selective rotation of different states.

A basic operation in quantum computing is that of a “fair coin flip” performed on a
single bit whose states are O and 1. This operation is represented by the following

matrix:

M :%E _11} (IV-57)
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A bit in the state O is transformed into a superposition in the two states: (% 1 j

V2

Similarly a bit in the state 1 is transformed into I.e. the magnitude of the

#3)
V2’42
1 but the phase of the amplitude in the state 1 is inverted.

V2

The phase does not have an analog in classical probabilistic algorithms. It comes about

amplitude in each state is

in quantum mechanics since the amplitudes are in general complex. In a system in
which the states are described by n bits (it has 2" possible states) we can perform the
transformation M on each bit independently in sequence thus changing the state of the
system. The state transition matrix representing this operation will be of dimension

2" X 2" In case the initial configuration was the configuration with all n bitsin the first

n

state, the resultant configuration will have identical amplitude of 2 2 in each of the 2"
states. Thisisaway of creating a distribution with the same amplitude in all 2" states.

Next consider the case when the starting state is another one of the 2" states, i.e. a state
described by an n bit binary string with some Os and some 1s. The result of performing
the transformation M on each bit will be a superposition of states described by all
possible n bit binary strings with amplitude of each state having a magnitude equal to
and sign either + or -. To deduce the sign, observe that from the definition of the

matrix M, i.e. M :i{l 11}, the phase of the resulting configuration is changed

J211

when a bit that was previously a 1 remains a 1 after the transformation is performed.

Hence if x be the n-bit binary string describing the starting state and y the n-bit binary
string describing the resulting string, the sign of the amplitude ofgz is determined by

the parity of the bitwise dot product of x andy , i.e.(~1)*” . This transformation is
referred to as the Walsh-Hadamard transformation. This operation (or a closely related
operation called the Fourier Transformation) is one of the things that makes quantum
mechanical algorithms more powerful than classical agorithms and forms the basis for

most significant quantum mechanical algorithms.
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The third transformation that we will need is the selective rotation of the phase of the

amplitude in certain states. The transformation describing this for a 4 state system is of
the form:

e” 0 0 0

0 €% 0 o

0 0 €% o0

0O 0 0 e*

(1V-58),

where j =+-1and ¢,,¢,,¢,.¢, are arbitrary real numbers.
Note that, unlike the Wash-Hadamard transformation and other state transition

matrices, the probability in each state stays the same since the square of the absolute

value of the amplitude in each state stays the same.

IV-7-3- The Problem

Let a system have N = 2" states which are labelled S;,S,,...Sy. These 2" states are
represented as n bit strings. Let there be a unique state, say S,, that satisfies the
condition C(S,) =1, whereas for al other states S, C(S) = 0 (assume that for any state
S, the condition C(S) can be evaluated in unit time). The problem is to identify the
State S,.

IV-7-4- Algorithm

1 1 1
amplitude to be in each of the N states. This distribution can be obtained in O(logN)
steps.
2- Repest the following unitary operations O(v/N Jtimes

1- Initialize the system to the distribution: ( j I.e. there is the same

a- Let the system bein any state S

In case C(S)=1, rotate the phase by = radians;

In case C(S)=0, leave the system unaltered.

b- Apply the diffusion transform D which is defined by the matrix D as follows:

D, =2ifi#jand D, =1 +2 .. (1V-59)
N N
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This diffusion transform, D, can be implemented as D=WRW , where R the rotation
matrix and W the Walsh Hadamard Transform Matrix are defined as follows:

Rj=0if i=j ;

Ri=1if i=0; Rj=-1if i =0 .

As discussed in before:

W, =2"2(-1)"), wherei is the binary representation of i , and i. j denotes the bitwise

dot product of the two n bit strings i and j .

3- Sample the resulting state. In case C(S,)=1 there is a unique state S, such that the
final stateis S, with a probability of at least 1/2.

IV-7-5- Explanation of the algorithm
The loop in step 2, is the heart of the algorithm. Each iteration of this loop increases

the amplitude in the desired state by O(%] , as aresult inOyY/N  repetitions of the

loop, the amplitude and hence the probability in the desired state reach O(1). In order

to see that the amplitude increases by O(ij in each repetition, we first show that the

JIN
diffusion transform, D, can be interpreted as an inversion about average operation. A
simple inversion is a phase rotation operation which is unitary.
In the following we show that the inversion about average operation is also a unitary
operation and is equivalent to the diffusion transform D as used in step 2-a of the
algorithm.

Let o denote the average amplitude over all states, i.e. if a; be the amplitude in the i

N
state, then the average is %Zai . As aresult of the operation D, the amplitude in
i=1

each state increases (decreases) so that after this operation it is as much below (above)

a asit was above (below) a before the operation.
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- _‘ - _‘ _______ Average (t)
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(befors)
Figure 1V-20: Inversion about average operation. [40]

The diffusion transform, D, is defined as follows:

Dij=2/Nif i # jand D;=-1+2/N ... (1V-60).
Next it is proved that D is indeed the inversion about average as shown in Figure | V-
20 . Observe that D can be represented in the form D=-1+2P where | is the identity
matrix and P is a projection matrix with P;=1/N for al i,j. The following two

properties of Pare easily verified: first, that P>=P and second, that P acting on any

vector gives a vector v each of whose components is equal to the average of all
components.

Using the fact that F?=P, it follows immediately from the representation D=-1+ 2P that
D?=1 and hence D is unitary.

In order to see that D is the inversion about average, consider what happens when D
acts on an arbitrary vector V. Expressing D as—I+2P, it follows that:

Dv=(=1+2P)v=—v+2Pv. Each component of the vectorv is A where A is the

average of all components of the vectorv . Therefore the i component of the vector is
given by (-vi+2A) which can be written as (A+(A-v;)) which is precisely the inversion
about average.

Next consider what happens when the inversion about average operation is applied to
a vector where each of the components, except one, are equal to a value, say C, which
i
JIN
Is approximately equal to C. Since each of the (N-1) components is approximately

is approximately ; the one component that is different is negative. The average A

equal to the average, it does not change significantly as a result of the inversion about
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average. The one component that was negative to start out, now becomes positive and

its magnitude increases by approximately 2C, which is approxi matdy% :
- Average
- - — = o — - Average
<l F% [T,

LTI,

efore)

L

g

(after)

Figure I V-21: The inversion about average operation [40]

In the loop of step 2, first the amplitude in a selected state is inverted (this is a phase
rotation and hence a valid quantum mechanical operation). Then the inversion about
average operation is carried out. This increases the amplitude in the selected state in

each iteration by O(LJ (thisisformally proved in theorem 1V-1).

JN
Theorem V-7 [40]
Let the state vector before step 2-a of the algorithm be as follows : for the one state

that satisfies C(S)=1, the amplitude is k, for each of the (N-1) remaining states the

amplitude is | such that (0 <k <%) andl - 0. The change in k (Ak) after steps (a)

and (b) of the algorithm is lower bounded by Ak - i. Also after steps (a) and (b),

2JN
| ~0.

Using Theorem V-7, it immediately follows that there exists a number M less than

V2N, such that in M repetitions of the loop in step 2, k will exceed % Since the

probability of the system being found in any particular state is proportional to the
square of the amplitude, it follows that the probability of the system being in the

desired state when k is % , isk?=1/2. Therefore if the system is now sampled, it will

be in the desired state with a probability greater than 1/2.
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Theorem 1V-8 [40]
D can be expressed as D=WRW, where W, the Walsh-Hadamard Transform Matrix

and R, the rotation matrix, are defined as follows

Rij=0if i # j " (1V-61)
Rii=1 if i=0, Rii=-1 if i=0 ... (1V-62)
W, =272 () (1V-63)

Theorem 1V-9 [40]
Let the state vector be asfollows : for any one state the amplitude is ky, for each of the
remaining (N-1) states the amplitude is I;. Then after applying the diffusion transform

D, the amplitude in the one stateis
2 N-1
k2 :(N—ljkl‘f‘z%ll (IV'64)

and the amplitude in each of the remaining (N-1) statesis

(N-2)

g:%h+ L (1V-65)

IV-7-6- How fast isit possibleto find the desired element:
There is a matching lower bound that suggests that it is not possible to identify the

desired element in fewer than Q(«/W )steps. This result states that any quantum

mechanical agorithm running for T stepsis only sensitive to O(T?)queries (i.e. if there
are more possible queries, then the answer to at least one can be flipped without

affecting the behaviour of the algorithm). So in order to correctly decide the answer
which is sensitive to N queries will take a running time of T:Q(\/W). To see this
assume that C(S)=0 for all states and the algorithm returns the right result, i.e. that no
state satisfies the desired condition. Then, if T< Q(«/W ) the answer to at least one of

the queries about C(S) for some S can be flipped without affecting the result, thus

giving an incorrect result for the case in which the answer to the query was flipped.
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| V-7-7- Implementation considerations

This algorithm is likely to be ssmpler to implement as compared to other quantum
mechanical algorithms for the following reasons:

1- The only operations required are, first, the Walsh-Hadamard transform, and second,
the conditional phase shift operation both of which are relatively easy as compared to
operations required for other quantum mechanical algorithms.

2- Quantum mechanical agorithms based on the Walsh-Hadamard transform are likely
to be much simpler to implement than those based on the “large scale Fourier
transform”.

3- The conditional phase shift would be much easier to implement if the algorithm was
used in the mode where the function at each point was computed rather than retrieved
form memory. Thiswould eliminate the storage requirements in quantum memory.

4- In case the elements had to be retrieved from a table (instead of being computed), in
principle it should be possible to store the data in classical memory and only the
sampling system need be quantum mechanical. This is because only the system under
consideration needs to undergo quantum mechanical interference, not the bits in the
memory. What is needed, is a mechanism for the system to be able to feel the values at
the various datapoints something like what happens in interaction-free measurements.
Note that, in any variation, the algorithm must be arranged so as not to leave any trace
of the path followed in the classical system or else the system would not undergo

guantum mechanical interference.

IV-7-8- The programme of Grover’ssearch algorithm in MATLAB programme
%Search Alghorithm.

clear all;

nqubits=6; %number of g-bits

n=2"nqubits;, %nnumber of elementsin database
findmode=mod(round(n*rand+1),n); %desired element
%-----defining quantum gates

d=-eye(n)+2/n; %diffusion transform
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oracle=eye(n); %oracle
oracle(findmode,findmode)=-1;

%--calculate the optimal number of iterations---
finish=round(pi/4* sgrt(n));
%--step(i)--initialization----
psistart=ones(n,1)/sqrt(n);

psi=psistart* exp(i* rand);

%step (ii)--algorithm body----

for steps=1:finish

steps

psi=d* oracle* psi;

probability(steps)=psi (findmode)* conj(psi (findmode));
end

%see the probability dynamics
plot(probability);

%see the result distribution

figure;

stem(psi.* conj(psi));

IV-7-9- Simulation of Grover algorithm with MATLAB programme: Example of
6nqubits :

>> nqubits=6

nqubits =6

>> n=2"nqubits

n= 64

>> findmode=mod(round(n* rand+1),n)

findmode = 62

>> d=-eye(n)+2/n;

>> plot(d)
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>> oracle=eye(n);

>> plot(oracle)
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Plot d figure"diffusion transform"
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Plot oracle figure

70
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>> oracle(findmode,findmode)=-1,

>> plot(oracle)

70
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Plot oracle(findmode, findmode)
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o
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0.61|1

[o2]

0.4r111]
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N

0.2+

0.4

-0.6F

-0.8F

>> finish=round(pi/4* sqrt(n))
finish= 6

>> psistart=ones(n,1)/sqrt(n);
>> plot(psistart)

Plot psistart figure "initialization’
T T T

>> psi=psistart* exp(i* rand);

>> for steps=1:finish
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Steps

psi=d*oracle*ps;

probability(steps)=psi (findmode)* conj(psi (findmode));
end

>> figure;

>> stem(psi.* conj(ps));

The result distribution”stem"
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IV-8- Conclusion:

Quantum computers may solve some problems dramatically faster than conventional
machines. One example is searching an unordered set for an item with specific
properties. A guantum algorithm can find such an item (a "solution") in a time
proportional to the square root of the size of the set, which is considerably faster than
conventional ("classical") methods that take the same time as the size of the set.
Comparing to classical agorithm, with one solution out of 10 items, four steps of the
guantum algorithm give less chance for a solution than two steps, showing the

guantum algorithm can perform worse with more steps. And With one solution out of
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1000 items, the quantum algorithm performs well with just 25 steps, which is much
better than the classical method. Thus the control number of items and steps set the
difficulty of the problem by changing the size of the set and the number of steps.

The classical algorithm is generate-and-test, that is, examine items one at atime until a
solution is found. When the set has n items, the probability of finding a solution
increases monotonically with the number of items examined until, after n steps; a
solution is guaranteed to be found. The classical algorithm stops as soon as it finds a
solution.

In the quantum algorithm, due to Lov Grover, the probability of finding a solution is

close to 1 when the number of stepsis about (%)\/ﬁ . S0 the average number of stepsin

finding a solution is proportional to+/n, much less than the linear growth with n for the
classical agorithm. The quantum algorithm gives no answer until it completes the
prespecified number of steps, and must restart from the beginning if it does not find a
solution. Each repetition adds to the total number of steps required by the agorithm.
Thus, if Pgeps is the probability of finding a solution when run for a given number of
steps, the average number of steps required to find a solution, including any repetitions
IS: Steps/Pgeps.

The probability for the quantum algorithm to find a solution oscillates with the number
of steps. So taking more steps than needed to reach probability near 1 decreases the
chance of finding a solution. Thus, the quantum agorithm requires care in selecting
the number of steps. In addition, physical implementation of the quantum method in
terms of qubitsis simplest when the number of itemsis a power of two.

Finally, we can suspect that quantum computers work better than classical one
because quantum computers need not limit themselves to checking each entry in
succession. Instead, quantum computers can check several candidates at once using
guantum paralelism. Unfortunately, the same quantum rules that let quantum
computers feign parallelism exact a terrible price: they make it impossible to learn the
individual outcomes of all the parallel computations, permitting instead only a
collective property to be determined. Fortunately, this still offers enough of an

advantage to let a guantum search beat a classical search.
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General conclusion

During the past forty years astounding advances have been made in the manufacture of
computers. The number of atoms needed to represent a bit in memory has been
decreasing exponentially since 1950. Likewise the numbers of transistors per chip,
clock speed, and energy dissipated per logical operation have all followed their own
improving exponentia trends. This rate of improvement cannot be sustained much
longer; at the current rate in the year 2020 one bit of information will requite only one
atom to represent it. The problem is that at that size the behaviour of a computer's
components will be dominated by the principles of quantum physics.

Asit isshown in the first chapter of our thesis when components shrink to where their
behaviour will soon be dominated more by quantum physics than classical physics,
researchers have begun to investigate the potential of these quantum behaviours for
computation. These physical limitations of the classical computer and the possibility
that the quantum computer can perform certain useful tasks more rapidly than any
classical computer drive the study of quantum computing.

In chapter two after we present the important notions of quantum mechanics used in
our thesis result, we move to talk about qubits. In a quantum computer, the
fundamental unit of information (called a quantum bit or qubit), is not binary but
rather more quaternary in nature. This qubit property arises as a direct consequence of
its adherence to the laws of quantum mechanics which differ radically from the laws of
classical physics. A qubit can exist not only in a state corresponding to the logical
state 0 or 1 as in a classical bit, but aso in states corresponding to a blend or
superposition of these classical states.

In chapter three we discuss the progress which has been made in recent years in the
experimental controlled manipulation of very small quantum systems that cannot be
called other than spectacular, in away that was not imaginable not long ago. Quantum
gates have been implemented in the quantum optical context, and with nuclear
magnetic resonance (NMR) techniques, single and coupled quantum dots experiment,
charge and spin control in quantum dots experiment, spin relaxation and quantum dot
guantum computing experiment using control over spins, even small guantum

algorithms have been realized. Any such implementation will eventually have live up
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to some requirements that have may be most distinctly been formulated by
DiVincenzo as generic requirements in practical guantum computation.

In parallel to the development of the application of quantum physics in the creation of
guantum computers, also quantum algorithms were developed. In the fourth chapter
we discuss the development of these algorithms which lead us to confirm the capacity
and the speed of quantum computers as a final result of our work. In the same
scientific paper in which David Deutsch introduced the notion of the universal
guantum computer, he also presented the first quantum algorithm. Yet the Deutsch
algorithm already exemplifies the advantages of a quantum computer through
skillfully exploiting quantum parallelism. Like the Deutsch algorithm, other
elementary quantum algorithms as Deutsch-Jozsa' s algorithm and Simon’s algorithm
amount to deciding which black box out of finitely many alternatives one has at hand.
Such a black box is often aso referred to as oracle. An input may be given to the
oracle, one may read out or use the outcome in later steps of the quantum agorithm,
and the objective is to find out the functioning of the black box. It is assumed that this
oracle operation can be implemented with some sequences of quantum logic gates.
Following Deutsch's algorithm, Shor demonstrated in 1994 that integers can be
efficiently factorized on a quantum computer. It has lead to extensive work on
developing new quantum algorithms. Finally we consider a case of study which is a
comparison between Grover's algorithm or quantum "data base" search algorithm and
classical "data base" search algorithm. As a result we find that Grover's algorithm
allows a quantum computer to perform an unstructured search quadratically faster than
any classical algorithm. This improves the capacity and the speed of quantum
computers.

Now we know what purposes a quantum computer may serve, what tasks it may
perform well, better than any classica computer, and have sketched what the
underlying computational model is like. Also, ways have been described to fight
decoherence that is due to the coupling to the environment, and eventually to the same

devices that are designed to perform the read-out.
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APPENDIX A

A-1- Lithography:

Optical lithography (photolithography) is a major application in the particle-matter
interaction, and constitutes the classical process for fabricating integrated circuits. It is
akey step in defining circuit patterns, and remains a barrier to any future devel opment.
Since resolution, at the out set, appears to be directly proportional to wave-length,
feature size first progressed by a step-wise shortening of the wave length of the
radiation used.

The operation works via a reduction lens system, by the exposure of photoresist film to
energy particles from the Ultraviolet photons currently used through to x photons,
ions, and finaly electrons, al through a mask template carrying a pattern of the
desired circuit. The am of all thisis to transfer this pattern on to a stack of insulating
or conducting layers that make up the mask. These layers will have been deposited
previously (the layering stage) on a wafer of semiconductor material, generally silicon.
After this process, the resin dissolves under exposure to the air (development). The
exposed parts of the initial layer can then be etched selectively, then the resin is lifted
away chemically before deposition of the following layer. This lithography step can
take place over twenty times during the fabrication of an integrated circuit.

In the 1980's, the micro electronics industry used mercury lamps delivering near UV
through quartz optics, with an emission line of 436 nanometers (nm). This system was
able to etch structures to a feature size of 3microns. This system was used through to
the mid 90s, when it was replaced by excimer laser; which is a laser in which
resonance cavity contains a halogen gas (for example, an argon fluorine mixture) and
which delivers UV light pulses with durations in the nanosecond range and energies of
the order of afew hundred mj; emitting far UV light (KrF, krypton fluoride at 248 nm
then ArF, argon fluoride at 193 nm, with the photons thus created generating several
electron volts) that were able to reach a resolution of 110 nm, pushed to under 90 nm
with new processes.

In the 1980s, the CEA's (Electronics and Information Technology Laboratory)
pioneered the application of lasers in lithography and the fabrication of integrated

circuit production still uses these sources.

UH.B.C 143



Appendix

The next step for high volume production was expected to be the F2 laser (157 nm),
but this lithography technology has to all intents and purposes been abandoned due to
complications involved in producing optics in CaF2, which is transparent at this wave
length. While the shortening of wave lengths in exposure tools has been the driving
factor behind the strong resolution gain aready achieved, two other factors have
nevertheless played key roles. The first was the development of play mer-latice
photoresist with low absorbance at the wave lengths used, implementing progressively
more innovation input energy reflection/emission systems. The second was enhanced
optics reducing diffraction interference (better surface quality, increase in numerical
aperture).

Over the years, the increasing complexity of the optical systems has led to resolutions
actually below the source wave-length. This development could not continue without a
major technological break through a huge step forward in wave-length. For
generations of integrated circuits with a lowest resolution of between 80 and 50 nm
(the next node being at 65 nm), various different approaches are competing to offer
particle projection at ever shorter wavelengths. They use either "soft" x-rays at
extreme ultraviolet wavelength (around 10nm), "hard" x-ray at wavelengths below
1nm, ions or electrons.

The step crossing below the 50nm barrier will lead towards low-electron energy
(10eV) enabled nano lithography with technology solution such as the scanning
tunneling microscope and molecular beam epitaxy for producing "superlattices".

A-2- Molecular beam epitaxy:

Quantum wells are grown using Molecular Beam Epitaxy (from the greek taxi,
meaning order, and epi, meaning over), or MBE. The principle of this physical
deposition technique, which was first developed for growing I11-V semiconductor
crystals, is based on the evaporation of ultra-pure elements of the component to be
grown, in a furnace under ultra-high vacuum (where the pressure can be as low as
5.10™ mbar) in order to create a pure, pollution-free space.

One or more thermal beams of atoms or molecules react on the surface of a single-
crystal wafer placed on a substrate kept at high temperature (several hundred °C),

which serves as a lattice for the formation of a film called epitaxial film. It thus
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becomes possible to stack ultra-thin layers that measure a millionth of millimeter each;
ie: composed of only afew atom planes.

The elements are evaporated or sublimated from an ultra-pure source placed in
effusion cell (or Knudsen cell; an enclosure where a molecular flux moves from a
region with a given pressure to another region of lower pressure) heated by the Joule
effect.

A range of structural and analytical probes can monitor film growth in situin real time,
particularly using surface quality analysis and grazing angle phase transitions by
LEED (Low Energy Electron Diffraction) or RHEED (Reflection High Energy
Electron Diffraction). Various spectroscopic methods are also used, including Auger
el ectron spectroscopy, Secondary lon Mass Spectrometry (SIMS), X-ray Photoelectron
Spectrometry (XPS) or Ultraviolet Photon Electron Spectrometry (UPS).

As ultra-high vacuum technology has progressed, molecular beam epitaxy has
branched out to be applied beyond I11-V semiconductors to embrace metals and
insulators. In fact, the vacuum in the growth chamber, whose design changes
depending on the properties of the matter intended to be deposited, has to be better
than 10" mbar in order to grow an ultra-pure film of exceptional crysta quality at
relatively low substrate temperatures. This value corresponds to the vacuum quality
when the growth chamber is a trest. Arsenide's, for example, grow at a residua
vacuum of around 10®mbar as soon as the arsenic cell has reached its set growth the
temperature.

The pumping necessary to achieve these performance levels draws on severad
technigues using ion pumps, cryopumping, titanium sublimation pumping, diffusion
pumps or turbo-molecular pumps. The main impurities (H,, H,O, CO, and CO,) can
present partial pressures of lower than 10 *mbar.

A-3- Phase Kick-Back

When described in the classical basis, the CNOT gate appears to do nothing to the
control qubit, it can in fact affect the control qubit just as much as it does the target
qubit. For example, in the Hadamard basis, the role of control and target qubit is

effectively switched, for example,
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on (S| 25E)-([5

Notice that (Mjis an eigenvector (or eigenstate) of the X(NOT) gate with

2

eigenvalue —1, and an eigenvector of the identity gate with eigenvalue +1. Since the

CNOT appliesthe NOT gate to the target qubit if the first qubit isin state|1) , we get

CNOT :|1>(%) |1>(NOT(|O>\/_2| >D:|1>[(_1)(%D_ ; >(|O>\/_2|1>J

Since the CNOT applies the identity gate (i.e. does ‘nothing’) to the target qubit if the
first qubit isin state|0) , we get

CNOT : |o>(%] N O>(|O>\/_2|1>]

Since the target qubit is in an eigenstate, it does not change, and we can effectively
treat the eigenvalue as being ‘kicked back’ to the control register.
Note that this can be summarized as

whereb € {0,1}. When the control qubit isin a superposition of |0)and |1), we have

CNOT : (a,|0) +a1|1>{%] > (ag]0) = al|1>{|0>\/_2|1>j

(notice this corresponds to effecting the Z gate to the control qubit).

Let us consider the effect of a more general 2-qubit gate Uf implementing an arbitrary
function f: {01}~ {01tby mapping U, =|x)|y) > |x)|y® f(x)) (this mapping is

reversible even though the function f may not itself be invertible).

Let us fix the target register to the state—((0) —|1)), and analyse the action of Uy on an

72

arbitrary basis state in the control qubit:
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v, :|x>['°>f"1>]H (Uf|x>|0>}uflx>ll>} %08 £(x)-[¥)1® 1 (x)
2 2 >
Coflo® f(x)-[1@ f(x))
_|x>( N j

We know that the action of * @ f(x)’ has no effect onasinglebitif f(x) =0 (i.e.b ® 0=
b), and * @ f(x)’' flipsthe state of the bit if f(x) = 1.

Consider the expression i(]O@ f(x))—|1@ f(x))) in the two cases f(x) = 0 and f(x) =

J2

1

. _lo-Jy
f(9=0: (08 1 (x))-p@ f(x))= =7

1 D-19) _ (19—
f(9=1:7=(0® 1 (x)-j1o f())= =7 ( J2 ]
These two possibilities differ by a factor of (—1) which depends on the value of f(x).
We have
1 e [0
L tow 16310 1) (- 21

So the above state can be rewritten as

{2

Associating the (—1)"™ factor with the first qubit, we have

o, ef 2o e 22

When the control qubit isin a superposition of |0) and|1), we have

U, :(a0|0>+a1|1>{|0>\/__2|1>j9((—1)f(o)a0|0>+(—1)f(1)a1|1>{|0>\/__2|1>j

We can think of Us as a 1-qubit operator . 0 1(x (Which maps|b) - [b@® f(x))) acting on

the second qubit, controlled by the state | x) of the first register, as shown in Figure 6.6.

We may sometimes write c— U t(x)Instead of Us .
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B

) — — 18 f{z)) ) —l f(,,,)—U b Ja))

Figure A-1: The 2-qubit gate U, :|x)|y) > |x)|y @ f(x))can be thought of as a 1-qubit
gate. 0 t(x) acting on the second qubit, controlled by the first qubit.

0)-(1
Notice in that thestate| )~ | >of the second register is an eigenvector ofo

72

0)-|1) : S =
% U ( 7 )

0)-|9
72

eigenvalue (—1)™ can be ‘kicked back’ in front of the target register.

Figure A-2: The state | of the target register is an eigenstate of 0 t(x). The
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APPENDIX B

B-1- Fourier Transforms

The Fourier transform defines a relationship between a signal in the time domain and
Its representation in the frequency domain. Being a transform, no information is
created or lost in the process, so the original signal can be recovered from knowing the
Fourier transform, and vice versa.

The Fourier transform itself is defined by the equation

X(f)= J'x(t)e’iz”ﬁdt
where X(f) is the Fourier transform of x(t) Frequency is measured in Hertz, with fas the

frequency variable.

B-2- Fast Fourier Transform

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which
reduces the number of computations needed for N points from 2N*o 2N Ig N, where g
IS the base-2 logarithm. If the function to be transformed is not harmonically related to
the sampling frequency, the response of an FFT looks like a sinc function (although
the integrated power is still correct). Aliasing (leakage) can be reduced by apodization
using atapering function. However, aliasing reduction is at the expense of broadening
the spectral response.

Fast Fourier transform algorithms generaly fall into two classes. decimation in time,
and decimation in frequency. The Cooley-Tukey FFT agorithm first rearranges the
input elements in bit-reversed order, then builds the output transform (decimation in
time). The basic idea is to break up a transform of length N into two transforms of
length N/2 using the identity

V- The Quantum Fourier Transform

Let us assume that we start with the state | x) = | x,_; )| Xy_, )-- ;)| %)

which is the bit representation of the N digit number x with Xy being the value of the

least significant bit, and x,, ; that value of the most significant bit. Thus the number x is
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N-1
givenby x= Z X, 2" with the x, taking the values O or 1. We now want to take this

m=0
state to the state F|x) = %/Zeiz”"“” |ky...ky ) Where kis the number represented by
272 «

N-1
k=Y k, 2"
=0

=

Note that we have reversed the representation for k so that the least significant bit is
represented by the first qubit state, and the most significant is represented by the last
qubit state.

Now, the phase factor can be rewritten as

|27zkx2 N |2nz z x_ omm-N .2;12 ZN —1-n 2n+m—N
n=0 N m=0 m - n=0 N

since €2 =1 if 0<n+m-N. We thus notice that the phase for any given value of n
(ie the n-th least significant bit of k) depends only on the values of the bits of x of

order lessthat N-1-n. If we line up the bit representations of k and x we have

XN-1 XN-2 . XN-1-n . X1 Xo

ko ke . K . Kn-2 Kn-1

The Fourier factor which dependson k;, is

|27zk N-1-n 2n+m—N _ |27zk N-1-n m+1)
- N -1-n- m

and depends only on those bits of the representation of x which lie at or to the right of
that bit in the representation of k. Furthermore, we note that in the factor which
depends on k,, the phase which depends on the largest x bit, namely Xn.1.n IS
e ™0 which has only values of plus or minus 1.

We can now perform the Fourier Transform bit by bit starting with the lowest digit of

k, namely ko. Let me assume that we have managed to transform the state |x)by

replacing the r-1 highest digits of x with the lowest r-1 digits of k. |.€., | have created,

by some sequence of transformations, the state
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B —(m+1)
1 |2ﬂanZxN,,,W2
e " "0 KoKy K Xy g o)

We now show how to advance this to next stage where we will create the expression

up to the rth bit. We can accomplish this by generating a transformation of the form
D KoKy Xy %)

%| ko...krl>@ [ i ) S 2 j| Xn 15X

This transformation can be decomposed into the two sets of transformations
KooKy )| Xnoor )| Xnro2--Xo )

g2 Z::_r Xntrm 2| KooK ) X z-eXo )

and

KooK )| Xy—r_aeXo)

g2k Z::_r Xntrm 2| KooK ) X z-eXo )

Thefirst transformation isjust a % rotation of the rth bit.

0)>(0)+[1)

1

B (0-19)

The second set just corresponds to a series of controlled one bit phase rotations.

N-1-r

T 02Kk 2] = k) T 657 )

m=1

l.e,, these are transformations which phase rotate the |, ,)bit depending on
whether |k, ) bit is one or zero.
Thus given the transform up to r-1 bits, it requiresasingle % rotation of asingle hit,

and N-r-1 controlled single-hit phase rotations, for a total of N-r operations. Thus the
whole Fourier transformation requires er’Ol(N —r)=N(N+1) 4 operations (N, we

recall isthe number of bitsin each of the numbers).
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If we apply this Fourier transform to a state of the form |¢)=>a,|x)

we get for the Quantum Fourier Transform

QFTI9) =TT e =F| T e*a |

22

Theterm in the brackets is just the discrete Fourier transform of «, .

Note again that the representation |k) is the bit reversed of the representation of x.

While one could do a bit reversal operation to get |k)into the same bit order as|x),

there is no point.

N
N-1 B : Kk A—l .
zane Zﬂm%\‘ _ zazn 2XI(2n)Aj n za2n+le—2m(2x+1)k/N
n=0 k=0
N-1 A 1 /2 1
—Zmn/ —2mnk( /) —27m k —Zmnk(/)

ae N= E E 2

n=0 " n=0 n k=0 n
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APPENDIX C

C-1- Grover MATLAB program commands definition and description

a- Round: Round to nearest integer

Syntax: Y = round(X)

Description: Y = round(X) rounds the elements of X to the nearest integers. For
complex X, the imaginary and real parts are rounded independently.

b- rand: Uniformly distributed pseudorandom numbers

Syntax:

Y =rand

Y =rand(n)

Y =rand(m,n)

Y =rand([mn])

Y =rand(m,n,p,...)

Y =rand([mnp...])

Y =rand(size(A))

rand(method,s)

s = rand(method)

Description: Y = rand returns a pseudorandom, scalar value drawn from a uniform
distribution on the unit interval.

Y =rand(n) returns an n-by-n matrix of values derived as described above.

Y =rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of the same.

Y =rand(m,n,p,...) or Y =rand([m n p...]) generates an m-by-n-by-p-by-... array of the
same.

Y =rand(size(A)) returns an array that isthe same size as A.

rand(method,s) causes rand to use the generator determined by method, and initializes
the state of that generator using the value of s.

The value of sis dependent upon which method is selected. If method is set to 'state’ or
‘twister', then s must be either a scalar integer value from 0 to 2*32-1 or the output of
rand(method). If method is set to 'seed’, then s must be either a scalar integer value
from O to 2°31-2 or the output of rand(method).

c- mod : Modulus after division
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Syntax : M = mod(X,Y)

Description: M = mod(X,Y) if Y ~=0, returns X - n.*Y where n = floor(X./Y). If Y is
not an integer and the quotient X./Y is within roundoff error of an integer, then n is
that integer. The inputs X and Y must be real arrays of the same size, or real scalars.
The fallowing are true by convention: mod(X,0) is X mod(X,X) is 0 mod(X,Y) for
X~=Y and Y~=0 hasthe samesignas.

Examples:

mod(13,5)

ans=3

d- eye : Identity matrix

Syntax :

Y = eye(n)

Y = eye(m,n)

Y = eye(size(A))

eye(m, n, classname)

eye([m,n],classname)

Description:

Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and O's
elsewhere.

Y = eye(size(A)) returns an identity matrix the same sizeasA.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n matrix with 1's of class
classname on the diagonal and zeros of class classname elsewhere. classname is a
string specifying the data type of the output. classname can have the following values:
‘double, 'singl€e, 'int8', 'uint8', 'intl6', 'uintl6', 'int32', 'uint32, 'inté4', or 'uint64'.
Example: x = eye(2,3,'int8);

Limitations: The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) resultsin an error.

e- ones: Create an array of all ones

Syntax :

Y = ones(n)
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Y = ones(m,n)

Y =ones([mn])

Y =ones(d1,d2,d3...)

Y =ones([d1d2d3...])

Y = ones(size(A))

ones(m, n,...,classname)

ones([m,n,...],classname)

Description:

Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is not a
scalar.

Y =ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y =ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s with dimensions
d1-by-d2-by-d3-by-....

Y = ones(size(A)) returns an array of 1sthat is the same size as A.

ones(m, n,...,classname) or ones([m,n,...],classname) is an m-by-n-by-... array of ones
of data type classname. classname is a string specifying the data type of the outpuit.
classname can have the following values. 'double’, 'single’, 'int8', 'uint8', 'intl6
'uintl6', 'int32', 'uint32', 'int64', or 'uinté4'.

Example: x = ones(2,3,'int8");

f- plot: Plot data series

Syntax:

plot(tsobyj)

hp = plot(tsobj)

plot(tsobj, linefmt)

hp = plot(tsobj, linefmt)

plot(..., volumename, bar)

hp = plot(..., volumename, bar)

Description:

plot(tsobj) plots the data series contained in the object tsobj. Each data series will be a
line. plot automatically generates alegend as well as dates on the x-axis. Grid is turned

on by default. plot uses the default color order asif plotting a matrix.
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The plot command automatically creates subplots when multiple time series are
encountered, and they differ greatly on their decimal scales. For example, subplots are
generated if one time series data set isin the 10s and another'sisin the 10,000s.

hp = plot(tsobj) additionally returns the handle(s) to the object(s) inside the plot figure.
If there are multiple linesin the plot, hp is avector of multiple handles.

plot(tsobj, linefmt) plots the data series in tsobj using the line format specified. For a
list of possible line formats, see plot in the MATLAB documentation. The plot legend
IS not generated, but the dates on the x-axis and the plot grid are. The specified line
format is applied to all data series; that is, all data series will have the same line type.
hp = plot(tsobj, linefmt) plots the data series in tsobj using the format specified. The
plot legend is not generated, but the dates on the x-axis and the plot grid are. The
specified line format is applied to all data series, that is, al data series can have the
same line type. If there are multiple linesin the plot, hp is avector of multiple handles.
plot(..., volumename, bar) additionally specifies which data series is the volume. The
volume is plotted in a subplot below the other data series. If bar = 1, the volume is
plotted as a bar chart. Otherwise, aline plot is used.

hp = plot(..., volumename, bar) returns handles for each line. If bar = 1, the handle to
the patch for the barsis al so returned.

g- Stem: Two-Dimensional Stem Plots

A stem plot displays data as lines (stems) terminated with a marker symbol at each
datavalue. In a2-D graph, stems extend from the x-axis.

The stem function displays two-dimensional discrete sequence data. For example,
evaluating the function with the values

apha=.02; beta=.5; t = 0:4:200;

y = exp(-alpha*t).* cos(beta*t);

yields a vector of discrete values for y at given values of t. A line plot shows the data
points connected with a straight line.

plot(t,y)

A stem plot of the same function plots only discrete points on the curve.

stem(t,y)

Add axes labelsto the x- and y-axis.
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Résumé

Utiliser le spin d’ un électron comme « bit quantique » (formant ainsi un qubit)
pour manipuler et stocker I'information quantique représente I’ une des options
les plus prometteuses de la nanotechnol ogie a envisager pour laréalisation d’ un
nanoprocesseur quantique. Le domaine qubit de spin a connu ces derniéeres
années un essor prodigieux. Ainsi lorsgu’un électron est piégé dans une boite
guantique défini dans une nanostructure, on peut mesurer son spin, le
manipuler et le faire interagir de maniére cohérente avec un autre spin,
définissant ains que le transport de spin. Le chainon expérimental manquant
pour compléter les opérations essentielles dans un ordinateur quantique est le
transport cohérent d’ un spin éectronique. |l permettra d’ envisager laréalisation
d’ ordinateurs quantiques.

Nous nous proposons dans ce projet d étudier le phénomene de transport de
spin électronique et de I’ utilisé le dans la réalisation des ordinateurs quantiques,

ains que dansI'implémentation des algorithmes quantiques.

Summary

During the past forty years astounding advances have been made in the
manufacture of computers. The number of atoms needed to represent a bit in
memory has been decreasing exponentially since 1950. Likewise the numbers
of transistors per chip, clock speed, and energy dissipated per logical operation
have all followed their own improving exponentia trends. This rate of
improvement cannot be sustained much longer; at the current rate in the year
2020 one bit of information will requite only one atom to represent it. The
problem is that at that size the behaviour of a computer's components will be
dominated by the principles of quantum physics.

In our work we talk about the exploitation of the spin transport in
nanomaterials to realise quantum computer. In addition we simulate some of
the quantum algorithm to show the differences between the classical computer

and the quantum one.
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