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Overview

Our work is organized as follows.

In chapter 1, we give a short historic and background about the nonlinear
Schrödinger equation (NLSE) and its solitonic solutions.

In chapter 2, we present the Balian-Vénéroni time dependent variational
principle, which is the main tool to derive the Gross-Pitaevskii equation
(GPE) and its generalizations in a mean field framework. Since these equa-
tions are highly nonlinear, they require special analytic tools. We present the
general formalism of the Darboux transformation method and the Lax pair
method. For readers who are not familiar with these methods, we present a
simple example.

In chapter 3, we focus on two component condensates where we find
solitonic solutions of the coupled Gross-Pitaevskii equations (CGPE). By
transforming our model to a Manakov system via similarity transformation
and employing Darboux transformation with zero seed, we observe that the
introduction of an external trap leads to sudden shoots up in the atomic
density indicating onset of dynamical instability.

We pursue our analysis in chapter 4 by finding another type of solitons,
namely the Peregrine solitons. The Darboux transformation is used in two
cases. The symmetric case with the same seed solutions and the nonsym-
metric case. One also observes the onset of dynamical instability as the
frequency of the harmonic trap is varied. By a specific choice of the spectral
parameters, we show that these solitons may be stabilized. In chapter 5,
we generalize our approach by letting free the spectral parameters. We find
general families of solitonic solutions parametrized by the spectral parame-
ters. We derive not only the Peregrine solitons found previously, but also
the standard families of Ma and Akhmediev breathers as well as new general
breathers and rogue waves. In all these cases, we show that, by modulating
the trap frequency, we are be able to stabilize the solitons against dynamical
instability.

In the last part of our work, we gather some conclusions and perspectives.

1



We have added an appendix at the end of the thesis where we present
detailed derivations of the variational equations in the two component dilute
Bose gas case.
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Chapter 1

General Introduction

General Introduction

Nature is nonlinear, and that is why we find a large class of nonlinear prob-
lems in different disciplines of science, engineering, and technology. Most of
the nonlinear phenomena are modeled in the form of nonlinear ordinary and
partial differential equations PDEs. The discretization of nonlinear ordinary
and partial differential equations provide the system of nonlinear equations.
PDEs are often referred as Equations of Mathematical Physics (or Mathe-
matical Physics but it is incorrect as Mathematical Physics is now a separate
field of mathematics) because many of PDEs are coming from different do-
mains of physics (acoustics, optics, elasticity, hydro and aerodynamics, elec-
tromagnetism, quantum mechanics, seismology etc). However PDEs appear
in other fields of science as well (like quantum chemistry, chemical kinet-
ics), some PDEs are coming from economics and financial mathematics, or
computer science.

A nonlinear partial differential equation(PDE), such as the Korteweg
de Vries (KdV) equation, nonlinear Schrödinger equation(NLSE), and sine-
Gordon equation, are associated with an important mathematical property
called integrability, where the system possesses infinitely many integrals of
motion.

Soliton equations, in the mathematical sense of the term, provide re-
markable examples of integrable systems with an infinite number of degrees
of freedom. This is the reason why they have interested mathematicians ,
so much so that many works on solitons are strongly oriented towards the
mathematical aspects of the theory. The discovery of solitons was one of
the most important developments in the field of nonlinear dynamics. Soli-
tons arise in a nonlinear partial differential equation. The discovery has also
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led to the development of analytical methods, devoted to solve these non-
linear PDEs . Getting the exact solutions of these integrable systems has
become one of the important research topics in theory and practical appli-
cations. Quite a few approaches for finding exact solutions of such nonlinear
systems are well established, such as the inverse scattering method [1], the
Darboux transformation(DT) method [2, 3], the similarity transformation
method [13, 14, 15, 16]. Among these approaches, the DT is well known to
be a powerful method for finding exact solutions of integrable systems [2].

The Darboux transformation, or analogously Bäcklund or dressing trans-
formation, applies only to systems of linear differential equations and cannot
be applied directly to nonlinear differential equations. To be able to apply
the DT to certain nonlinear differential equations,one finds a linear system
of equations that is equivalent to a nonlinear differential equation. The re-
lation between the linear system and the nonlinear differential equation is
established through a consistency condition satisfied by the linear system.
The Darboux transformation is then applied to the linear system resulting
in transforming the equivalent nonlinear equation as well. The linear sys-
tem is usually represented in terms of a pair of matrices called the Lax pair
which must satisfy a consistency condition that is equivalent to the differen-
tial equation at hand. The difficulty is usually in finding this Lax pair. In
addition to the Lax pair, one also needs to know an exact solution of the
nonlinear differential equation. This exact solution is then used as a seed for
the Darboux transformation to generate other exact solutions

Integrable System︷ ︸︸ ︷
Seed Solution→ System→ Lax pair⇒ Darboux Transformation
Analytic solutions of the nonlinear evolution equations, such as solitons,

breathers and rogue waves, have received a large of research activities in
many realms. When the effect of dispersion and nonlinearity is balanced
in nonlinear waves during propagating, solitons will be formed.These waves
keep their features (amplitudes, speeds and so on) unchanged, during their
propagation and after interacting with each other. In many cases, they are
considered as the ideal solution models in physics [11]. Solitons are localized
wave packets that balance the wave dispersion with a focusing nonlinearity.
They maintain their shape and amplitude while propagating with a constant
velocity. When two or more solitons collide with each other, the solitons
emerge from the collisions unchanged in shape, amplitude, and velocity, a
particle-like behavior that earned them their name. Solitons are ubiquitous
in physical systems, such as water waves, optical waves, plasma waves, matter
waves, and biological systems, such as DNA.

As particular solutions of nonlinear systems, breathers propagate steadily
and localize in either time or space, especially Akhmediev breather (AB)
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[17, 18]and Kuznetsov-Ma breather (KM) [19]. Another special type of an-
alytic solutions are the rogue waves which are localized in both space and
time, and they have peak amplitudes usually are more than twice the back-
ground wave height [20, 21]. Besides, rogue waves appear from nowhere and
disappear without a trace. But now, the study of the rogue waves is still
only in its infancy. The mechanisms and probability of its occurrence are
not clear. Because observing of rogue waves on the ocean is very difficult
and dangerous, unreliable and few records and observations are available.
Recently efforts have been made to explain the RW excitation through a
nonlinear process. It has been found that the NLSE can describe many dy-
namical features of the RW. Certain kinds of exact solutions of NLSE have
been considered to describe possible mechanism for the formation of RWs
such as Peregrine soliton, time periodic breather or Ma soliton (MS) and
space periodic breather or Akhmediev breather (AB) . As a consequence at-
tempts have been made to construct RW solution through different methods
for the NLSE and its higher derivative generalizations. One way of obtaining
RW solution or Peregrine soliton for a given system is to first construct a
breather solution, either AB or MS. From the latter, the RW solution can be
deduced in an appropriate limit.
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1.1 Bose-Einstein Condensation

1.1.1 A brief summary

Bose-Einstein Condensate is a new state of matter. This new phenomenon
is reflected by the fact that a fraction of the total number of particles tend
to occupy the lowest energy. When a gas of bosonic atoms is cooled below
a critical temperature Tc, a large fraction of the atoms condenses into the
lowest quantum state. This phenomenon was first predicted by Albert Ein-
stein in 1925[23] and is a consequence of quantum statistics. It has been
realized experimentally in 1995 in alkali gases. The award of the 2001 Nobel
Prize in Physics to E. Cornell, C. Wieman, and W. Ketterle acknowledged
the importance of the achievement. In this new state of matter, which is
very dilute and at very low temperature,a macroscopic fraction of the atoms
behave as a coherent matter wave similar to the coherent light wave pro-
duced by a laser. In the dilute limit, the condensate is well described by a
mean-field theory and a macroscopic wave function. The properties of these
gaseous quantum fluids constitute new a wide domain of research in low and
high energy physics.
At almost zero temperature, when the lowest energy level is macroscopically
occupied and when the gas is dilute enough such that particle interactions
are weak, a common model to describe BEC is GPE. In order to describe
two component condensates this model can be easily generalized to two cou-
pled Gross Pitaevskii equations (CGPEs). The GPE model has proven to
be a good description for many static and dynamical properties both for
single condensate systems[30] and for condensate mixtures[31], even though
thermal contributions and quantum fluctuations are not taken into account.
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1.2 Soliton

1.2.1 An overview of the concept of solitons

The concept of solitons (solitary waves) plays a profoundly important role in
modern physics and applied mathematics, extending beyond the bounds of
these disciplines.The birth of the soliton was first recorded by John Scott Rus-
sell (1834) when he was investigating how improve the efficiency of designs
for barges in canals[68]. After about 50 years being ignored this interesting
discovery, Diederik Korteweg and his PhD student, Hendrik de Vries derived
a nonlinear partial differential equation confirming mathematically the exis-
tence of Scotts solitary waves. They show that the change of the waves height
in time is determined by nonlinear and dispersive effects. However, they did
not find a general solution. In 1955, by means of the Los Alamos MANIAC
computing machine, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU)
were exploring the energy equipartition in a slightly nonlinear mechanical
system. It was expected that if all the energy was initially introduced in a
single mode, the small nonlinearity would cause energy redistribution among
all the modes, but this did not happen and the energy was periodically
returning to the initially excited mode. Motivated to find an explanation
for this phenomenon, Norman Zabusky and Martin Kruskal (1965) approx-
imated the FPU system in the continuum limit using the KdV equation.
They solved the equation numerically and reported that the solitary waves
can pass through each other without change in their shape or speed, the only
change found was a small phase shift after a collision. Zabusky and Kruskal
then introduced for the first time the term soliton for this solitary waves,
thus highlighting its particle-like behavior. In 1967 was discovered a method
by Clifford Gardner, John Greene, Martin Kruskal and Robert Miura, to
finding exact solutions (including soliton) of the KdV equation. At present
this method is known as the inverse scattering method (ISM). It was later
found that the ISM is more general and allows sought exact solitons in many
others integrable nonlinear systems. In 1972 Vladimir Zakharov and Alexei
Borisovich Shabat generalized the inverse scattering method and solved the
nonlinear Schrödinger equation (NLSE). They demonstrated both integrabil-
ity and existence of soliton solutions. The NLSE was found as a fundamental
model in many important applications, in hydrodynamics, nonlinear optics,
nonlinear acoustics, plasma waves, Bose-Eistein condensate, inter alia. Next,
in 1973, Mark Ablowitz, David Kaup, Alan Newell and Harvey Segur also
applied ISM finding the solitons in the sine-Gordon (SG) equation which
admits kink and anti-kink solitons. The SG equation also appears in many
physical applications, including the propagation of crystal defects and the
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propagation of fluxons (quantum units of magnetic flux) on long Josephson
transmission lines. In 1973 Akira Hasegawa was the first to suggest that
solitons could exist in optical fibers, due to a balance between self-phase
modulation and anomalous dispersion

Figure 1.1: Recreating Russells soliton .
(Photography Cliris Eilbeck and Heriot-Watt University. 1995).

Solitons are the solutions of certain nonlinear partial differential equa-
tions, with special properties. Because of a balance between nonlinear and
linear effects, the shape of soliton wave pulses does not change during prop-
agation in a medium.
A soliton is a wave packet (a pulse) that maintains its shape while traveling
at a constant speed, It arises because of the balance between the effects of the
nonlinearity and the dispersion. Dispersion is the phenomenon in which the
phase velocity of a wave depends on its frequency. Indeed,every wave packet
can be thought of as consisting of plane waves of several different frequencies.
Because of dispersion, waves with different frequencies will travel at different
velocities and the shape of the pulse will therefore change over time.

Besides for a conservative system the soliton behaves like a particle i.e.

• It must maintain its shape when it travels at constant speed, reflecting
a characteristic of the so-called solitary wave.
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• When a soliton interacts with another soliton, it emerges from the
collision unchanged except for a possibly phase shift, in other words,
the amplitude, shape and velocity are conserved after the collision.

Mathematically, there is a difference between solitons and solitary waves.
Solitons are localized solutions of integrable equations, while solitary waves
are localized solutions of non-integrable equations. Another characteristic
feature of solitons is that they are solitary waves that are not deformed
after collision with other solitons. Thus the variety of solitary waves is much
wider than the variety of the true solitons. Some solitary waves, for example,
vortices and tornados are hard to consider as waves. For this reason, they
are sometimes called soliton-like excitations. To avoid this bulky expression
we shall often use the term soliton in all cases.

1.3 Classification of solitons

There are a few ways to classify solitons[73]. For example, as we known, there
are topological and non-topological solitons. Independently of the topological
nature of solitons, all solitons can be divided into two groups by taking into
account their profiles: permanent and time dependent. For example, kink
solitons have a permanent profile (in ideal systems), while all breathers have
an internal dynamics, even, if they are static. So, their shape oscillates in
time. The third way to classify the solitons is in accordance with nonlinear
equations which describe their evolution. Here we discuss common properties
of solitons on the basis of the four classification.

1.3.1 Classical and quantum solitons

A rough description of a classical soliton is that of a solitary wave which
shows great stability in collision with other solitary waves. A solitary wave,
as we have seen, does not change its shape, it is a disturbance u(x−ct) which
translating along the x-axis with speed c.[72] A remarkable example for this
type is soliton solution for linear dispersion less equation or KdV equation.
Quantum solitons for physical systems governed by quantum attractive non-
linear Schrödinger model and quantum Sine-Gordon model.

1.3.2 topological and non-topological solitons

In non-topologically soliton, for example the water canal solitary solution to
the KdV equation means that the boundary conditions at infinity are topo-
logically the same for the vacuum as for the soliton. The vacuum can be
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Figure 1.2: Classical soliton

non-degenerate but an additive conservation law is required. But topologi-
cally soliton need a degenerate vacuum. The boundary conditions at infinity
are topologically different for the solitary wave than for a physical vacuum
state. The solitary of topological soliton is due to the distinct classes of vac-
uum at the boundaries where these boundary conditions are characterized
by a particular correspondence (mapping) between the group space and co-
ordinate space, and because these mappings are not continuously deformable
into one another they are topologically distinct.

In mathematics and physics, a topological soliton or a topological defect
is a solution of a system of partial differential equations or of a quantum field
theory homotopically distinct from the vacuum solution; it can be proven to
exist because the boundary conditions entail the existence of homotopically
distinct solutions. Typically, this occurs because the boundary on which the
boundary conditions are specified has a non-trivial homotopy group which
is preserved in differential equations; the solutions to the differential equa-
tions are then topologically distinct, and are classified by their homotopy
class. Topological defects are not only stable against small perturbations,
but cannot decay or be undone or be de-tangled, precisely because there
is no continuous transformation that will map them (homotopically) to a
uniform or ”trivial” solution.[77]

In condensed matter physics, the theory of homotopy groups provides a
natural setting for description and classification of defects in ordered systems.
Topological methods have been used in several problems of condensed matter
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theory. Ponaru and Toulouse used topological methods to obtain a condi-
tion for line (string) defects in liquid crystals can cross each other without
entanglement. It was a non-trivial application of topology that first led to
the discovery of peculiar hydrodynamic behavior in the A-phase of superfluid
Helium-3.

1.3.3 Different types of solitons

About thirty years ago a remarkable discovery was made in Los Alamos.
Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of en-
ergy in a one dimensional lattice consisting of equal masses connected by
nonlinear springs. They conjectured that energy initially put into a long-
wavelength mode of the system would eventually be thermalized, that is, be
shared among all modes of the system. This conjecture was based on the
expectation that the nonlinearities in the system would transfer energy into
higher harmonic modes. Much to their surprise the system did not thermal-
ize but rather exhibited energy sharing among the few lowest modes and long
time near recurrences of the initial state. This discovery remained largely
a mystery until Norman Zabusky and Martin Kruskal started to investigate
the system again in the early sixties. The fact that only the lowest order
(long-wavelength) modes of the discrete Fermi-Pasta-Ulam lattice were ac-
tive led them in a continuum approximation to the study of the nonlinear
partial differential equation [78]

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0 (1.1)

This equation (the KdV equation) had been derived in 1885 by Korteweg
and de Vries to describe long-wave propagation on shallow water. But until
recently its properties were not well understood. From a detailed numerical
study Zabusky and Kruskal found that stable pulse-like waves could exist in
a system described by the KdV equation. A remarkable quality of these soli-
tary waves was that they could collide with each other and yet preserve their
shapes and speeds after the collision. This particle-like nature led Zabusky
and Kruskal to name such waves solitons. The first success of the soliton con-
cept was explaining the recurrence in the Fermi-Pasta-Ulam system. From
numerical solution of the KdV equation with periodic boundary conditions
(representing essentially a ring of coupled nonlinear springs), Zabusky and
Kruskal made the following observations. An initial profile representing a
long-wavelength excitation would break up into a number of solitons, which
would propagate around the system with different speeds. The solitons would
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collide but preserve their individual shapes and speeds. At some instant all of
the solitons would collide at the same point, and a near recurrence of the ini-
tial profile would occur. This success was exciting, of course, but the soliton
concept proved to have even greater impact. In fact, it stimulated very im-
portant progress in the analytic treatment of initial-value problems for non-
linear partial differential equations describing wave propagation. During the
past fifteen years a rather complete mathematical description of solitons has
been developed. The amount of information on nonlinear wave phenomena
obtained through the fruitful collaboration of mathematicians and physicists
using this description makes the soliton concept one of the most significant
developments in modern mathematical physics. The non dispersive nature
of the soliton solutions to the KdV equation arises not because the effects of
dispersion are absent but because they are balanced by nonlinearities in the
system. The presence of both phenomena can be appreciated by consider-
ing simplified versions of the KdV equation. Eliminating the nonlinear term
u(∂u

∂x
) yields the linearized version

∂u

∂t
+
∂3u

∂x3
= 0 (1.2)

The most elementary wave solution of this equation is the harmonic wave

u(x, t) = Aei(kx+ωt) (1.3)

Where k is the wave number and ω is the angular frequency.In order for the
displacement u(x, t) given by equation Eq. (1.1) to be solution of equation
Eq. (1.2), ω and k must satisfy the relation

ω = k3 (1.4)

Such a dispersion relation is a very handy algebraic description of a lin-
ear system since it contains all the characteristics of the original differential
equation, Two important concepts connected with the phase velocity vp = ω

k

and the group velocity vg = ∂ω
∂k

. The phase velocity measures how fast a
point of constant phase is moving, while the group velocity measures how
fast the energy of the wave moves. The waves described by Eq. (1.2) are
said to be dispersive because a wave with large k will have larger phase and
group velocities than a wave with small k. Now, we eliminate the dispersive
term ∂3u

∂x3
and consider the equation:

∂u

∂t
+ u

∂u

∂x
= 0 (1.5)
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This simple nonlinear equation also admits wave solutions, but they are
now of the form u(x, t) = f(x − ut), where the function f is arbitrary.(that
f(x − ut)) is a solution of Eq. (1.5) For waves of this form, the important
thing to note is that the velocity of a point of constant displacement u is
equal to that displacement. As a result, the wave breaks; that is, portions
of the wave undergoing greater displacements move faster than, and there-
fore overtake, those undergoing smaller displacements, This multivaluedness
is a result of the nonlinearity and, like dispersion, leads to a change in form
as the wave propagates. A remarkable property of the KdV equation is that
dispersion and nonlinearity balance each other and allow wave solutions that
propagate without changing form , An example of such a solution is

u(x, t) = 3c sech2[c
1
2 (x− ct)/2] (1.6)

where the velocity c can take any positive value and sech2(x) = 1
cosh(x)

.
This is the one soliton solution of the KdV equation. not all nonlinear partial
differential equations have soliton solutions. Those that do are generic and
belong to a class for which the general initial-value problem can be solved by
a technique called the inverse scattering transform, a brilliant scheme devel-
oped by Kruskal and his coworkers in 1967. With this method, which can be
viewed as a generalization of the Fourier transform to nonlinear equations,
general solutions can be produced through a series of linear calculations.
During the solution process it is possible to identify new nonlinear modes
generalized Fourier modes that are the soliton components of the solution
and, in addition, modes that are purely dispersive and therefore often called
radiation. Equations that can be solved by the inverse scattering transform
are said to be completely integrable. The manifestation of balance between
dispersion and nonlinearity can be quite different from system to system.
Other equations thus have soliton solutions that are distinct from the bell-
shaped solitons of the KdV equation. An example is the so-called nonlinear
Schrödinger (NLS) equation. This equation is generic to all conservative sys-
tems that are weakly nonlinear but strongly dispersive. It describes the slow
temporal and spatial evolution of the envelope of an almost monochromatic
wave train. We present here a heuristic derivation of the NLS equation that
shows how it is the natural equation for the evolution of a carrier-wave enve-
lope. Consider a dispersion relation for a harmonic wave that is amplitude
dependent:

ω = ω(k, |E|2) (1.7)
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Here E = E(x, t) is the slowly varying envelope function of a situation
described by Eq. (1.7) occurs, for example. in nonlinear optical phenomena,
where the dielectric constant of the medium depends on the intensity of the
electric signal. Other examples include surface waves on deep water, electro-
static plasma waves, and bond-energy transport in proteins. By expanding
Eq. (1.7)in a Taylor’s series around ω0 and k0, we obtain

ω(k)− ω(k0) =
∂ω

∂k
|0(k − k0) +

1

2

∂2ω

∂ω2
|0(k − k0)2 +

∂ω

∂(|E|2)
|0|E|2 (1.8)

We have expanded only to the first order in the nonlinearity but to the second
order in the dispersion term, as we shall see only represents undistorted
propagation of the wave with the group velocity vg = [∂ω

∂k
]0. If we now

substitute the operators i( ∂
∂t

) for ω − ω0 and i( ∂
∂x

) for k − k0 in Eq(1.8) and
let resulting expression operate on E ,we get

i[
∂E

∂t
+
∂ω

∂k
|0
∂E

∂x
] +

1

2

∂2ω

∂k2
|0
∂2E

∂x2
− ∂ω

∂(|E|2)
|0|E|2E = 0 (1.9)

This is the nonlinear Schrödinger equation, so called because of its re-
semblance to the Schrödinger equation even though its derivation often has
nothing to do with quantum mechanics. The first term of Eq. (1.9)represents
undistorted propagation of the wave at the group velocity. and the second
and third terms represent its linear and nonlinear distortion. respectively.
This crude derivation of the NLS equation shows how it arises in systems
with amplitude-dependent dispersion relations.It is often preferable to ex-
press Eq. (1.9) in a neater form. For this purpose we transform the variables
x and t into z and τ , where z = x− ∂ω

∂k
|0t is a coordinate moving with group

velocity and τ = 1
2
∂2ω
∂k2
|t is the normalized time Eq. (1.9) then reduced

i[
∂E

∂τ
+
∂2E

∂τ 2
+ 2k|E|2E = 0 (1.10)

where

k =
−[ ∂ω

∂(|E|2)
]0

[∂
2ω
∂k2

]0
(1.11)

The NLS equation like the KdV equations completely integrable and has
soliton solutions. The analytic form for a single-soliton solution is given by

E(z, τ) = 2η sech2[2η(θ0 − ηz − 4ζητ)]exp−2i[φ0+2(ζ2−η2)t]+ζz (1.12)
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where ζ , η, θ0, φ0 are free parameters determining the speed,amplitude,
initial position, and initial phase, respectively, of the soliton.Any initial ex-
citation for the NLS equation will decompose into solitons and/or dispersive
radiation. A monochromatic wave train solution E(z, τ) = E(τ) is thus
unstable to any z dependent perturbation and breaks up into separate and
localized solitons. This phenomenon is called the Benjamin-Feir instability
and is well known to any surfer on the beach who has noticed that every,
say, seventh wave is the largest. The NLS equation is in a way more univer-
sal than the KdV equation since an almost monochromatic, small-amplitude
solution of the KdV equation will evolve according to the NLS equation.The
last type of soliton we mention, which is distinctly different from the kdv
or NLS solitons, is one that represents topologically invariant quantities in a
system. Such an invariant can be a domain wall or a dislocation in a magnetic
crystal or a shift in the bond-alternation pattern in a polymer.The prototype
of equations for such solitons is the Sine-Gordon equation,

∂2u

∂x2
− ∂2u

∂t2
= sinu (1.13)

notice that this equation allows for an infinite number of trivial solution,
namely u = 0± 2π± 4π systems with a multitude of such degenerate ground
states also allow solutions that connect two neighboring ground states. So-
lutions of this type are often called kinks, and for the sine-Gordon equation
they are exact solitons; that is, they collide elastically without generation of
dispersive radiation. The analytic form is given by

u+(x, t) = 4 tan−1 exp[±(x−x0−ct)/(1−c2)
1
2 ] (1.14)

where the solution u is often called an antikink. The parameter c(−1 < c < 1)
determines the velocity and x0 the initial position, Other equations with
degenerate ground states also have kink and antikink solutions, but they are
not exact solitons like those of the sine-Gordon equation. It is interesting to
note that small-amplitude solutions of the sine-Gordon equation also can be
shown to evolve according to the NLS equation.[79]
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Figure 1.3: Schematic of the soliton solutions of: (a) the Korteweg-de Vries
equation; (b) the Sine-Gordon equation, and (c) the nonlinear Schrödinger
equation.

1.4 Solitons in Bose- Einstein condensates

The evolution of solitons is approximately described by the inhomogeneous
nonlinear Schrödinger equation known as the Gross-Pitaevskii equation In-
troduced independently by Gross [25, 26, 27], and Pitaevskii [28, 29], the
approximation stems from the fact that the Gross-Pitaevskii equation is
a mean-field approximation of the exact N-particle Schrödinger equation.
While in some cases the soliton dynamics obtained by these two equations
disagree, the Gross-Pitaevskii equation often gives accurate results. Theoret-
ical studies performed to account for the observed behavior of solitons were
conducted by solving the Gross-Pitaevskii equation with numerical, pertur-
bative, or variational methods. Much less effort was devoted to finding exact
solutions of this equation.

In a BEC the fundamental excitations at zero-temperature are divided
into collective and topological ones[69, 70]. The collective excitations are re-
lated to the density perturbations depending on the excitation wavelengthλe,
relative to the size of the condensate R, thus when λe < R, the excitations are
phonons (sound waves) and for λe > R, the excitations represent large-scale
oscillations (breathing and quadruple modes). The topological excitations
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are solitons (bright and dark) and vortices (single vortices, vortex rings and
vortex lattices) [69, 70, 71].

1.5 Dark Soliton

A dark soliton in BEC is a macroscopic excitation of the condensate with
a corresponding positive scattering length, which is characterized by a local
density minimum and a phase gradient of the wave function at the position
of the minimum[81]. The shape of the dip does not change due to the balance
between kinetic energy and repulsive atom-atom collisions.

First created in 1987 in nonlinear optics [82], dark solitary waves have
been created in atomic BECs in a controlled manner or through dynamical
processes and are a topic of intense research . In another experiment, a pair
of matter wave dark solitons was generated by merging two condensates ini-
tially prepared in a double well potential [83]. Finally, dark solitons have
been generated through twocomponent BECs where the soliton exists in one
component and is initially filled with the second component. The second
component is then selectively removed.Various techniques have been used to
create dark solitons through dynamical processes. Firstly, via a slow light
technique, a disk shaped region of atoms was suddenly removed from the con-
densate generating counter propagating dark solitons [84]. In Reference [85]
dark solitons emerged when a barrier, formed by a beam, swept through the
condensate at intermediate speeds. For slow speeds, the fluid flow was steady
while at fast speeds soliton formation ceased and the absence of excitations
was surprisingly once again observed.[86]

1.6 Bright Soliton

In the case of negative scattering length (focusing nonlinearity in optics) the
GPE has other kind of solutions called bright solitons. These are harder
to observe due to the collapse of the system for sufficiently high number of
atoms. Nevertheless, in 2002 two groups[87, 88], showed the generation and
propagation of solitons in 7Li condensates. The main difference in both ex-
periments was the number of atoms allowing to create just one soliton[87],
whereas in[88] were produced trains of several solitons and these trains os-
cillated in a weak attractive trapping potential. Later, were created bright
solitons in 85Rb[89].
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1.7 Rogue waves

Rogue waves (RWs), similar to solitary waves, have no universal definition,
and display the basic feature that RWs appear from nowhere and disappear
without a trace. In general, the common criteria is available for RWs in the
ocean, i.e., the height of a RW (vertical distance from trough to crest) is
two or more times greater than the significant wave height (the average wave
height among one third of the highest waves in a time series, e.g., usually of
length 10 - 30 min) [90, 91, 92, 93, 94, 95]. The term RW (or freak wave)
was first introduced in the scientific community due to Draper in 1964 [96].
RWs are also known as freak waves, monster waves, killer waves, abnormal
waves, steep waves, giant waves, or extreme waves. More recently, the RW
(or freak wave) was also coined rogon (or freakon) if they reappear virtually
unaffected in size or shape shortly after their interactions [97].

The science of rogue waves in optics is now over five years old, and it
has emerged as an area of broad interest to researchers across the physical
sciences[98]. This area of study was initiated by the pioneering measurement
of Solli et al [99] when analysing supercontinuum generation in optical fibres.
Their measurements, using a novel dispersive Fourier transform technique to
capture high-speed events in the time domain, observed extraordinarily high
amplitude peaks at certain wavelengths in the chaotic spectrum from the
supercontinuum. By analogy with the extreme waves in the ocean [100], of
wide interest after 1995, such high amplitude pulses were described as optical
rogue waves. This analogy between localized structures in optics and extreme
waves on the ocean has opened up many possibilities for exploring extreme
value dynamics in convenient table-top optical experiments. In addition to
the proposed links with solitons suggested in [99], other recent studies, mo-
tivated from an optical context, have explored possible links with nonlinear
breather propagation. There is now an international effort, worldwide, to
study these extreme events in optics, both for their own intrinsic interest
within their own domain of research, and also because of their links with the
large amplitude ocean wave events [101] that have inspired their study.

The notion of rogue waves has lately expanded to many fields in science[98]
. Careful studies on small scales may help to better understand rogue waves
in the ocean. The analogy is mainly based on similar equations used to model
rogue waves in various fields, including waves in the open ocean. However,
specific features of waves in a laboratory also allow them to be considered as
individual new directions in science. It would be hard to cover all these direc-
tions in a single volume. D.H. Peregrine, who was studying applied mathe-
matics, primarily hydrodynamics, at the University of Bristol, described this
particular soliton in 1983[134].
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On the contrary, the fundamental soliton which has the property of keep-
ing its characteristic shape unchanged during its propagation, the Peregrine
soliton presents a double localization, both in the time domain and in the
spatial domain. Thus, from a small oscillation on a continuous background,
Peregrine’s soliton develops, seeing its temporal duration decrease and its
amplitude increase. At the point of maximum compression, its amplitude
reaches three times the amplitude of the surrounding continuous background
(if we reason in intensity as is the case in optics, it is a factor of 9 which
separates the peak of the soliton from the surrounding background. ). After
this point of maximum compression, the wave sees its amplitude decrease
and widen to finally disappear.

This behavior of the Peregrine soliton corresponds to the criteria usually
used to qualify a rogue wave. Peregrine’s soliton thus represents an attractive
potential explanation for the formation of these waves of abnormally high
amplitude which appear and disappear without leaving a trace.

• The Peregrine soliton can be seen as the limiting case of the space-
periodic Akhmediev breather when the period tends to infinity. can
also be seen as the limiting case of the time-periodic Kuznetsov-Ma
breather when the period tends to infinity

Figure 1.4: A Rogue Wave is a short-lived large-amplitude[103, 104]

For BEC with attractive interactions, it admits bright soliton on zero
background and rogue wave (RW) on plane wave background[105, 106]. For
BEC with repulsive interactions, it admits dark soliton on a plane wave back-
ground [102]. Since there is no modulational instability for repulsive case,
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therefore rogue wave do not exist for repulsive scalar BEC. These characters
just hold for scalar BEC systems.

1.8 Breather

Breathers are solutions of nonlinear equations with a profile which is usu-
ally localized in space and periodic in time, even for equations with con-
stant coefficients. Such solutions usually come from a compound of two or
more solitons located at the same spatial position. After the first experi-
mental manipulation of Bose-Einstein condensates (BECs) [107, 108, 109],
studies on bright and dark solitons [110, 111, 112] have triggered a lot of
new investigations, with a diversity of scenarios being proposed and tested
[113, 114, 115, 116, 117]. In particular, the presence of experimental tech-
niques for manipulating the strength of the effective interaction between
trapped atoms [118] leads us to believe that in BECs we have an excellent op-
portunity to investigate breathers of atomic matter waves taking advantage of
Feshbach-resonance management [119, 120, 121, 122, 123, 124, 125, 126, 127].
Breathers or breathing solutions are nonlinear excitations which concentrate
energy in a localized and oscillatory manner. the breather excitations play
an important role, directly affecting the electronic, magnetic, optical, vibra-
tional and transport properties of the systems. In the above mentioned stud-
ies, one usually considers genuine breathers, i.e., solutions which oscillate in
time when the nonlinear equation presents constant coefficients (i.e., without
modulation). However, in a more realistic scenario the several parameters
that characterize the physical systems may depend on both space and time,
leading to breather solutions that can be modulated in space and time. The
presence of nonuniform and time-dependent parameters opens interesting
perspectives not only from the theoretical point of view, for investigation of
nonautonomous nonlinear equations, but also from the experimental point
of view, for the study of the physical properties of the systems.

• It is possible to find analytical solutions of the nonlinear Schrödinger
equation which have periodicity properties in the spatial (x) and tem-
poral (t) directions. These solutions are linked together, as shown in
the next figure

Akhmediev breather

Another family of structures undergoing compression-decompression phases
was discovered by Akhmediev et al. [132, 133]. Like Ma, the authors consid-
ered a plane wave having a periodic disturbance. But they were particularly
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Figure 1.5: Diagram of periodic solutions of the NLSE

interested in the solutions describing the modulation instability and, con-
sequently, the limiting condition is a return to the initial state when the
distance tends towards infinity. Note that the term breather is not totally
appropriate because there is, in this case only one breath, that is to say the
amplitude of the solutions increases to reach its maximum at the distance
tends towards 0 then decreases symmetrically to disappear forever. These
structures are, now named Akhmediev Breathers (AB).

Kuznetsov-Ma Soliton

Among these solutions, the first family of breathers, or breathing solitons,
was discovered by Kuznetsov in 1977 [128] then by Kawata and Inoue [129].
Finally, Ma [130] made a complete description of it in 1979. The latter solved
the ESNL by considering, for initial state, a slightly disturbed plane wave
and, for the boundary conditions, a return to the initial state when time
tends towards infinity. He thus showed the existence of a family of periodic
solitary waves in space, surrounded by residual dispersive waves of small am-
plitudes. These solitons on a continuous background ”breathe” (succession
of compression and decompression) and are therefore called breathers or in
this precise case, the solitons of Ma (or even solitons of Kuznetsov-Ma). As
can be seen in the diagram , one of the borderline cases of the Ma solitons is
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the standard soliton. Note that structures which ”breathe” have also been
shown by Zakharov and Shabat when the non-linearity is defocusing [131].
The main difference is that these solitons are black instead of shiny.

1.8.1 Breather solution of NLS equation

breather type solutions to the dimensionless NLS equation[135, 136, 137]:

i
∂ψ

∂ξ
+

1

2

∂2ψ

∂τ 2
+ |ψ|2ψ = 0 (1.15)

The envelopeψ(ξ, τ) is a function ofξ (propagation distance) and τ
The solution:

ψ(ξ, τ) = eiξ[1 +
2(1− 2a) cosh(bξ) + ib sinh(bξ)√

2 cos(ωτ)− cosh(bξ)
] (1.16)

The solution’s properties are determined by one positive parameter a(a 6=
1/2) through arguments b = [8a(1− 2a)]1/2 and ω = 2(1− 2a)1/2. Over the
range 0 < a < 1/2 . the solution is the Akhmediev breather (AB), which
is shown in Figure(1.6.a). the limit a → 1/2. which gives the Peregrine
Soliton. Figure(1.6.b).
The PS, given by:

ψ(ξ, τ) = [1− 4(1 + 2iξ)

1 + 4τ 2 + 4ξ2
] (1.17)

corresponds to a single pulse with localization in time (τ) as well as along
the propagation direction (ξ) as shown) .

When a > 1/2, the parameters ω and b become imaginary, and the solu-
tion exhibits localisation in the temporal dimension ξ but periodicity along
the propagation direction τ . This is the Kuznetsov-Ma soliton which is shown
in Figure(1.6.c).
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Figure 1.6: The Solutions of NLSE (a:AB)Breathers-Akhmediev, (b:PS)
peregrine Soliton(Rogue wave),and (c:KM) Kuznetsov-Ma Breather.
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Recently there has been a growing interest in the Gross-Pitaevskii (GP)
equations [138, 139] describing two-component Bose-Einstein condensates
(BEC) in external trap potentials[140, 141, 142, 143, 144, 145, 146, 147, 148,
149] . In the absence of the confining potential, the GP equations reduce to
the coupled non-linear Schrödinger (NLS) equations which play an impor-
tant role in optics [153]. Coupled GP equations are also used to describe
Josephson-type oscillations between two coupled BEC [146, 147, 148], spin-
mixing dynamics of spinor BEC [149, 150, 151, 152], or to explore such inter-
esting field of matter waves as possible atomic soliton lasers [141, 154, 155].
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Chapter 2

Variational Derivation of the
Coupled Gross- Pitaevskii
Equations

2.1 Time Dependent Variational

Variational methods in physics and applied mathematics were formulated
long ago [168, 169, 170, 171, 172, 173] It was Maupertuis [171], who wrote
in 1774 the celebrated statement: Nature, in the production of its effects,
does so always by simplest means. Since that time variational methods have
become an increasingly popular tool in mechanics, hydrodynamics,theory
of elasticity, etc. Moreover, the variational methods are useful and work-
able tools for many areas of the quantum theory of atoms and molecules
[170, 174, 175, 176], statistical many-particle physics and condensed matter
physics. The variational methods have been applied widely in quantum-
mechanical calculations [170, 174, 175, 176], in theory of many-particle in-
teracting systems [157, 158, 159, 160, 161, 162, 163] and theory of transport
processes [177, 178]. As a result of these efforts many important and effec-
tive methods were elaborated by various researchers. From the other hand
the study of the quasi-particle excitations in many-particle systems has been
one of the most fascinating subjects for many years [164, 156, 166, 167].
The quantum field-theoretical techniques have been widely applied to the
statistical treatment of a large number of interacting particles. Many-body
calculations are often done for model systems of statistical mechanics using
the perturbation expansion. The basic procedure in many-body theory is to
find the relevant unperturbed Hamiltonian and then take into account the
small perturbation operator. This procedure, which works well for the weakly
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interacting systems, needs the suitable reformulation for the many-body sys-
tems with complicated spectra and strong interaction. In general case, a
many-particle system with interactions is very difficult to solve exactly, ex-
cept for special simple cases. Theory of molecular (or mean) field permits
one to obtain an approximate solution to the problem. The effect of all the
other particles on any given particle is approximated by a single averaged
effect, thus reducing a many-body problem to a single-body problem.

The time-dependent variational principle of Balian and Vénéroni (BV)[179].It
retain: is one of the most powerful tools since, not only does it retain the
essential features of the physics behind the previous approximations, but it
also allows one to bypass some (if not all) of the ad-hoc assumptions. This
well-known advantage of this (and any) variational principle faces however a
major difficulty related to the choice of the trial spaces. A (difficult) com-
promise must be found between a correct description of the physics on one
hand, and the tractability of the calculations on the other.

2.1.1 The Balian-Vénéroni Variational Method

Balian and Vénéroni propose a variational principle appropriate for deriving
approximations of the expectation value of a given observable A at a time
t1, when the density operator D of the system is known at an earlier time
t0. The action I , which involves as a variational set, two time-dependent
operators A(t) and D(t), is written as

I = Tr(AD)t1 −
∫ t1

t0

dtTr(A(t))(
dD(t)

dt
+
i

~
[H,D(t)]) (2.1)

The symbol Tr stands for a trace taken over a complete basis of the Fock
space. And H is the Hamiltonian of the system assumed time independent.

The equations for A(t) and D(t) are obtained by writing the stationarity
of Eqs. (2.1) with respect to D(t) and A(t), respectively. They read

TrδA(t)(
dD(t)

dt
+
i

~
[H,D(t)]) = 0 (2.2)

TrδD(t)(
dA(t)

dt
− i

~
[A(t), H]) = 0 (2.3)

and are subjected to the boundary conditions

D(t0) = D0,A(t1) = A (2.4)
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When the variations δA(t) and δD(t) are unrestricted, we deduce from
Eqs. (2.2) and Eqs. (2.3) the evolution equations for D(t) and A(t) :

i~
dD(t)

dt
= [H,D(t)] (2.5)

i~
dA(t)

dt
= −[H,A(t)] (2.6)

We recognize the exact Liouville-von Neumann equation for the operator
density D(t). and the exact Heisenberg equation for the observable A(t),

2.1.2 Variational Derivation of the CGPE

According to the preceding discussion, we have now to choose trial spaces
for D(t) and A(t) in order to get approximate dynamics.
Consider a system composed of two species of bosons ( labeled 1 and 2) of
which the creation and annihilation field operators are ψi(r), ψ

†
i (r), (i=1,2),

satisfying

[ψi(r), ψ
†
i (r

′
)] = δijδ(r − r

′
)

[ψi(r), ψi(r
′
)] = [ψ†i (r), ψ

†
i (r

′
)] = 0

We consider a gaussian density operator [180]:

D(t) = expQ(t) (2.7)

where Q(t) is a one- body operator

Q(t) = ν1(t) +

∫
r

[λ1(r, t)ψ†1(r) + λ2(r, t)ψ†2(r) + λ∗1(r, t)ψ1(r) + λ∗2(r, t)ψ2(r)]

+

∫
r,r
′
[ψ̄1(r)s1(r, r

′
, t)ψ̄1(r

′
) +

¯
ψ†1(r)s∗1(r, r

′
, t)

¯
ψ†1(r

′
) +

¯
ψ†1(r)s2(r, r

′
, t)ψ̄1(r

′
)]

+

∫
r,r′

[ψ̄2(r)s3(r, r
′
, t)ψ̄2(r

′
) +

¯
ψ†2(r)s∗3(r, r

′
, t)

¯
ψ†2(r

′
) +

¯
ψ†2(r)s4(r, r

′
, t)ψ̄2(r

′
)]

+

∫
r,r′

[ψ̄1(r)s5(r, r
′
, t)ψ̄2(r

′
) +

¯
ψ†1(r)s∗5(r, r

′
, t)

¯
ψ†2(r

′
)]

+

∫
r,r′

[
¯
ψ†1(r)s6(r, r

′
, t)ψ̄2(r

′
) +

¯
ψ†2(r)s∗6(r, r

′
, t)ψ̄1(r

′
)]
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(2.8)

and a trial observable A(t) also as a one- body operator

A(t) = ν2(t) +

∫
r

[u1(r, t)ψ†1(r) + u2(r, t)ψ†2(r) + u∗1(r, t)ψ1(r) + u∗2(r, t)ψ2(r)]

+

∫
r,r
′
[u3(r, r

′
, t)ψ̄1(r)ψ̄1(r

′
) + u∗3(r, r

′
, t)

¯
ψ†1(r)

¯
ψ†1(r

′
) + u4(r, r

′
, t)

¯
ψ†1(r)ψ̄1(r

′
)]

+

∫
r,r′

[u5(r, r
′
, t)ψ̄2(r)ψ̄2(r

′
) + u∗5(r, r

′
, t)

¯
ψ†2(r)

¯
ψ†2(r

′
) + u6(r, r

′
, t)

¯
ψ†2(r)ψ̄2(r

′
)]

+

∫
r,r′

[u7(r, r
′
, t)ψ̄1(r)ψ̄2(r

′
) + u∗7(r, r

′
, t)

¯
ψ†1(r)

¯
ψ†2(r

′
)]

+

∫
r,r′

[u8(r, r
′
, t)ψ†1(r)ψ̄2(r

′
) + u∗8(r, r

′
, t)

¯
ψ†2(r)ψ̄1(r

′
)]

(2.9)

we have now to compute the functional of Eqs. (2.1) and then write the
stationarity conditions with respect to the parameters of A(t). We compute
separately TrA(t)D(t) and TrA(t)[H,D(t)].

Tr[AD] = Z〈A〉

= Z[ν2(t) +

∫
r

[u1(r, t)〈ψ†1(r)〉+ u2(r, t)〈ψ†2(r)〉+ u∗1(r, t)〈ψ1(r)〉+ u∗2(r, t)〈ψ†2(r)〉]

+

∫
r,r′

[u3(r, r
′
, t)〈ψ̄1(r)ψ̄1(r

′
)〉+ u∗3(r, r

′
, t)〈ψ̄†1(r)ψ̄†1(r

′
)〉+ u4(r, r

′
, t)〈ψ̄†1(r)ψ̄1(r

′
)〉]

+

∫
r,r′

[u5(r, r
′
, t)〈ψ̄2(r)ψ̄2(r

′
)〉+ u∗5(r, r

′
, t)〈ψ̄†2(r)ψ̄†2(r

′
)〉+ u6(r, r

′
, t)〈ψ̄†2(r)ψ̄2(r

′
)〉]

+

∫
r,r′

[u7(r, r
′
, t)〈ψ̄1(r)ψ̄2(r

′
)〉+ u∗7(r, r

′
, t)〈ψ̄†1(r)ψ̄†2(r

′
)〉]

+

∫
r,r′

[u8(r, r
′
, t)〈ψ̄†1(r)ψ̄2(r

′
)〉+ u∗8(r, r

′
, t)〈ψ̄†2(r)ψ̄1(r

′
)〉]]

(2.10)
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Tr[A
dD

dt
] =

d

dt
(TrA(t)D(t))A

=
Ż

Z
TrAD + Z[

∫
r

[u1(r, t)φ̇∗1(r) + u2(r, t)φ̇∗2(r) + u∗1(r, t)φ̇1(r) + u∗2(r, t)φ̇2]

+

∫
r,r′

[u3(r, r
′
, t) ˙̃m11(r, r

′
) + u∗3(r, r

′
, t) ˙̃m∗11(r, r

′
) + u4(r, r

′
, t) ˙̃n11(r, r

′
)]

+

∫
r,r′

[u5(r, r
′
, t) ˙̃m22(r, r

′
) + u∗5(r, r

′
, t) ˙̃m∗22(r, r

′
) + u6(r, r

′
, t) ˙̃n22(r, r

′
)]]

(2.11)

In Eqs. (2.11), we have introduced the quantities φi(r, t),ñii(r, r
′
, t) and

m̃ii(r, r
′
, t) defined as:

φi(r, t) = 〈ψi(r)〉
ñii(r, r

′
, t) = 〈ψ̄†i (r)ψ̄i(r

′
)〉

m̃ii(r, r
′
, t) = 〈ψ̄i(r)ψ̄i(r

′
)〉

(2.12)

and ψ̄i = ψi − 〈ψi〉.
The second term containing the Hamiltonian writes

TrA[H,D] = Z〈[A,H]〉

= Z[

∫
r

dr[u1(r, t)〈[ψ†1, H]〉+ u2(r, t)〈[ψ†2, H]〉+ u∗1(r, t)〈[ψ1, H]〉+ u∗2(r, t)〈[ψ2, H]〉]

+

∫
r,r′

drdr
′
[u3(r, r

′
, t)〈[ψ̄1ψ̄1, H]〉+ u∗3(r, r

′
, t)〈[ψ̄†1ψ̄

†
1, H]〉+ u4(r, r

′
, t)〈[ψ̄†1ψ̄1, H]〉]

+

∫
r,r′

drdr
′
u5(r, r

′
, t)〈[ψ̄2ψ̄2, H]〉+ u∗5(r, r

′
, t)〈[ψ̄†2ψ̄

†
2, H]〉+ u6(r, r

′
, t)〈[ψ̄†2ψ̄2, H]〉]

(2.13)

To compute (2.13)explicitely, one should specify the Hamiltonian. Let us
consider the general two- body hamiltonian

H =
2∑
i=1

∫
r

[ψ†i (r)hiψi(r)] +
1

2

2∑
i=1

∫
r,r′

gii[ψ
†
i (r)ψ

†
i (r

′
)ψi(r

′
)ψi(r)]

+

∫
r,r′

g12[ψ†1(r)ψ†2(r
′
)ψ2(r

′
)ψ1(r)]

(2.14)
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gii and g12 are respectively the intra and interspecies coupling strengths.
Moreover hi is the single particle Hamiltonian hi = ~2

2mi
∇2 + Vext(r), where

Vext(r) is the trapping field. The dynamics of D(t) is obtained by writing
the stationarity of Eqs. (2.11),(2.13) with respect to the parameters of A(t).
This leads to the following equations for the expectation values (2.13) (For
more details, see Appendix.)

i~φ̇1 = (h1 + g11(n1 + ñ11) + g12n2)φ1 + g11m̃11φ
∗
1

i~φ̇2 = (h2 + g22(n2 + ñ22) + g12n1)φ2 + g22m̃22φ
∗
2

(2.15)

i~ ˙̃n11 = g11(φ2
1m̃
∗
11 − φ∗21 m̃11)

i~ ˙̃n22 = g22(φ2
2m̃
∗
22 − φ∗22 m̃22)

(2.16)

i~ ˙̃m11 = 2(h1 + 2g11n1 + g12n2)m̃11 + 2g11(φ2
1 + m̃11)ñ11

i~ ˙̃m22 = 2(h1 + 2g22n2 + g12n1)m̃22 + 2g22(φ2
2 + m̃22)ñ22

(2.17)

This set of equations constitute the time- dependent Hartree-Fock-Bogoliubov
equations for a bose-bose mixture. They describe the dynamics of the mix-
ture beyond the mean-field approximations as they couple the condensates
with the thermal and quantum fluctuations depicted by the ñii and m̃ii. At
ultra low temperatures, the quantum depletion is extremely small. Hence,
one may set ñii = m̃ii ' 0 and get the coupled Gross- Pitaevskii equations.

i~φ̇1 = (h1 + g11n1 + g12n2)φ1

i~φ̇2 = (h2 + g22n2 + g12n1)φ2

(2.18)

where n1 = |φ1|2 + ñ11 is the density of the condensate 1. Since, we set
the system at T = 0, we have n1 = |φ1|2 and the system Eqs. (2.18)is a closed
set of PDE.

Although appearing quite simple, the equations (2.18) possess a consid-
erable set of different solutions. which belong to very distinct regim. Indeed,
due the non- linearities, the solutions are very sensitive to the initial and
boundary solutions. Hence, although several numerical algorithms have been
developed and used to solve Eqs. (2.18), many questions remain unanswered.
In particular , how does a set of solutions move continuously toward another
set in parameter space. This kind of questions require an analytic answer.
In what follows, we will use a well-know method, the Darboux transformation
method (DT) together with the Lax pair method to generate analytically a
large class of solutions.
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2.2 The Darboux transformation and Lax pairs

methods

2.2.1 Introduction

The Darboux transformation, or analogously Bäcklund or dressing transfor-
mation, applies only to systems of linear differential equations and cannot
be applied directly to nonlinear differential equations. To be able to apply
the Darboux transformation to a certain nonlinear differential equation, one
finds a linear system of equations that is equivalent to a nonlinear differ-
ential equation. The relation between the linear system and the nonlinear
differential equation is established through a consistency condition satisfied
by the linear system. The Darboux transformation is then applied to the
linear system resulting in transforming the equivalent nonlinear equation as
well. The linear system is usually represented in terms of a pair of matri-
ces called the Lax pair which must satisfy a consistency condition that is
equivalent to the differential equation at hand. The difficulty is usually in
finding this Lax pair. It is known for some nonlinear differential equations
such as the Kortwegde Vries (KdV) equation, the sine-Gordon equation and
the nonlinear Schrodinger equation [183]. In addition to the Lax pair, one
also needs to know an exact solution of the nonlinear differential equation.
This exact solution is then used as a seed for the Darboux transformation to
generate other exact solutions [184].

2.2.2 Integrable System

The concept of completely integrable system arose in the 19th century in the
context of finite-dimensional .

one can, in a heuristic way, define the subject that we are interested
in, saying: An integrable model consists of non-linear differential equations
which can be solved analytically, at least ”in principle” . The resulting quan-
tum system is universally called integrable. For infinite-dimensional systems
and finite lattice systems, however, there is less agreement on the notion of
integrability. Often the term integrable is used as a synonym for solved or
soluble. The connection with the concept of completely integrable system
was first made by Zakharov and Faddeev (1971). Kruskal and coworkers had
shown that the KdV equation has an infinite number of conservation laws,
and that there exists a linearizing transformation, which maps the initial
value u(0, x) for the KdV Cauchy problem to spectral and scattering data of
the Schrödinger operator −d2/dx2−u(0, x). The nonlinear evolution yielding
u(t, x) then transforms into an essentially linear time evolution of these data,
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so that u(t, x) can be constructed via the inverse map, the so-called Inverse
Scattering Transform (IST). Inspired by these findings, Zakharov and Fad-
deev showed that the KdV equation may be viewed as an infinite-dimensional
classical integrable system, the spectral and scattering data being the action-
angle variables, the IST the (inverse of the) action-angle map, and the infinity
of conserved quantities the Poisson commuting Hamiltonians. Important in-
tegrable equations of a different kind include higher-dimensional PDEs with
soliton solutions (such as the Kadomtsev-Petiashvili and Davey-Stewartson
equations) and soliton lattices (the infinite Toda lattice being a prime exam-
ple). A further large class of equations consists of integrable discretizations
of soliton equations

Since mathematicians as well as physicists are quite interested in these
models, today there are several works, looking through their theoretical and
experimental aspects. The formal characteristics of the integrable models,
concepts such as infinite dimensional Lie algebras and their representations
and new subjects that were born in the core of differential geometry as well as
in the Sturm-Liouville problem ,like Bäcklund, Moutard, Darboux transfor-
mations and so on , are the main interests shared by mathematicians. Physi-
cists, naturally, are interested in the possibility of applying these models in
physical phenomena, besides, the solitonic solutions of these models emerge
as a good opportunity to test new ideas in the areas of non-linear optics, hy-
drodynamics, condensed matter, continuous mechanics, plasma physics and
high energy physics [185, 186, 187]. In fact, solitons are the strongest tools
for non-perturbative approach in various theories, from the hydrodynamics
to string theory.

2.2.3 Darboux Transformation for Nonlinear Partial
Differential Equations

For nonlinear partial differential equations, Darboux transformation is ap-
plied in an indirect manner. One starts by finding a linear system of equations
for an auxiliary field ψ in the form Ψx = U.Ψ and Ψx = V.Ψ,where Ψx = ∂Ψ

∂x
,

the order of the matrices Ψ, U and V depends on the equation to be solved
as will be seen next. The pair of matrices U and V known as the Lax pair,are
functionals of the solution of the differential equation. The consistency con-
dition of the linear system Ψxt = Ψtx should be equivalent to the differential
equation. The linear system and hence its consistency condition are covari-
ant under the Darboux transformation. Therefore, applying the Darboux
transformation on the linear system results in a new consistency condition
which is equivalent to a new differential equation that is covariant with the
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old one. The new differential equation is satisfied by a new solution. In the
following we describe this procedure in a more detailed manner.

2.3 Darboux transformation

Consider the following version of the Darboux transformation

Ψ[1] = Ψ Λ− σΨ, (2.19)

where Ψ[1] is the transformed field,Λ is a constant diagonal matrix and
σ = Ψ0Λ Ψ−1

0 . Here Ψ0 is a known solution of the linear system, (2.29) and
(2.30). To be able to find such a solution the coefficients of the linear system
should be known explicitly. These coefficients are functionals of the solution
of the differential equation Q. Thus, determining the coefficients of the linear
system requires knowing an exact solution of the differential equation. This
solution is known as the seed solution. which we denote here by Q0. It
is in the very nature of the Darboux transformation method that new exact
solutions are only obtained from other exact solutions. The transformed field
Ψ[1] is required to be a solution of a linear system that is covariant with the
system (2.29) and (2.30) ,namely

Ψ[1]x = U0[1] ·Ψ[1] + U1[1] ·Ψ[1] ·Λ (2.20)

and

Ψ[1]t = V0[1] ·Ψ[1] + V1[1] ·Ψ[1] ·Λ + V2[1] ·Ψ[1] ·Λ2 (2.21)

Requiring the system (2.20) and (2.21) to be covariant with the system
(2.29) and (2.30) leads to a consistency condition

U0[1]t −V0[1]x + [U0[1],V0[1]] = 0, (2.22)

that is covariant with (2.31)similar to(2.35), this new consistency condition
will be equivalent to a differential equation that is covariant with (2.36).

U0[1]t −V0[1]x + [U0[1],V0[1]] =

(
0 F
−F ∗ 0

)
= 0, (2.23)

This means that Q[1] is a new solution of the same differential equation that
Q0 is a solution for. To find U0[1] and V0[1] and hence Q[1] we substitute
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for Ψ[1] from (2.19)in (2.20) and (2.21) using (2.29) and (2.30) and then
equating the coefficients of Λ0 and Λ1 to zero we get

U0[1] = σU0 σ
−1 + σx σ

−1, (2.24)

U0[1] = U0 + [U1, σ], (2.25)

Where σ−1 is the inverse of σ. The new solution Q[1] can be calculated
using either of these two equations which can be shown to be equivalent.
Notice that the quantities on the right-hand side are calculated using the
seed solution Q0.

To summarize, a nonlinear differential equation can be solved with the
Darboux transformation method by first finding an exact (seed) solution,Q0,
to the differential equation and finding a linear system for an auxiliary field
Ψ that is associated to the differential equation through its consistency con-
dition. Using the seed solution, a solution of the linear system,Ψ0, is found.
The linear system is then transformed into a new one via the Darboux trans-
formation. Thus, the coefficients of the new linear system which are func-
tionals of the new solution of the differential equation,Q[1] will be related
to the coefficients of the original linear system which are functionals of Q0.
This relation gives the new solution Q[1] in terms of the seed solution Q0.

2.4 Lax pair

Consider the general form of the nonlinear partial differential equation

F [Q(x, t), Q?(x, t), Qt(x, t), Qxx(x, t)] = 0 (2.26)

The auxiliary field is represented by a 2× 2 matrix

Ψ =

(
ψ1(x, t) ψ2(x, t)
φ1(x, t) φ2(x, t)

)
, (2.27)

The linear system of equations of the auxiliary field is formally written as an
expansion in powers of the matrix

Λ =

(
λ1 0
0 λ2

)
, (2.28)

as follows

Ψx = U0 ·Ψ + U1 ·Ψ ·Λ (2.29)
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and

Ψt = V0 ·Ψ + V1 ·Ψ ·Λ + V2 ·Ψ ·Λ2 (2.30)

Here U0,1 and V0,1,2 are in principle functionals of Q and Q? and their par-
tial derivatives. The expansions were terminated at the linear and quadratic
powers of Λ Eqs. (2.29) and Eqs. (2.30) respectively. To satisfy both Eqs. (2.29)
and Eqs. (2.30), ψ must obey the consistency condition Ψxt = Ψtx which leads
to

U0t −V0x + [U0,V0] = 0, (2.31)

U1t −V1x + [U0,V1] + [U1,V0] = 0, (2.32)

V2x + [V2,U0] + [V1,U1] = 0, (2.33)

[U1,V3] = 0, (2.34)

where [X,Y] denotes the commutator of X and Y. These equations are
obtained by equating the coefficients Λ0, Λ1 ,Λ2 and Λ3 in Ψxt to the corre-
sponding ones in Ψtx. The matrices U0 and V0 are the lax pair of (2.36). It is
the consistency condition,(2.31), that should be equivalent to the differential
equation

U0t −V0x + [U0,V0] =

(
0 F
−F ∗ 0

)
, (2.35)

2.4.1 Example of Solitonic Solutions of the nonlinear
Schrödinger equation

In this section, we illustrate the preceding technique on a simple example.
The NLSE equation can be written as:

i ψt + 1/2ψxx + ψ∗ |ψ|2 = 0 (2.36)

where ψ(x; t) is the wave function.

Calculating the Lax Pair

The method is described in the previous section here we summarize the basic
equations explained before In order to derive the Lax pair we start by writing
the following two equations:

Ψx = U0 ·Ψ + U1 ·Ψ ·Λ (2.37)

35



Ψt = V0 ·Ψ + V1 ·Ψ ·Λ + V2 ·Ψ ·Λ2 (2.38)

For an auxiliary fieldΨ. Here subscripts t and x represent the derivative with
respect to time and position, respectively.The matrices U0, U1, V0, V1, and
V2 are functions of the solution of the given NLSE and its space derivatives.
For obtaining the integrability condition for the NLS equation let us apply
the following form for the U and V matrices:

U =

(
u11 u12

u21 u22

)
(2.39)

V =

(
v11 v12

v21 v22

)
(2.40)

Using the compatibility conditionΨxt = Ψtx and:

Λ =

(
λ1 0
0 λ2

)
, (2.41)

one finds:

U0 t −V0x + [U0,V0] = 0, (2.42)

U1 t −V1x + [U0,V1] + [U1,V0] = 0, (2.43)

V2x + [V2,U0] + [V1,U1] = 0, (2.44)

[U1,V2] = 0, (2.45)

Existence of the Lax pair assures the integrability of the given NLSE, the
given NLSE equation can be solved analytically. In Ref [184], the author de-
rived a systematic approach to find the Lax pair. In this approach, the Lax
pair U0 and V0 is constructed in terms of Ψ the solution of the NLSE and
its time and position derivatives with unknown coefficients up to a certain
order depending on the given NLSE. By equating the compatibility condi-
tion matrix, Equation (2.42), and the matrix constructed from the original
NLSE, we get a set of equations for the unknown coefficients in U0 and V0

in terms of the coefficients of the original NLSE. Solving this set of equations
gives U0 and V0 for the given NLSE.
In the second step, we construct arbitrary U1 and V1 as we do for U0 and
V0. Using the second compatibility condition, Equation (2.43), we get a set
of equations for the unknown coefficients. By solving this set of equations
for unknown coefficients, we get U1 and U1. In the same manner we find the
matrix V2 by solving the two compatibility conditions Equation (2.44) and
Equation (2.45). The Lax pair U and V is expanded in powers of ψ(x, t)
and its derivatives, as follows (2.93) and (2.40), where
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u011 = f1(x, t) + f2(x, t)ψ(x, t)
u012 = f3(x, t) + f4(x, t)ψ(x, t)
u021 = f5(x, t) + f6(x, t)ψ∗(x, t)
u022 = f7(x, t) + f8(x, t)ψ∗(x, t)
and
v011 = g1(x, t) + g2(x, t)ψ(x, t) + g3(x, t)ψx(x, t) + g4(x, t)ψ(x, t)ψ∗(x, t)
v012 = g5(x, t) + g6(x, t)ψ(x, t) + g7(x, t)ψx(x, t) + g8(x, t)ψ(x, t)ψ∗(x, t)
v021 = g9(x, t) + g10(x, t)ψ∗(x, t) + g11(x, t)ψ∗x(x, t) + g12(x, t)ψ(x, t)ψ∗(x, t)
v022 = g13(x, t) + g14(x, t)ψ∗(x, t) + g15(x, t)ψ∗x(x, t) + g16(x, t)ψ(x, t)ψ∗(x, t)

Employing the systematic search approach we find the complete set of
matrices for equation (2.42), requires:
g3 = f2 = g15 = f8 = g14 = g8 = g12 = g9 = g2 = f3 = g5 = g13 = g1 = f5 =
f1 = f7 = g10 = g6 = 0
This results in many of the coefficients to be equal to constant,namely:
f6 = −ip2, f4 = ip1, g11 = −p2

2
, g7 = −p1

2
, g4 = − ip1p2

2
, g16 = ip1p2

2
, p1 =

1
p2
, p2 = −i;

we obtain the following lax pair for nonlinear Schrödinger equation:

U0 =

(
0 ψ(x, t)

ψ∗(x, t) 0

)
(2.46)

and

V0 =
i

2

(
ψ(x, t)ψ∗(x, t) ψx(x, t)

ψ∗x(x, t) −ψ(x, t)ψ∗(x, t)

)
(2.47)

In the same manner we calculate U1,V1:
We suppose that:

• u111 = f11(x, t) + f12(x, t)ψ(x, t) + f13(x, t)ψ∗(x, t)

• u112 = f14(x, t) + f15(x, t)ψ(x, t) + f16(x, t)ψ∗(x, t)

• u121 = f17(x, t) + f18(x, t)ψ(x, t) + f19(x, t)ψ∗(x, t)

• u122 = f110(x, t) + f111(x, t)ψ(x, t) + f112(x, t)ψ∗(x, t)

and

• v111 = g11(x, t) + g12(x, t)ψ(x, t) + g13(x, t)ψ∗(x, t) + g14(x, t)ψx(x, t) +
g15(x, t)ψ∗x(x, t) + g16(x, t)ψ(x, t)ψ∗(x, t)+)

• v112 = g17(x, t) + g18(x, t)ψ(x, t) + g19(x, t)ψ∗(x, t) + g100(x, t)ψx(x, t) +
g111(x, t)ψ∗x(x, t) + g112(x, t)ψ(x, t)ψ∗(x, t))
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• v121 = g113(x, t)+g114(x, t)ψ(x, t)+g115(x, t)ψ∗(x, t)+g116(x, t)ψx(x, t)+
g117(x, t)ψ∗x(x, t) + g118(x, t)ψ(x, t)ψ∗(x, t)

• v122 = g119(x, t)+g120(x, t)ψ(x, t)+g121(x, t)ψ∗(x, t)+g122(x, t)ψx(x, t)+
g123(x, t)ψ∗x(x, t) + g124(x, t)ψ(x, t)ψ∗(x, t)

Employing the systematic search approach we find the complete set of ma-
trices for equation (2.42), requires:
g12 == g18 = f8 = g114 = g13 = g120 = g19 = g115 == g14 = g121 = g11 =
f17 = f14 = g119 = 0
This results in many of the coefficients to be equal to constant,namely:
g133 = −g17i

ψ∗(x,t)
ψ(x,t)

, f11 = −f110, f110 = −1, g17 = −iψ(x, t);
we obtain the following lax pair :

U1 =

(
1 0
0 −1

)
(2.48)

and

V1 = −i

(
0 ψ(x, t)

−ψ∗(x, t) 0

)
(2.49)

We do the same things with V2

• v211 = g21(x, t) + g22(x, t)ψ(x, t) + g23(x, t)ψ∗(x, t) + g14(x, t)ψx(x, t) +
g15(x, t)ψ∗x(x, t) + g16(x, t)ψ(x, t)ψ∗(x, t)

• v212 = g27(x, t) + g28(x, t)ψ(x, t) + g29(x, t)ψ∗(x, t) + g110(x, t)ψx(x, t) +
g111(x, t)ψ∗x(x, t) + g112(x, t)ψ(x, t)ψ∗(x, t)

• v221 = g213(x, t)+g214(x, t)ψ(x, t)+g215(x, t)ψ∗(x, t)+g116(x, t)ψx(x, t)+
g117(x, t)ψ∗x(x, t) + g118(x, t)ψ(x, t)ψ∗(x, t)

• v222 = g219(x, t)+g220(x, t)ψ(x, t)+g221(x, t)ψ∗(x, t)+g122(x, t)ψx(x, t)+
g123(x, t)ψ∗x(x, t) + g124(x, t)ψ(x, t)ψ∗(x, t)

Employing the systematic search approach we find the complete set of ma-
trices for equation (2.42), requires:
g112 == g28 = f8 = g115 = g116 = g110 = g118 = g215 == g25 = g214 = g111 =
f213 = f27 = g117 = 0
This results in many of the coefficients to be equal to constant,namely:
g21 = i, g219 = −i;

V2 = i

(
1 0
0 − 1

)
, (2.50)
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Darboux transformation:

After finding Lax pair we use the DT

U0 =

(
0 ψ(x, t)

−ψ∗(x, t) 0

)
, (2.51)

And

V0 = i/2

(
0 ψ(x, t)ψ(x, t)∗

ψ(x, t)ψ(x, t)∗ 0

)
, (2.52)

And

U1 =

(
1 0
0 − 1

)
, (2.53)

V1 = i

(
0 ψ(x, t)

−ψ(x, t)∗ 0

)
, (2.54)

V2 = i

(
1 0
0 − 1

)
, (2.55)

Also

Λ =

(
λ1 0
0 λ2

)
, (2.56)

Where

U0 t −V0x + [U0,V0] =

(
0 0
0 0

)
, (2.57)

U1 t −V1x + [U0,V1] + [U1,V0] =

(
0 0
0 0

)
, (2.58)

V2x + [V2,U0] + [V1,U1] =

(
0 0
0 0

)
, (2.59)

Here is time-dependent constant and is constants of integration (independent
of x and t), The application of the equation (2.60), (2.61)and (2.62)

Ψx = U0 ·Ψ + U1 ·Ψ ·Λ; (2.60)

Ψt = V0 ·Ψ + V1 ·Ψ ·Λ + V2 ·Ψ ·Λ2; (2.61)

and

Ψ =

(
ψ1(x, t) ψ2(x, t)
φ1(x, t) φ2(x, t)

)
, (2.62)
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Solution of Nonlinear Schrödinger equation

Solitonic Solution

In this cases we use the seed : ψ0(x, t) = 0
We derive the compatibility equations, we found 8 equations: 4 equations for
time and 4 equations for space:

ψ1x = ψ0φ1 + ψ1λ1 (2.63)

ψ2x = ψ0φ2 + ψ2λ2 (2.64)

φ1x = −ψ∗0ψ1 − φ1λ1 (2.65)

φ2x = −ψ∗0ψ2 − φ2λ2 (2.66)

ψ1t =
1

2
i(2λ1ψ0φ1 + 2λ2

1ψ1 + ψ0ψ
∗
0ψ1 + φ1ψ0x) (2.67)

ψ2t =
1

2
i(2λ2ψ0φ2 + 2λ2

2ψ2 + ψ0ψ
∗
0ψ2 + φ2ψ0x) (2.68)

φ1t =
1

2
i(−2λ2

1φ1 − ψ0ψ
∗
0φ1 − 2λ1ψ

∗
0ψ1 + ψ1ψ0x) (2.69)

φ2t =
1

2
i(−2λ2

2φ2 − ψ0ψ
∗
0φ2 − 2λ2ψ

∗
0ψ2 + ψ2ψ0x) (2.70)

Using the seed ψ0 = 0 ,ψ∗0 = 0, our equations are simplified into:

−λ1ψ1(x, t) + ψ1x(x, t) = 0 (2.71)

−λ2ψ2(x, t) + ψ2x(x, t) = 0 (2.72)

λ1φ1(x, t) + φ1x(x, t) = 0 (2.73)

λ2φ2(x, t) + φ2x(x, t) = 0 (2.74)

−iλ2
1ψ1(x, t) + ψ1t(x, t) = 0 (2.75)

−iλ2
2ψ2(x, t) + ψ2t(x, t) = 0 (2.76)

iλ2
1φ1(x, t) + φ1t = 0 (2.77)

iλ2
2φ2(x, t) + φ2t = 0 (2.78)
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After solving the system, the solution reads:

ψ1(x, t) = exp (xλ1)c1(t) (2.79)

ψ2(x, t) = exp (xλ2)c2(t) (2.80)

φ1(x, t) = exp (−xλ1)c3(t) (2.81)

φ2(x, t) = exp (−xλ2)c4(t) (2.82)

Where

c1(t) = exp
(
itλ2

1)c1 (2.83)

c2(t) = exp
(
itλ2

2)c2 (2.84)

c3(t) = exp
(
−itλ2

1)c3 (2.85)

c4(t) = exp
(
−itλ2

2)c4 (2.86)

So we simplify the solution into:

ψ1(x, t) = c1 exp
(
xλ1 + itλ2

1) (2.87)

ψ2(x, t) = c2 exp
(
xλ2 + itλ2

2) (2.88)

and get:

φ1(x, t) = c3 exp
(
−xλ1 − itλ2

1) (2.89)

φ2(x, t) = c4 exp
(
−xλ2 − itλ2

2) (2.90)

where: c1 , c2 , c3 , c4, are real arbitrary constants .

• Consider the following version of the Darboux transformation:

σ = ψ0 ·Λ · ψ−10 , (2.91)

U01 = U0 + U1σ − σU1 (2.92)

Where

U01 =

(
0

2c10c20 exp(2x(λ1+λ2)+2it(λ21+λ22))(λ1−λ2))

(−c1c4 exp(2λ1(x+itλ1))
2c30c40(λ1−λ2))

(−c1c4 exp(2λ1(x+itλ1))
0

)
(2.93)
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And using the following substitutions: ψ2 = φ∗1, and φ2 = −ψ∗1 .
After some simplifications the nonlinear Schrödinger equation will have the
solution:

ψ(x, t) =
16(c∗2c

∗
3)2e2λ2(x+itλ2)(λ2 + λ∗2)2

−1 + 4(c∗2c
∗
3)2e(x+it(λ2−λ∗2))((λ2+λ∗2))

(2.94)

where c∗2 and c∗3 are constants of integration. The solution is depicted on
figure (2.1).

Figure 2.1: solitonic solution |ψ|2 constant coeffcients, namely,c∗2 = 1, c∗3 =
1:for λ2 = 1, λ∗2 = 1.
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Chapter 3

Solitonic solution of two
Coupled Gross-Pitaevskii
equations

3.1 Introduction

It is well known that nonlinear Schrödinger(NLS)-type equations play a
prominent role in nonlinear physical systems, such as nonlinear optics [188]
and Bose Einstein condensates [189]. In these physical systems, the nonlinear
coefficient can be positive or negative, depending on the physical situations
[190]. For example, the nonlinearity in optics corresponds to the focusing or
defocusing case. It can be positive or negative when the interaction between
the atoms is repulsive or attractive in Bose Einstein condensates [189].

3.2 The Model

For a two- component condensate, the dynamical Eqs. (2.18) may be written

i
∂ψ1

∂ t
+
∂2

1ψ1

∂ x2
+ V (x, t)ψ1 + [g11 |ψ1|2 + g12 |ψ2|2]ψ1 = 0 (3.1)

i
∂ψ2

∂ t
+
∂2

2ψ2

∂ x2
+ V (x, t)ψ2 + [g21 |ψ1|2 + g22 |ψ2|2]ψ2 = 0 (3.2)

when we set ~ = 1, m1 = m2 = 1, and we use undimensioned space and time
variables. Moreover, V (x, t) = 1

2
ω2(t)x2 is the trapping potential.
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3.3 Similarity transformation and analytical

setup from GPE to Manakov system

According to the general method, let us set

ψ1 = Q1(X,T )e
∫
h(t)dt+ia(x,t) (3.3)

ψ2 = Q2(X,T )e
∫
h(t)dt+ia(x,t) (3.4)

where,

X = xe2
∫
h(t) dt − 2

∫
h1(t)e2

∫
h(t) dt dt,

T =

∫
e4

∫
h(t) dt dt,

a(x, t) = −1

2
x2h(t) + xh1(t) + h2(t)

g11 = g12 = g21 = g22 = exp( 2

∫
h(t)dt),

ω2(t) = h2(t)− h
′
(t)

2
, h(t) =

h
′
1(t)

2h1(t)

will reduce the coupled GP equation to the following coupled equations of
the form[191, 192]

iQ1t = [−1

2
Q1xx − (|Q1|2 + |Q2|2)Q1] (3.5a)

iQ2t = [−1

2
Q2xx − (|Q1|2 + |Q2|2)Q2] (3.5b)

3.4 Finding the Lax Pair

Applying the Darboux transformation (DT) [193, 243] method on the gen-
eralized CNLS equation requires finding a linear system of equations for an
auxiliary fields Φ(x, t). The linear system is usually written in compact form
in terms of the pair of matrices as follows

Φx = UΦ, (3.6a)

Φt = VΦ, (3.6b)
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U and V, known as the Lax pair, are functionals of the solutions of the
model equations. The consistency condition of the linear system Φxt = Φtx

must be equivalent to the model equation under consideration. We find the
following linear system which corresponds to the class of generalized CNLS
.

Φx = U0 Φ + U1 Φ Λ (3.7a)

Φt = V0 Φ + V1 Φ Λ + V2 Φ Λ2 (3.7b)

where,

Φ =


ψ1(x, t) ψ2(x, t) ψ3(x, t)

φ1(x, t) φ2(x, t) φ3(x, t)

χ1(x, t) χ2(x, t) χ3(x, t)

 , U0 =


0 Q1(x, t) Q2(x, t)

−Q∗1(x, t) 0 0

−Q∗2(x, t) 0 0

 ,

U1 =


1 0 0

0 −1 0

0 0 −1

 , Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 ,

V0 =
i

2


Q1(x, t)Q∗1(x, t) +Q2(x, t)Q∗2(x, t) Q1x(x, t) Q2x(x, t)

Q∗1x(x, t) −Q1(x, t)Q∗1(x, t) −Q2(x, t)Q∗1(x, t)

Q∗2x(x, t) −Q1(x, t)Q∗2(x, t) −Q2(x, t)Q∗2(x, t)

 ,

V1 =


0 −Q1(x, t) −Q2(x, t)

Q∗1(x, t) 0 0

Q∗2(x, t) 0 0

 , V2 = i


1 0 0

0 −1 0

0 0 −1

 ,

where λ1,2,3 is the spectral parameter. The consistency condition Φxt =
Φtx leads to Ut −Vx + [U,V] = 0 which should generate the equations
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3.5 Solitonic Solution and its dynamics

• Darboux transformation

After finding Lax pair we apply now the Darboux Transformation by using
zero seed for the two components.

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,

Where

U0 t −V0x + [U0,V0] =

 0 0 0
0 0 0
0 0 0

 (3.8)

U1 t −V1x + [U0,V1] + [U1,V0] =

 0 0 0
0 0 0
0 0 0

 (3.9)

V2x + [V2,U0] + [V1,U1] =

 0 0 0
0 0 0
0 0 0

 (3.10)

Here is time-dependent constant and is constants of integration (independent
of x and t), The application of the equation (4.21),(4.22)and(4.23).

Φx = U0 ·Φ + U1 ·Φ ·Λ; (3.11)

Φt = V0 ·Φ + V1 ·Φ ·Λ + V2 ·Φ ·Λ2 + V3 ·Φ ·Λ3; (3.12)

and

Φ =

 Q1(x, t) Q2(x, t) Q3(x, t)
φ1(x, t) φ2(x, t) φ3(x, t)
χ1(x, t) χ2(x, t) χ3(x, t)

 (3.13)

using the seed solution

Q1(x, t) = 0, (3.14a)

Q2(x, t) = 0 (3.14b)

We find system of equations raeds:

Q1x(x, t)− iλ1Q1(x, t) = 0 (3.15)
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Q2x(x, t)− iλ2Q2(x, t) = 0 (3.16)

Q3x(x, t)− iλ3Q3(x, t) = 0 (3.17)

φ1x(x, t) + iλ1φ1(x, t) = 0 (3.18)

φ2x(x, t) + iλ2φ2(x, t) = 0 (3.19)

φ3x(x, t) + iλ3φ3(x, t) = 0 (3.20)

χ1x(x, t) + iλ1Q1(x, t) = 0 (3.21)

χ2x(x, t) + iλ2Q2(x, t) = 0 (3.22)

χ3x(x, t) + iλ3Q3(x, t) = 0 (3.23)

Q1t(x, t) + iλ2
1Q1(x, t) = 0 (3.24)

Q2t(x, t) + iλ2
2Q2(x, t) = 0 (3.25)

Q3t(x, t) + iλ2
3Q3(x, t) = 0 (3.26)

φ1t(x, t)− iλ2
1φ1(x, t) = 0 (3.27)

φ2t(x, t)− iλ2
2φ2(x, t) = 0 (3.28)

φ3t(x, t)− iλ2
3φ3(x, t) = 0 (3.29)

χ1t(x, t)− iλ2
1Q1(x, t) = 0 (3.30)

χ2t(x, t)− iλ2
2Q2(x, t) = 0 (3.31)

χ3t(x, t)− iλ2
3Q3(x, t) = 0 (3.32)

• We found 18 equations depends on space(x) and time (t). We solved
the 9 first equations we found the solution a function of x we replaced
it in the equations function of time we found the exact solution.

Where, the linear system will have the solution

Q1(x, t) = c1 exp(iλ1(x− tλ1)) (3.33)

Q2(x, t) = c2 exp(iλ2(x− tλ2)) (3.34)

Q3(x, t) = c3 exp(iλ3(x− tλ3)) (3.35)

φ1(x, t) = c4 exp(iλ1(−x+ tλ1)) (3.36)

φ2(x, t) = c5 exp(iλ2(−x+ tλ2)) (3.37)

φ3(x, t) = c6 exp(iλ3(−x+ tλ3)) (3.38)

χ1(x, t) = c7 exp(iλ1(−x+ tλ1)) (3.39)
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χ2(x, t) = c8 exp(iλ2(−x+ tλ2))) (3.40)

χ3(x, t) = c9 exp(iλ3(−x+ tλ3)) (3.41)

Where

c1(t) = c1 exp(−itλ2
1) (3.42)

c2(t) = c2 exp(−itλ2
2) (3.43)

c3(t) = c3 exp(−itλ2
3) (3.44)

c4(t) = c4 exp(itλ2
1) (3.45)

c5(t) = c5 exp(itλ2
2) (3.46)

c6(t) = c6 exp(itλ2
3) (3.47)

c7(t) = c7 exp(itλ2
1) (3.48)

c8(t) = c8 exp(itλ2
2) (3.49)

c9(t) = c9 exp(itλ2
3) (3.50)

and considering the following version of DT [243]

Φ[1] = ΦΛ− σΦ, (3.51)

where, Φ[1] is the transformed field and σ = Φ0 Λ Φ−1
0 . Here Φ0 is a known

solution of the linear system (4.10). Applying the Darboux Transformation
on the linear system, Eqs. (3.6), and requiring the transformed linear system
to be covariant with the original one requires

U0[1] = U0 + [U1, σ]. (3.52)

The new solution to the nonlinear equations, Eqs. (3.5), in terms of the seed
solution is obtained from the last equation.

Q1(x, t) =
−2c5 exp(2it)sech(2x)

c2

(3.53)

Q2(x, t) =
2i
√
c2

3(c2
2 + c2

5) exp(2it)sech(2x)

c2c3

(3.54)

with c2,3,5 are arbitrary real constants. It should be noted that in order to
obtain such a localized solution we have set the following values to the spec-
tral parameters: λ1 = λ3 = i and λ2 = −i.
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Using the relation between Q1(x, t),Q2(x, t),ψ1(x, t) and ψ2(x, t) presented
above the solitonic solution of the coupled Gross-Piteavskii take the form:

ψ1(x, t) =
−4ie

i[2
∫
ξ1(t)dt−2

∫ t
1 ξ2(t)dt+ξ3(t)−x2h

′
1(t)

2h1(t)
]
√
h1(t)

c2(1 + e4(−2
∫
h21(t)dt+xh1(t)))

(3.55)

ψ2(x, t) = 4i
√

(−1 + c2
2)c2

3

e
i[2

∫
ξ1(t)dt−2

∫ t
1 ξ2(t)dt+ξ3(t)−x2h

′
1(t)

2h1(t)
]
√
h1(t)

c2c3(1 + e4(−2
∫
h21(t)dt+xh1(t)))

(3.56)

where

ξ1(t) = h2
1(t) + 2ih2

1(t) = (1 + 2i)h2
1(t)

ξ2(t) = h2
1(t) + h

′

2(t)

ξ3(t) = (1− i)2xh1(t) + h2(t)
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Figure 3.1: Solitonic solutions of (3.55)-(3.56) with parameters c2 = 2; c3 =
1, ω(t)2 = 0.

Figure 3.2: Solitonic solutions of (3.55)-(3.56) with parameters c2 = 2;c3 =
1, ω(t)2 = 0.5.

Figure 3.3: Solitonic solutions of (3.55)-(3.56) with parameters c2 = 2;c3 =
1, ω(t)2 = 5 + 50t2.
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The preceding figures depict a special set of solitonic solutions of the
CGPE. The spectral parameters are set to λ1 = −λ2 = λ3 = i in order to ob-
tain localized solutions. Notice how their shape is modified upon managaing
the trapping frequency from a homogeneous system (fig. 3.1), to a constant
frequency (fig. 3.2) and finally to a rapidly growing tight confinement (fig.
3.3).

3.6 Discussion

We present the Lax pair of the two components CGPE in a time dependent
harmonic trap by transforming our model to Manakov System via similarity
transformation.We employ the Darboux transformation by choosing zero seed
for the two components. We find the solitonic solutions and observe that
they depend on the external potential i.e, when the trap is set up, a sudden
shoot up in the density appears indicating the onset of instability in the
dynamical system. This means in turn that the unstable solitonic solution
can be effectively controlled by modulating the trap frequency .
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Chapter 4

Peregrine Soliton Management
of Breathers in Two Coupled
Gross- Pitaevskii Equations
with External Potential

4.1 Introduction

Freak (or rogue) waves are mainly rare events, but appear in so many different
areas of physics, ranging from the large amplitude ocean wave events[195] to
optics[196, 197, 198, 199] , and also as solutions of the nonlinear Schrödinger
equation. The main feature of these waves is their ability to suddenly emerge
from nowwhere with an amplitude significantly larger than that of the sur-
rounding wave crests and disappear without leaving a noticeable trace. They
are in many limiting cases described by Peregrine solitons [200] which rep-
resent a spatially localized breather with only one oscillation in time. They
constitute one of the group of breathers family along with Akhmediev and
KuznetsovMa breather. Generally, they are mathematically expressed by ra-
tional polynomials [201]. It is a matter of fact that in order to establish a link
with observed rare events, the excitations of these solutions should be as ran-
dom as possible. Otherwise, one is led to describe them as deterministic rogue
waves [202, 203]. In this context, one may use special initial configurations
to excite higher order rogue waves as solutions of the nonlinear Schrödinger
equation[204, 205], the Hirota equation[206, 207], the Sasa Satsuma equa-
tion, and the coupled nonlinear Schrödinger equations[203, 208, 209]. In
the latter cases, and in particular in BEC experiments, Feshbach resonances
[210, 211, 212] allows for a tunability of the interatomic interactions, thus
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managing the nonlinearity of the underlying equations at will. The control
of the trapping fields also provides a powerful tool for manipulating rogue
waves. In the case of binary mixtures, the situation is rather original. The
appearance of rogue waves in these systems bears an interest of its own, both
mathematical and physical. From the mathematical point of view, finding
exact solutions can lead to a better understanding of the conditions under
which the system can sustain Peregrine solitons. On the other hand, nowa-
days running experiments may determine whether these solutions can indeed
be observed by a fine tuning of the various parameters at hand. In the
present work, we are mainly interested in finding and describing analytically
the Peregrine soliton solutions of two component BEC described by a set of
two coupled GrossPitaevskii equations (CGPE) in one dimension or quasi-
one dimensional space. By considering a harmonic trap with time-dependent
frequency, we will focus on the formation mechanism of these solutions, which
may lead to a kind of controllability of these rogue waves.

It is worthwhile noticing that the recently published paper [213] consid-
ers only two coupled nonlinear Schrödinger (CNLS) equations with coherent
coupling terms, fixed attractive interactions and without external potentials.
Here, we analyze the solutions of two coupled NLS equations with external
timedependent harmonic potential. The time-dependence of its frequency
will lead to novel phenomena such as the stabilization of the solitons. The
presence of the trap breaks the translation invariance of the system and this
will have dramatic consequences on the solutions. The various interaction
parameters are left free to make the formalism as flexible as possible. In this
chapter,by transforming our CGPE into a Manakov system by using a simi-
larity transformation [214, 215, 216], we discuss the corresponding Lax pair
and analytical methods which we employ to construct the exact solutions.

Consider the same system as chapter 3, described by the set(3.1,3.2)

4.2 Peregrine Soliton solution and their dy-

namics

4.2.1 Symmetric Case: Same Seed Solutions

Q1(x, t) = Q2(x, t) = A exp2iA2t (4.1)

Consider the following version of the Darboux transformation [243]:

Φ[1] = ΦΛ− σΦ, (4.2)

where Φ[1] is the transformed field and σ = Φ0 Λ Φ−1
0 , where Φ0 is a known

solution of the linear system (4.10).
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Requiring the transformed linear system to be covariant with the original
one

U0[1] = U0 + [U1, σ]. (4.3)

which in turn gives the solutions

Q1(x, t) = Q2(x, t) = −Ae
2iA2t(4A2c2

1 + a(x, t))) + b(x, t))

4A2c2
1 + c(x, t)) + b(x, t)

(4.4)

where

a(x, t) = c2
2(8A2t2 + 4A2(x2 − 2it) + 2

√
2Ax− 1) (4.5a)

b(x, t) = 2Ac1c2(4Ax+
√

2) (4.5b)

c(x, t) = c2
2(8A2t2 + 4A2x2 + 2

√
2Ax+ 1) (4.5c)

where c1,2 are arbitrary real constants. The localized solutions are ob-
tained provided λ1 = −λ2 = −λ3 = −

√
2i Finally, we get the Peregrine

solutions

ψ1(x, t) = ψ2(x, t) =
A
√
h1(t)eik3(x,t)k4(x, t)

k5(x, t)
(4.6)

where

k3(x, t) = 2A2

∫
h1(t)2dt+B1(x) +B2(t)

− x2h
′
1(t)

2h1(t)
+ 2xh1(t) + h2(t) + h3(x)

(4.7a)

k4(x, t) = 4A2c2
1 + 2c2

2(4A2x2h1(t)2

+ 8A2(A2 + 2)(

∫
h1(t)2dt)2 + 2

√
2Axh1(t)

4− 4A(4Axh1(t) + 2iA+
√

2)

∫
h1(t)2dt− 1) + 2Ac2

1c
2
2

(4Axh1(t)− 8A

∫
h1(t)2dt+

√
2)

(4.7b)
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k5(x, t) = 4A2c2
1 + c2

2(8A4(

∫
h1(t)2dt)2

+ 4A2(xh1(t)− 2

∫
h1(t)2dt)2 + 2

√
2A(xh1(t)− 2

∫
h1(t)2dt)

+ 1) + 2Ac1c2(4Axh1(t)− 8A

∫
h1(t)2dt+

√
2)

(4.7c)

Figure 4.1: Density profile |ψ1|2, |ψ2|2 for bright vector solitons. The param-
eters are: A = 1, c1 = 0.1, c2 = 0.2, ω(t) = 0.[227]

Figure 4.2: The onset of instability in the densities for a static harmonic trap
with A = 1, c1 = 0.1, c2 = 0.2, ω(t)2 = 0.5.[227]
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Figure 4.3: Density profile |ψ1|2, |ψ2|2 for the bright vector solitons in the
time dependent trap with A = 1, c1 = 0.1, c2 = 0.2, ω(t)2 = 5 + 50t2.[227]

To understand the dynamics of these solutions,we first consider the ho-
mogeneous system by choosing h1(t) = 0, ω(t) = 0 which leads to the well-
known Manakov model [218]. The behavior of the Peregrine soliton under
the above condition is shown in Figure 4.1. The upper and lower panels in
these figures show, respectively, the projected square moduli of the solutions.
Consider now a static harmonic trap with h1(t) = exp(−t), ω(t) = 0.5 The
behavior changes dramatically since the densities grow abruptly as shown
in the Figure 4.2. The solitons become highly unstable. In order to over-
come this instability and to increase the lifetime of the solitons, a fine tuning
of the trap frequency may be helpful [220]. Indeed, choosing arbitrarily
h1(t) = exp(

∫
−10tdt), yields a significant stabilization of both modes ψ1

and ψ1 as shown in the Figure 4.3. This may be well understood since for
this set of parameters, the trap is very tight for all times, as its curvature
is rapidly growing. One may wonder whether the reduction of the trap fre-
quency will induce instabilities once more. In fact, as we show in Figure 4.3,
even with a very slowly varying frequency, that is with a very flat trap, the
system is still stable.

57



4.2.2 Non-Symmetric Case: Distinct Seed Solutions

Q1(x, t) = expit, Q2(x, t) = 0 (4.8)

In order to confirm our findings, the question is whether they depend on
the seed solutions. We therefore consider different seed solutions. Following
the same procedure as in the previous section, we get

Q1(x, t) =
eit[−1 + 2c2

1e
2x + 2c1c2e

2x(−1 + 2x) + c2
2e

2x(−1− 4it+ 2t2 − 2x+ 2x2)]

1 + 2c2
1e

2x + 2c1c2e2x(−1 + 2x) + c2
2e

2x(1 + 2t2 − 2x+ 2x2

Q2(x, t) =
4e3it/2+x[c1 + c2(it+ x)]

1 + 2c2
1e

2x + 2c1c2e2x(−1 + 2x) + c2
2e

2x(1 + 2t2 − 2x+ 2x2

(4.9)

where c1,2 are arbitrary real constants. The spectral parameters have
been chosen such that λ1 = λ3 = i and λ2 = −i. The relations between
theQi and theψi yield the Peregrine solutions:

ψ1(x, t) =
√
h1(t)eik1(x,t)(−1 +

2 + c2
2(2 + 4i

∫
h1(t)2dt)e2xh1(t)−4

∫
h1(t)2dt

G(xh1(t)− 2
∫
h1(t)2dt,

∫
h1(t)2dt)

)

(4.10a)

ψ2(x, t) =
√
h1(t)eik2(x,t)(−1 +

2 + c2
2(2 + 4i

∫
h1(t)2dt)e2xh1(t)−4

∫
h1(t)2dt

G(xh1(t)− 2
∫
h1(t)2dt,

∫
h1(t)2dt)

)

(4.10b)

where

k1(x, t) = B1(x) +B2(t)− x2h
′
1(t)

2h1(t)
+ 2xh1(t) + h2(t)

+

∫
h1(t)2dt+ h3(x)

(4.11a)

k2(x, t) = B1(x) +B2(t)− x2h
′
1(t)

2h1(t)
+ (2− i)xh1(t) + h2(t)

+ (
3

2
+ 2i)

∫
h1(t)2dt+ h3(x)

(4.11b)

B1(x) = −h3(x), B2(t) =

∫ t

1

1

2
(−2h

′

2(t)− 4h1(t)2)dt dx (4.11c)
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G(X1, T1) = 2c2
2c1e

2X1(2X1 − 1) + 2c1e
2X1 + 1 + c2

2e
2X1

(2X1 −X1 + 2T 2
1 + 1)

(4.11d)

with

X1 = xh1(t)− 2

∫
h1(t)2dt, T1 =

∫
h1(t)2dt

59



Figure 4.4: (Color online) Trapless bright vector solitons. The parameters
are A = 1, c1 = −5, c2 = 5, ω(t)2 = 0.[227]

Figure 4.5: (Color online) The onset of instability in the densities for a static
harmonic trap with A = 1, c1 = −0.1, c2 = 0.1, ω(t)2 = 0.5.[227]
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Figure 4.6: (Color online) Trapped bright vector solitons in a time dependent
trap A = 1, c1 = −0.1, c2 = 0.1, ω(t)2 = 5 + 50t2.[227]

Figure 4.7: (Color online) Trapped dark and bright solitons for A = 1, c1 =
−0.1, c2 = 0.1, ω(t)2 = 0.05 + 0.01t2.[227]
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The results are discussed below. Figure 4.4 depicts the densities for a
homogeneous system ( h1(t) = 0, ω(t) = 0 ,). For a static harmonic trap
(h1(t) = exp(−t), ω(t) = 0.5), Figure 4.5, the solitons are destabilized.
Upon tuning the trap frequency with a rapidly growing curvature (h1(t) =
exp(

∫
−10tdt), ω(t) = 5 + 50t2 ) significantly stabilizes the two modes and

as shown in Figure 4.6. Finally, even with a very slowly varying frequency,
the system is not only still stable, but a novel phenomenon takes place. The
system now sustains the coexistence of both a bright and a dark soliton
(Figure 4.7). This result is quite interesting by itself since, to the best of
our knowledge, the existence of a stable bright-dark soliton pair in a binary
mixture has attracted very little attention.

In this chapter, the spectral parameters have been given special values
namely, λ1 = −λ2 = −λ3 =

√
2i, for the same seed solution and λ1 = −λ2 =

λ3 = i for distinct seed solutions. In the next chapter, we will see that, upon
letting the λ’s free, we will discover new families of solitonic solutions.
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Chapter 5

New families of breathers in
trapped two component
condensates

5.1 Introduction

In recent years, great effort has been devoted to explain rogue wave (RW)
excitations through nonlinear processes [221, 222, 223, 224, 225, 226]. Among
other things, it has been found that the nonlinear Schrödinger equation
(NLSE) can describe many of their dynamical features. Indeed, some families
of its exact solutions have been considered as describing possible mechanisms
for the formation of RW’s such as Peregrine solitons [227], time periodic (or
Ma) breathers[228] and space periodic (or Akhmediev) breathers[229, 230].
The name ’breather’ reflects the behavior of the density profile of the solution
which is either periodic in time and localized in space or periodic in space
and localized in time.

Bose-Einstein condensates (BECs) constitute by now important experi-
mental and theoretical grounds for the study of such nonlinear structures[231,
232, 233, 234, 235, 236] owing to the ability of fine tuning the interac-
tions by Feshbach resonances[237, 238] and to the manageability of trap-
ping fields[239]. Moreover, mixing several condensate species or several
components of the same species yields phenomena that cannot be observed
elsewhere. In this context, multi-solitons and multi-rogue waves have also
been predicted in the two-component BEC[240, 241]. These macroscopic
structures can be described by the 1D coupled Gross-Pitaevskii equations
(CGPE), which are particular cases of the NLSE with cubic nonlinearity.

In this chapter, we will extend the results of the preceding chapter by
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considering the spectral parameters as free parameters of the method.
Upon changing the spectral parameters λi, the nature of the solutions

changes accordingly from general breathers, passing by Ma and Akhmediev
breathers and finally arriving at rogue waves. The Peregrine solitons are also
recovered as a particular case of our general formulae.

5.2 Darboux transformation and analytic so-

lutions

Following exactly the same procedure as in the preceding chapter, with a
symmetric seed solution Q1(x, t) = Q2(x, t) = A exp(2iA2t), we find the
following solution

Q1(x, t) = Q2(x, t) = A exp2iA2t

[
1− F1(x, t, λ1, λ2)

F2(x, t, λ1, λ2) + F3(x, t, λ1, λ2)

]
(5.1)

where

F1(x, t, λ1, λ2) = 2i(λ1 − λ2)µ cosh θ1 sinh θ2 (5.2a)

F2(x, t, λ1, λ2) = −µ2 sinh θ1 sinh θ2 (5.2b)

F3(x, t, λ1, λ2) = µ cosh θ1(ν cosh θ2 + i(λ1 − λ2) sinh θ2) (5.2c)

and

θ1 = [(x−λ1t)µ] , θ2 = [(x−λ2t)ν] , µ =
√
−2A2 − λ2

1 , ν =
√
−2A2 − λ2

2

Using the similarity transformation (chapter 3, section 3), we return back
to the wave functions. The result (5.1) is our main finding. Indeed, as we
will see, it is a general formula ”interpolating” from the well known breather
(Akhmediev, Ma, Peregrine) to less known ones, as the rogue waves.

ψ1(x, t) = ψ2(x, t) = A expif1(x,t)

[
1− G1(x, t, λ1, λ2)

G2(x, t, λ1, λ2) +G3(x, t, λ1, λ2)

]√
h1(t)

(5.3)

where
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f1(x, t) = −
∫
h2(t)

′
dt− 2(1− A2)

∫
h1(t)2dt+ 2xh1(t) + h2(t)

− x2 h
′
1(t)

2h1(t)

(5.4a)

G1(x, t, λ1, λ2) = 2i(λ1 − λ2)µ coshϕ1 sinhϕ2 (5.4b)

G2(x, t, λ1, λ2) = −µ2 sinhϕ1 sinhϕ2 (5.4c)

G3(x, t, λ1, λ2) = µ coshϕ1(ν coshϕ2 + i(λ1 − λ2) sinhϕ2) (5.4d)

ϕ1 = µ
(
− (2 + λ1)

∫
h1(t)2dt+ xh1(t)

)
ϕ2 = ν

(
−(2 + λ2)

∫
h1(t)2dt+ xh1(t)

)
and h1, h2 are given in the appendix of ref[227].
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Figure 5.1: Density profile |ψ|2 for a Peregrine soliton (rogue wave). The
spectral parameters are λ1 = λ∗2 = i

√
2. (a) Homogeneous case: ω2(t) = 0.

(b) Static harmonic confinement: ω2(t) = 0.5. (c) Growing tight confine-
ment: ω2(t) = 0.5(1 + t2).[242]

As announced previously, upon setting λ1 = λ∗2 = i
√

2, we get the Pere-
grine soliton (a kind of rogue waves) found in ref.[227]. To analyze its behav-
ior under frequency modulation, we plot in figure 5.1 the density profile in the
(x, t) plane (upper panel) for various frequencies. In the homogeneous case,
we observe a self sustained matter wave which is completely destroyed by
a static trap and then arises again for a tight growing confinement. Notice
its very short lifetime (Figure 5.1a, lower panel) compared to the trapped
case (Figure 5.1c), which may have great applications in the control of rogue
waves.
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Figure 5.2: Density profile |ψ|2 for a general breather solution. The spectral
parameters are λ1 = λ∗2 = i − 1. (a) Homogeneous case: ω2(t) = 0. (b)
Static harmonic confinement: ω2(t) = 0.5. (c) Growing tight confinement:
ω2(t) = 0.5(1 + t2).[242]

As a second illustration, we set λ1 = i − 1 and λ2 = −i − 1 (figure
5.2). We now modify the trap frequency from 0 (Figure. 5.2a: no trap), to
1/
√

2 (Figure. 5.2b: static trap), and finally to
√

(1 + t2)/2 (Figure. 5.2c:
growing confinement). The (x, t) solutions are represented in the upper panel
of Figure 5.2. We observe a general breather profile for the homogeneous
system depicting a self sustained matter wave (since there is no trap). When
one introduces a static harmonic trap, the solution is destroyed and then
reappears when a growing tight confinement is applied. The lifetime of the
breather is also larger than its value in the homogeneous case.
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Figure 5.3: Density profile |ψ|2 for Akhmediev breather solution. The spec-
tral parameters are λ1 = λ∗2 = 0.5i. (a) Homogeneous case: ω2(t) = 0. (b)
Static harmonic confinement: ω2(t) = 0.5. (c) Growing tight confinement:
ω2(t) = 0.5(1 + t2).[242]

In figure 5.3, we select another set of spectral parameters, namely λ1 =
0.5i and λ2 = −0.5i, to obtain an Akhmediev breather which has the same
behavior as before regarding the trap. Indeed, the homogeneous system
sustains a stable solution, which is destroyed by a static trap. The rapidly
growing harmonic confinement allows for a revival of this breather and a
larger lifetime than the homogeneous case (lower panel).
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Figure 5.4: Density profile |ψ|2 for Ma breather solution. The spectral pa-
rameters are λ1 = λ∗2 = −iπ − 2. (a) Homogeneous case: ω2(t) = 0. (b)
Static harmonic confinement: ω2(t) = 0.5. (c) Growing tight confinement:
ω2(t) = 0.5(1 + t2).[242]

This is to be contrasted to the situation presented in figure 5.4, where
the spectral parameters are λ1 = −iπ− 2 and λ2 = iπ− 2, and the resulting
profile is a Kuznetsov-Ma breather. The latter is also self sustained in the
homogeneous case, and is destabilized by a static trap. The growing harmonic
confinement allows for a revival of this breather but, unlike the previous cases,
the lifetime is smaller than in the homogeneous case which is therefore more
able to sustain long lived Ma breathers.
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Conclusions and perspectives

In this work, we have considered a bose-bose mixture at zero temperature
and developed a systematic method to find analytic solutions.
We used two powerful mathematical fools: Variational method, supplemented
with the Darboux transformation and the Lax pair method.
In chapter 2, we present the Balian Vénéroni variational principle and derive
the time dependent mean field equations for a binary mixture.

In chapter2, we focus in T = 0 by neglecting thermal and fluctuation
effects. This led us to two coupled Gross- Pitaevskii equations.
To solve analytically these equations, we present in the same chapter the
Darboux transformation method and illustrate it on a simple example.

In chapters 3, 4 and 5, we exploit these methods for more realistic solu-
tions to find a set of solitonic solutions.

we find solitonic solutions, which depend on the frequency of the trap-
ping field. In chapter 4, the Darboux transformation is used in two cases.
The symmetric case with the same seed solutions yields in the homogeneous
case bright vector solitons which are destabilized by the introduction of a
static harmonic confinement. Upon modulating the frequency of the trap,
the solitons are stabilized being a pair of bright solitons for a growing tight
confinement. These results are almost independent of the seed solutions. In-
deed, if one begins with nonsymmetric seed solutions, the overall behavior
does not dramatically change. The system still sustains bright vector solitons
which are destabilized (for a static trap), then stabilized by a rapidly growing
tight confinement. For an almost static confinement, the solutions consist of
a dark-bright soliton pair. In chapter 5, we succeed in finding analytically a
universal class of solutions for non fixed values of the spectral parameters. It
is worth emphasizing that this is a quite formidable technical task since, for
free parameters,we notice that the solutions depend crucially on the spectral
parameters and on the trap frequency. The Darboux transformation method
requires handling (3 x 3) matrices. The search for general solutions is much
more elaborate. Our main result, expressed by expression (5.3), shows that
these solutions depict quite different physics, depending on the former pa-
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rameters, which may be varied continuously. Indeed, choosing four different
sets of parameters, we span a large space of solutions ranging from Pere-
grine solitons, to Akhemdiev and Kuznetsov-Ma breathers and more general
breathers as well. The whole solutions bear a common behavior regarding
the confinement. They are self sustained in the trapless case, destroyed by
a static harmonic trap and arise again when a growing tight confinement is
applied. However, unlike the Kuznetsov-Ma breather, the trapped Akhme-
diev and rogue wave solutions have a larger lifetime than the corresponding
homogeneous case. This can be helpful in experimental setups.

Most importantly, in situations where these phenomena are expected to
have undesirable effects, we have presented a simple way to avoid them which
consists in employing a static confinement.

Moreover, in this work, we have considered contract interaction only. It is
natural to ask whether these results remain true for long range interactions,
such as dipolar forces. Finally, extensions to finite temperature cases is also
of considerable interest. In this case, one has to handle the whole set of
equations (2.15-2.16 and 2.17).
Beyond mean field effects such as LHY corrections are also of considerable
actual interests. In double condensates, these have been shown to lead to
new states of matter known as droplets[244, 245, 246]. A crucial question is
the behavior of these droplets under time dependent traps and if analytical
approaches such as the ones presented here, may be applied. These and other
perspectives will constitute our future field of investigations.
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Chapter 6

Appendix

In this Appendix, we show a detailed derivation of the timedependent Cou-
pled Gross Pitaevskii equations, by using the time dependent variational
principle of Balian-Vénéroni

6.1 The Balian-Vénéroni variational princi-

ple

The time-dependent variational principle of Balian and Vénéroni requires
first the choice of a trial density operator. In our case, we will consider a
Gaussian time-dependent density operator

D(t) = D0(t) = expQ(t) (6.1)

when

Q(t) = ν1 +

∫
r

[λ1(r, t)ψ†1(r) + λ2(r, t)ψ†2(r) + λ∗1(r, t)ψ1(r) + λ∗2(r, t)ψ2(r)]

+

∫
r,r′

[ψ̄1(r)s1(r, r
′
, t)ψ̄1(r

′
) +

¯
ψ†1(r)s∗1(r, r

′
, t)

¯
ψ†1(r

′
) +

¯
ψ†1(r)s2(r, r

′
, t)ψ̄1(r

′
)]

+

∫
r,r′

[ψ̄2(r)s3(r, r
′
, t)ψ̄2(r

′
) +

¯
ψ†2(r)s∗3(r, r

′
, t)

¯
ψ†2(r

′
) +

¯
ψ†2(r)s4(r, r

′
, t)ψ̄2(r

′
)]

+

∫
r,r′

[ψ̄1(r)s5(r, r
′
, t)ψ̄2(r

′
) +

¯
ψ†1(r)s∗5(r, r

′
, t)

¯
ψ†2(r

′
)]

+

∫
r,r′

[
¯
ψ†1(r)s6(r, r

′
, t)ψ̄2(r

′
) +

¯
ψ†2(r)s∗6(r, r

′
, t)ψ̄1(r

′
)]
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(6.2)

We choose the ansatz

A(t) = A0(t) = ν2(t) +

∫
r

[u1(r, t)ψ†1(r) + u2(r, t)ψ†2(r) + u∗1(r, t)ψ1(r) + u∗2(r, t)ψ2(r)]

+

∫
r,r
′
[u3(r, r

′
, t)ψ̄1(r)ψ̄1(r

′
) + u∗3(r, r

′
, t)

¯
ψ†1(r)

¯
ψ†1(r

′
) + u4(r, r

′
, t)

¯
ψ†1(r)ψ̄1(r

′
)]

+

∫
r,r′

[u5(r, r
′
, t)ψ̄2(r)ψ̄2(r

′
) + u∗5(r, r

′
, t)

¯
ψ†2(r)

¯
ψ†2(r

′
) + u6(r, r

′
, t)

¯
ψ†2(r)ψ̄2(r

′
)]

+

∫
r,r′

[u7(r, r
′
, t)ψ̄1(r)ψ̄2(r

′
) + u∗7(r, r

′
, t)

¯
ψ†1(r)

¯
ψ†2(r

′
)]

+

∫
r,r′

[u8(r, r
′
, t)ψ†1(r)ψ̄2(r

′
) + u∗8(r, r

′
, t)

¯
ψ†2(r)ψ̄1(r

′
)]

(6.3)

The action:

I = Tr(AD)tf −
∫ tf

ti

dtTrA(t)(
d

dt
D(t) + i[H,D(t)]) (6.4)

6.2 Coupled Gross- Pitaevskii Equation (CGPE)

The second order quantized Hamiltonian for condensate mixtures is written
in terms of the Bose field operators Ψ̂(r, t)(Ψ̂(r, t)†) for annihilation (creation)
of particle in species i at position r and time tby

H =

∫
drψ̂1

†
(r, t)ĥ1ψ̂1(r, t)

+
1

2

∫ ∫
drdr

′
ψ̂1

†
(r, t)ψ̂1

†
(r
′
, t)V1(r− r

′
)ψ̂1(r

′
, t)ψ̂1(r, t)

+

∫
drψ̂2

†
(r, t)ĥ2ψ̂2(r, t)

+
1

2

∫ ∫
drdr

′
ψ̂2

†
(r, t)ψ̂2

†
(r
′
, t)V2(r− r

′
)Ψ̂2(r

′
, t)ψ̂2(r, t)

+

∫ ∫
drdr

′
ψ̂1

†
(r
′
, t)ψ̂2

†
(r, t)V12(r− r

′
)ψ̂1(r, t)ψ̂2(r

′
, t)

(6.5)

where V1, V2 and V12 are the contact interactions acting between the
bosons of species one, species two and between each species respectively.
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ĥ1 = −−~2
2m
∇2 + Vexti(r) is the single particle Hamiltonian where mi is the

mass and Vext(i)(r) the external potential acting on each species. we can
approximate the contact interactions to

V1(r− r
′
) = g11δ(r− r

′
) (6.6)

V2(r− r
′
) = g22δ(r− r

′
) (6.7)

V12(r− r
′
) = g12δ(r− r

′
) (6.8)

where

gii =
4π~2aii

2mi

for i = 1, 2 and

g12 = (g21) =
2π~2(m1 +m2)a12

m1m2

The Bose field operators obey the following commutation relations:

[ψ̂i(r, t), ψ̂i
†
(r
′
, t)] = δ(r− r

′
) (6.9)

[ψ̂i(r, t), ψ̂i(r
′
, t)] = ψ̂i

†
(r, t)], ψ̂i

†
(r
′
, t)] = 0 (6.10)

[ψ̂i(r, t), ψ̂j
†
(r
′
, t)] = [ψ̂i(r, t), ψ̂j(r

′
, t)] = [ψ̂i

†
(r, t), ψ̂j

†
(r
′
, t)] = 0 (6.11)

and
ψi(r) = ψ̄i(r)+ < ψi(r) >= ψ̄i(r) + φi

Inserting the contact interaction assumption into Equation (3.4) and in-
tegrating out the dependence on r

′
leads to

H =

∫
drψ†1(r, t)ĥ1ψ1(r, t)

+
g11

2

∫
drψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)

+

∫
drψ†2(r, t)ĥ2ψ2(r, t)

+
g22

2

∫
drψ†2(r, t)ψ†2(r, t)ψ2(r, t)ψ2(r, t)

+ g12

∫
drψ†1(r, t)ψ†2(r, t)ψ1(r, t)ψ2(r, t)

(6.12)
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The terms of Hamiltonian labelled by:

H1 =

∫
drψ†1(r, t)ĥ1ψ1(r, t)

H2 =
g11

2

∫
drψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)

H3 =

∫
drψ†2(r, t)ĥ2ψ2(r, t)

H4 =
g22

2

∫
drψ†2(r, t)ψ†2(r, t)ψ2(r, t)ψ2(r, t)

H5 = g12

∫
drψ†1(r, t)ψ†2(r, t)ψ1(r, t)ψ2(r, t)

we need to calculated the terms: 〈[ψ1(r
′
), H]〉,〈[ψ2(r

′
), H]〉 〈[ψ̄1(r

′
)ψ̄1(r

′′
), H]〉,

〈[ ¯
ψ†1(r

′
)ψ̄1(r

′′
), H]〉 〈[ψ̄2(r

′
)ψ̄2(r

′′
), H]〉, and 〈[ ¯

ψ†2(r
′
)ψ̄2(r

′′
), H]〉

when

〈[ψ1(r
′
), H]〉 = 〈[ψ1(r

′
), H1]〉+ 〈[ψ1(r

′
), H2]〉+ 〈[ψ1(r

′
), H5]〉

〈[ψ2(r
′
), H]〉 = 〈[ψ2(r

′
), H3]〉+ 〈[ψ2(r

′
), H4]〉+ 〈[ψ2(r

′
), H5]〉

〈[ψ̄1(r
′
)ψ̄1(r

′′
), H]〉 = 〈[ψ̄1(r

′
)ψ̄1(r

′′
), H1]〉+〈[ψ̄1(r

′
)ψ̄1(r

′′
), H2]〉+〈[ψ̄1(r

′
)ψ̄1(r

′′
), H5]〉

〈[ ¯
ψ†1(r′)ψ̄1(r

′′
), H]〉 = 〈[ ¯

ψ†1(r
′
)ψ̄1(r

′′
), H1]〉+〈[ ¯

ψ†1(r
′
)ψ̄1(r

′′
), H2]〉+〈[ ¯

ψ†1(r
′
)ψ̄1(r

′′
), H5]〉

〈[ψ̄2(r)ψ̄2(r
′
), H]〉 = 〈[ψ̄2(r)ψ̄2(r

′
), H3]〉+〈[ψ̄2(r)ψ̄2(r

′
), H4]〉+〈[ψ̄2(r)ψ̄2(r

′
), H5]〉

〈[ ¯
ψ†2(r

′
)ψ̄2(r

′′
), H]〉 = 〈[ ¯

ψ†2(r
′
)ψ̄2(r

′′
), H3]〉+〈[ ¯

ψ†2(r
′
)ψ̄2(r

′′
), H4]〉+〈[ ¯

ψ†2(r
′
)ψ̄2(r

′′
), H5]〉

Taking the term by term
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[ψ1(r
′
), H1] = [ψ1(r

′
),

∫
drψ̂1

†
(r, t)ĥ1ψ̂1(r, t)]

=

∫
dr(ψ1(r

′
, t)ψ†1(r, t)ĥ1ψ1(r, t)− ψ†1(r, t)ĥ1ψ1(r, t)ψ1(r

′
, t))

=

∫
dr(ψ1(r

′
, t)ψ†1(r, t)ĥ1ψ1(r, t)− ψ†1(r, t)ĥ1ψ1(r

′
, t)ψ1(r, t))

=

∫
dr(ψ1(r

′
, t)ψ†1(r, t)ĥ1Ψ1(r, t)− ψ†1(r, t)ψ1(r

′
, t)ĥ1ψ1(r, t))

=

∫
dr(ψ1(r

′
, t)ψ†1(r, t)− ψ†1(r, t)ψ1(r

′
, t))ĥ1ψ1(r, t)

=

∫
dr(δ(r

′ − r))ĥ1ψ1(r, t)

= ĥ1ψ1(r, t)

(6.13)

Taking the terms

[ψ1(r
′
, t), H2] = [ψ1(r

′
, t),

g11

2

∫
drψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)]

=
g11

2

∫
drψ1(r

′
, t)ψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)

− g11

2

∫
drψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)ψ1(r

′
, t)

=
g11

2
[

∫
drψ1(r

′
, t)ψ†1(r, t)ψ†1(r, t)ψ1(r, t)ψ1(r, t)

−
∫
drψ†1(r, t)ψ†1(r, t)ψ1(r

′
, t)ψ1(r, t)ψ1(r, t)]

=
g11

2
(

∫
drψ1(r

′
, t)ψ†1(r, t)ψ†1(r, t)− ψ†1(r, t)ψ†1(r, t)ψ1(r

′
, t))ψ1(r, t)ψ1(r, t)

= g11

∫
dr(2δ(r− r

′
)ψ†1(r

′
, t))ψ1(r, t)ψ1(r, t)

= g11ψ
†
1ψ1(r, t)ψ1(r, t)

(6.14)

as [Ψ̂1(r, t), Ψ̂1(r
′
, t)] = 0 and
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[ψ1(r
′
, t), ψ†1(r, t)ψ†1(r, t)]

= [ψ1(r
′
, t), ψ†1(r, t)]ψ†1(r, t) + ψ†1r, t)[ψ1(r

′
, t), ψ†1(r, t)]

= δ(r
′ − r)ψ†1(r, t) + ψ†1(r, t)δ(r

′ − r)

= 2δ(r
′ − r)ψ†1(r, t)

(6.15)

The final terms

[ψ1(r
′
, t), H5] = [ψ1(r

′
, t), g12

∫
drψ†1(r, t)ψ†2(r, t)ψ1(r, t)ψ2(r, t)]

= g12

∫
drψ1(r

′
, t)ψ†1(r, t)ψ†2(r, t)ψ̂1(r, t)ψ̂2(r, t)

− g12

∫
drψ†1(r, t)ψ†2(r, t)ψ1(r, t)ψ2(r, t)ψ1(r

′
, t)

= g12[

∫
drψ1(r

′
, t)ψ†1(r, t)ψ†2(r, t)ψ̂1(r, t)ψ2(r, t)

−
∫
drψ†1(r, t)ψ†2(r, t)ψ1(r

′
, t)ψ1(r, t)ψ2(r, t)]

= g12

∫
dr(ψ1(r

′
, t)ψ†1(r, t)ψ†2(r, t)− ψ̂1

†
(r, t)ψ†2(r, t)ψ1(r

′
, t))Ψ̂1(r, t)ψ2(r, t)

= g12

∫
dr[ψ1(r

′
, t), ψ†1(r, t)ψ†2(r, t)]ψ1(r, t)Ψ̂2(r, t)

= g12

∫
drδ(r

′ − r)ψ†2(r
′
, t)ψ1(r, t)ψ2(r, t)

= g12ψ
†
2(r, t)ψ1(r, t)ψ2(r, t)

(6.16)

[ψ1(r
′
, t), ψ1(r, t)ψ†2(r, t)]

= [ψ1(r
′
, t), ψ†1(r, t)]ψ†2(r, t)− ψ1(r, t)[ψ1(r

′
, t), ψ†2(r, t)]

= δ(r
′ − r)ψ†2(r, t)

(6.17)

Combining these (Eqs. (6.13),Eqs. (6.14)and Eqs. (6.16))leads to

〈[ψ1(r
′
), H]〉 = 〈ĥ1ψ1(r, t)〉+ 〈g11ψ1(r, t)ψ†1ψ1(r, t)ψ1(r, t)〉

+ 〈g12ψ
†
2(r, t)ψ1(r, t)ψ2(r, t)〉

= ĥ1〈ψ1(r, t)〉+ g11〈ψ†1(r, t)ψ1(r, t)ψ1(r, t)〉
+ g12〈ψ†2(r, t)ψ1(r, t)ψ2(r, t)〉

(6.18)
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We now decompose the Bose field operator ψi(r, t) in terms of a macroscop-
ically populated mean field term φi(r, t) = 〈ψi(r, t)〉, and a fluctuation term
ψ̄i(r, t).

ψ1(r, t) = 〈ψi(r, t)〉+ ψ̄i(r, t)

= φi(r, t) + ψ̄i(r, t)
(6.19)

〈[ψ1, H1]〉 = 〈ĥ1ψ1〉 = ĥ1〈ψ1〉 = ĥ1(〈ψ̄i(r) > + < ψi〉) = ĥ1φ1

because 〈ψ̄i〉 = 0

We define ñii = 〈ψ̄i
†
ψ̄i〉,m̃ii = 〈ψ̄iψ̄i〉,as the non-condensate and anoma-

lous densities respectively.

ψ†1ψ1ψ1 = (φ∗1 +
¯
ψ†1)(φ1 + ψ̄1)(φ1 + ψ̄1)

= |φ1|2φ1 + 2|φ1|2ψ̄1 + 2φ1ψ̄1
†
ψ̄1 + φ∗1ψ̄1ψ̄1 + φ2

1ψ̄1
†

+ ψ̄1
†
ψ̄1ψ̄1

(6.20)

the other term gives

ψ†2ψ2ψ1 = (ψ∗2 +
¯
ψ†2)(φ2 + ψ̄2)(φ1 + ψ̄1)

= |φ2|2φ1 + |φ2|2ψ̄1 + φ∗2ψ̄2φ1 + φ∗2ψ̄2ψ̄1

+ ψ̄2
†
φ2φ1 + ψ̄2

†
φ2ψ̄1 + ψ̄2

†
ψ̄2φ1ψ̄2

†
ψ̄2ψ̄1

(6.21)

the values of the product of operators are

〈ψ†1ψ1ψ1〉 = |φ1|2φ1 + φ∗1〈ψ̄1ψ̄1〉+ 2φ1〈ψ̄1
†
ψ̄1〉+ 〈ψ̄1

†
ψ̄1ψ̄1〉 (6.22)

〈ψ†2ψ2ψ1〉 = |φ2|2φ1 +φ∗2〈ψ̄2ψ̄1〉+φ2〈ψ̄2
†
ψ̄1〉+φ1〈ψ̄2

†
ψ̄2〉〈ψ̄2

†
ψ̄2ψ̄1〉 (6.23)

Considering that the fluctuations of two species are uncorrelated 〈ψ̄2ψ̄1〉 =

〈ψ̄2
†
ψ̄1〉 = 0[181, 182]

the commutator of (Eqs. (6.18)give

〈[ψ1, H]〉 = ĥ1φ1 + g11(|φ1|2φ1 + m̃11φ
∗
1 + ñ11φ1) + g12|φ2|2φ1 (6.24)

when〈ψ̄2
†
ψ̄2ψ̄1〉 = 0

79



Similarly, it can be shown for〈[ψ2(r
′
), H]〉 that

〈[ψ2, H]〉 = ĥ2φ2 + g22(|φ2|2φ2 + m̃22φ
∗
2 + ñ22φ2) + g12|φ1|2φ1 (6.25)

Now, we are taking the term 〈[ψ̄1(r
′
)ψ̄1(r

′′
), H]〉. when

〈[ψ̄1(r
′
)ψ̄1(r

′′
), H]〉 = 〈[ψ̄1(r

′
)ψ̄1(r

′′
), H1]〉+〈[ψ̄1(r

′
)ψ̄1(r

′′
), H2]〉+〈[ψ̄1(r

′
)ψ̄1(r

′′
), H5]〉

(6.26)

with the same method,we find other terms

〈[ψ̄1ψ̄1, H]〉 = 2~1〈[ψ̄1ψ̄1]〉 +2g11〈ψ†1ψ1ψ1ψ̄1〉+ 2g12〈ψ̄1ψ
†
2ψ2ψ1〉 (6.27)

when

〈ψ̄1ψ̄1〉 = m̃11

〈ψ†1ψ1ψ1ψ̄1〉 = 2|φ1|2m̃11 + φ2
1ñ11 + ñ11m̃11

〈ψ̄1ψ
†
2ψ2ψ1〉 = |φ1|2m̃11

(6.28)

finally, the term gives

〈[ψ̄1ψ̄1, H]〉 = 2h1m̃11+2g11(2|φ1|2m̃11+φ2
1ñ11+ñ11m̃11)+2g12|φ2|2m̃11 (6.29)

for the second species

〈[ψ̄2ψ̄2, H]〉 = 2~2〈[ψ̄2ψ̄2]〉 +2g22〈ψ†2ψ2ψ2ψ̄2〉+ 2g12〈ψ̄2ψ
†
1ψ2ψ1〉 (6.30)

when

〈ψ̄2ψ̄2〉 = m̃22

〈ψ†2ψ2ψ2ψ̄2〉 = 2|φ2|2m̃22 + φ2
2ñ22 + ñ22m̃22

〈ψ̄2ψ
†
1ψ2ψ1〉 = |φ1|2m̃22

(6.31)

finally, the term gives

〈[ψ̄2ψ̄2, H]〉 = 2h2m̃22+2g22(2|φ2|2m̃22+φ2
2ñ22+ñ22m̃22)+2g12|φ1|2m̃22 (6.32)

for the non condensate term, we have

〈[ψ̄1
†
ψ̄1, H]〉 = g11(〈ψ̄†1ψ

†
1ψ1ψ1〉 − 〈ψ̄1ψ

†
1ψ
†
1ψ1〉) + g12(〈 ¯

ψ†1ψ
†
2ψ2ψ1〉 − 〈ψ†1ψ

†
2ψ2ψ̄

†
1〉)
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(6.33)

when

〈 ¯
ψ†1ψ̄1〉 = ñ11

〈ψ̄†1ψ
†
1ψ1ψ1〉 = 2|φ1|2ñ11 + 2ñ11ñ11 + φ2

1m̃
∗

11 + m̃∗11m̃11

〈ψ̄1ψ
†
1ψ
†
1ψ1〉 = 2|φ1|2ñ11 + 2ñ11ñ11 + φ∗21 m̃11 + m̃∗11m̃11

〈 ¯
ψ†1ψ

†
2ψ2ψ1〉 = |φ2|2ñ11 + ñ11ñ22

〈ψ†1ψ
†
2ψ2ψ̄

†
1〉 = |φ2|2ñ11 + ñ11ñ22

(6.34)

back to the equation (Eqs. (6.33)

〈[ ¯
ψ†1ψ̄1, H]〉 = g11(φ2

1m̃
∗

11 − φ∗21 m̃11) (6.35)

the non condensate for the second species

〈[ψ̄2
†
ψ̄2, H]〉 = g22(〈ψ̄†2ψ

†
2ψ2ψ2〉 − 〈ψ̄2ψ

†
2ψ
†
2ψ2〉) + g12(〈 ¯

ψ†2ψ
†
1ψ2ψ1〉 − 〈ψ†1ψ

†
2ψ1ψ̄

†
2〉)

(6.36)

when

〈 ¯
ψ†2ψ̄2〉 = ñ22

〈ψ̄†2ψ
†
2ψ2ψ2〉 = 2|φ2|2ñ22 + 2ñ22ñ22 + φ2

2m̃
∗

22 + m̃∗22m̃22

〈ψ̄2ψ
†
2ψ
†
2ψ2〉 = 2|φ2|2ñ22 + 2ñ22ñ22 + φ∗22 m̃22 + m̃∗22m̃22

〈 ¯
ψ†2ψ

†
1ψ2ψ1〉 = |φ2|2ñ22 + ñ11ñ22

〈ψ†1ψ
†
2ψ1ψ̄

†
2〉 = |φ2|2ñ22 + ñ11ñ22

(6.37)

back to the equation (Eqs. (6.36)

〈[ ¯
ψ†2ψ̄2, H]〉 = g22(φ2

2m̃
∗

22 − φ∗22 m̃22) (6.38)
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