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   ملخص

 

تحت  سطحيةعلى قدرة تحمل الأساسات ال الإرتياباتهو دراسة تأثير عدم  طروحةالهدف الرئيسي لهذه الأ

تحميل الزلازل باستخدام النهج الاحتمالي. في المرحلة الأولى من هذه الرسالة، تم استخدام طريقة توسيع 

Karhunen-Loève (KL)   التربة  معطياتفي سياق نظرية الحقل العشوائي لاستكشاف تأثير عشوائية

( 2018والزلزال على قدرة تحمل الزلازل. تم تطبيق معادلات قدرة التحمل الزلزالية التي وضعها كونتي )

. تربة متماسكة بحتة وتربة متماسكة احتكاكية: سطحيةالفي التحليل لنوعين من التربة التي تدعم القواعد 

في سياق النتائج الإحصائية والاحتمالية، من الضروري إعطاء الأولوية لمعامل أشارت النتائج إلى أنه، 

، تم تقديم صياغة طروحةالأ. في المرحلة الثانية من التباين لالتقاط التباين بدقة وإجراء استدلالات موثوقة

وتقع  توائيةلالإتتأثر بانتشار الأمواج السطحية  سطحيةلتحديد معامل قدرة تحمل الزلازل لقاعدة شريطية 

. تم استخدام طريقة التوازن الحدودي بالاشتراك مع النهج خواص متباينةعلى تربة غير متجانسة ذات 

الشبه ديناميكي. بالإضافة إلى ذلك، تم إجراء تحليل موثوقية استناداً إلى المحاكاة المونتي كارلو لدمج 

المقترح للزلازل يمكن أن  تحمليةوُجد أن عامل القدرة الفي التربة والزلازل ودراسة تأثيراتها.  الإرتيابات

يكون قابلًً للتطبيق من أجل قياس انتشار الموجات الالتوائية، والتباين في الخواص، وعدم تجانس خصائص 

 التربة.

 

 ؛موثوقية ؛ زلزال؛ الموجة؛ حقل عشوائي؛سطحية؛ قدرة التحمل؛ الأساسات الالإرتيابات: كلمات مفتاحية

 .مونتي كارلو؛ احتمالية
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Abstract 

 

The main objective of this thesis is to investigate the impact of uncertainties on the bearing 

capacity of shallow foundations under seismic loading by employing probabilistic approaches. 

At the first stage, the Karhunen-Loève (KL) expansion method within the context of random 

field theory was utilized to explore the influence of soil and earthquake parameter randomness 

on the seismic bearing capacity. The seismic bearing capacity equations established by Conti 

(2018) were applied in the analysis for two soil types supporting shallow strip footings: purely 

cohesive soil and cohesive-frictional soil. The results indicated that, in the context of statistical 

and probabilistic results, prioritizing the coefficient of variation is essential for accurately 

capturing the variability and making reliable inferences.  At the second stage, a formulation for 

determining the seismic bearing capacity factor of a shallow strip footing influenced by 

torsional surface wave propagation and resting on anisotropic non-homogeneous soil was 

presented. The limit equilibrium method in conjunction with the pseudo-dynamic approach are 

used. In addition to that, a reliability analysis based on Monte Carlo simulation was conducted 

in order to incorporate the soil-earthquake uncertainties and investigating their effects. It was 

found that the proposed seismic bearing capacity factor can be applicable in order to quantify 

the torsional wave propagation, the anisotropy and the non-homogeneity of the soil properties. 

 

Keywords: Uncertainties; bearing capacity; shallow foundations; torsional wave; Random 

field; Reliability; Monte Carlo; probability.  
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Résumé 

 

Le principal objectif de cette thèse est d'étudier l'impact des incertitudes sur la capacité portante 

des fondations superficielles sous chargement sismique en utilisant des approches 

probabilistes. Dans la première étape, la méthode d'expansion Karhunen-Loève (KL) dans le 

contexte de la théorie des champs aléatoires a été utilisée pour explorer l'influence du caractère 

aléatoire des paramètres du sol et du séisme sur la capacité portante sismique. Les équations 

de la capacité portante sismique établies par Conti (2018) ont été appliquées dans l'analyse pour 

deux types de sol soutenant des semelles superficielles : sol purement cohérent et sol cohésif-

frictionnel. Les résultats ont indiqué que, dans le contexte des résultats statistiques et 

probabilistiques, il est essentiel de prioriser le coefficient de variation pour capturer avec 

précision la variabilité et faire des inférences fiables. Dans la deuxième étape, une formulation 

pour déterminer le facteur de capacité portante sismique d'une semelle superficielle influencée 

par la propagation des ondes de surface torsionnelles et reposant sur un sol hétérogène 

anisotrope a été présentée. La méthode d'équilibre limite en conjonction avec une approche 

pseudo-dynamique est utilisée. De plus, une analyse fiabiliste basée sur les simulations de 

Monte Carlo a été réalisée afin d'incorporer les incertitudes du système sol-séisme et d'étudier 

leurs effets. Il a été constaté que le facteur de capacité portante sismique proposé peut être 

applicable afin de quantifier la propagation des ondes de torsion, l'anisotropie et le non-

homogénéité des propriétés du sol. 

 

Mots-clés : Incertitudes ; capacité portante ; fondations superficielles ; onde de torsion ; champ 

aléatoire ; Fiabiliste ; Monte Carlo ; probabilité. 
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1. Problematic and objectives 

The shallow foundation is the part of a structure that ensures the safe transfer of the structure's 

loads to the ground. Typically hidden underground, shallow foundation systems may be 

subjected to dynamic loading. This dynamic loading can manifest in different forms, including 

(a) monotonic loading with varying velocities, (b) earthquake loading, (c) cyclic loading, and 

(d) transient loading. Consequently, it leads to a decrease in the bearing capacity of shallow 

foundations and amplifies the risk of settlement. Earthquake loading poses a terrible and 

frequently occurring dynamic force capable of causing significant damage to shallow 

foundations. For this reason, the effect of the seismic loading on the beating capacity of shallow 

foundations is the topic of this thesis.  

Because earthquake engineering focuses on the impact of earthquakes on humans and their 

surroundings, particularly those situated on or close to the Earth's surface, surface waves hold 

significant importance. They attenuate more slowly with distance compared to body waves, 

further emphasizing their relevance in seismic analysis and design. In earthquake engineering, 

two primary types of surface waves hold significant importance. The Rayleigh wave is evident 

in a homogeneous elastic half-space while the Love wave necessitates a surface layer with 

lower S-wave velocity compared to the underlying half-space. Although other surface wave 

types exist, their relevance in earthquake engineering is comparatively minor. The study of 

those both surface waves is more focused in homogeneous condition than in heterogeneous one 

in the literature studies.  

Recently, the impact of Rayleigh wave and Love wave on the bearing capacity of shallow 

foundations have been investigated by Saha and Ghosh (2017) and Izadi et al. (2022), 

respectively.  

Because of the Earth's inhomogeneous nature, there is a significant need for intensive study of 

wave propagation in inhomogeneous media. Torsional waves, which are a type of surface 

waves, exclusively propagate in non-homogeneous media (Meissner, 1921; Rayleigh, 1945). 

In light of this point, this surface wave should be taken into consideration during the estimation 

of the bearing capacity of shallow foundations in inhomogeneous (heterogeneous) media.  For 

this purpose, the impact of the surface torsional wave is investigated in chapters 4 and 5.  

On the other hand, the seismic bearing capacity analysis is usually conducted for homogeneous 

soils under the assumption of a set of deterministic soil and earthquake properties. 

Nevertheless, it is well known that the soil properties such as shear strength parameters involve 
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a significant level of uncertainty, despite being in a single soil layer (Johari et al., 2017). Hence, 

a reliability analysis is an adequate way to consider the uncertainties incorporated in the 

properties and to provide a rational framework for adopting the appropriate bearing capacity 

that provides power tools to succor geotechnical designers in checking how reliable their 

designs are? 

In light of what has been argued, the present work primarily focuses on investigating the impact 

of randomly varying soil and earthquake parameters on the seismic bearing capacity of shallow 

foundations. This is accomplished by applying random field theory to existing bearing capacity 

formulas. After that, a seismic bearing capacity model of a strip footing, which considers the 

influence of soil non-homogeneity and torsional surface wave propagation is proposed. 

Furthermore, a reliability-based analysis is carried out to incorporate uncertainties in soil and 

earthquake parameters and to examine their impact. 

2. Thesis organization 

Following the motivations and objectives of the thesis, the organization of the dissertation is 

presented below: 

The first chapter consists in a bibliographic research focused on the methods employed in 

estimating the bearing capacity of shallow foundations under both static and seismic loading 

conditions. Additionally, various mathematical models proposed by different researchers for 

determining the bearing capacity in static and dynamic scenarios are presented. 

The second chapter started first with a synthesis of previous works on the seismic bearing 

capacity of shallow foundations.  After that, it presented (1) the different sources of soil 

properties uncertainty in geotechnical field, (2) the spatial variability of soil properties, (3) the 

methods of characterization of spatial variability and (4) the reliability analysis methods.  At 

the end, a synthesis previous works on the quantification of geotechnical uncertainties in the 

seismic bearing capacity field is included. 

In the third chapter, the Karhunen-Loève (KL) expansion method within the context of random 

field theory was utilized to explore the influence of soil and earthquake parameter randomness 

on the seismic bearing capacity. The seismic bearing capacity equations established by Conti 

(2018) were applied in the analysis for two soil types supporting shallow strip footings: purely 

cohesive soil and cohesive-frictional soil. 



General Introduction 

 

 

4 

The fourth chapter exhibits a formulation of the seismic bearing capacity factor for strip 

footings, utilizing a combination of the limit equilibrium method and he pseudo-dynamic 

approach. This formulation incorporates soil heterogeneity parameters and the propagation of 

the torsional wave in determining the seismic factor. 

Finally, the chapter five presents the validation and comparison of the seismic bearing capacity 

factor obtained with existing literature studies. Also, a parametric study reveals the effect of 

the heterogeneity, seismic torsional wave parameters and the other parameters governing this 

seismic factor.  Later on, a reliability analysis based on the Monte Carlo simulations is also 

carried out with the aim to incorporate the uncertainties around the main soil and earthquake 

parameters that govern the seismic bearing capacity of shallow foundations (soil internal 

friction angle and seismic acceleration coefficient) and to study their effects. 

The dissertation ends with overarching conclusions, along with recommendations and 

prospects for future research endeavors. 
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1.1.  Introduction 

During the earthquake loading, the shallow foundations may experience a reduction in bearing 

capacity and increment in the susceptibility to settlement. This reduction of bearing capacity 

of foundations increases the potential of building failure and consequently may leading to 

human casualties. The evaluation of seismic bearing capacity of foundations is a crucial step 

in the design phase.  

 

1.2. Overview of geotechnical seismic engineering on the history of 

earthquakes 

Earthquakes have emerged as one of the most devastating natural disasters throughout history, 

leading to significant loss of life and infrastructure damage, particularly in densely populated 

regions prone to seismic activity. In the past few years, numerous cities worldwide have 

suffered from the destructive consequences of earthquakes, leading to widespread damage and 

a range of associated challenges.  

From a geotechnical engineering perspective, foundations represent a critical focal point in 

ensuring the safety of superstructures and mitigating potential losses of life and infrastructure 

during seismic events. Numerous instances worldwide underscore the profound impact of 

powerful earthquakes on cities, revealing their varied effects on diverse types of civil 

engineering structures.  

 

1.2.1. El-Asnam Earthquake (1980) 

The 1980 El Asnam Earthquake, one of the most destructive seismic events recorded in 

northern Africa and the Western Mediterranean Basin, struck the northern region of Algeria 

with a moment magnitude of 7.1. It devastated the city of El Asnam, which had an estimated 

population of 125,000, as well as nearby towns and villages. The earthquake resulted in a 

significant loss of life, with casualties reportedly ranging from 5,000 to 20,000, largely due to 

the collapse of buildings (Fig. 1.1). In many areas, particularly along the Chlef riverbanks, 

large amounts of sandy soil were ejected onto the ground surface. The earthquake also caused 

substantial damage to civil and hydraulic structures, including earth dams, embankments, 

bridges, slopes, and buildings. 
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Fig 1.1 Extent of Building Damage Caused by the El Asnam Earthquake Ait-Meziane et al. 

(2018). 

 

1.2.2. Mexico City Earthquake (1985)  

The magnitude 8.1 earthquake that struck Mexico City resulted in substantial damage to 

buildings and infrastructure. Numerous structures suffered foundation failures, culminating in 

collapses and loss of life. The city's soil conditions, characterized by the presence of soft clay 

and lake sediments, amplified the seismic waves, amplifying ground shaking and inflicting 

damage on foundational structures (Fig. 1.2). 

 

  

Fig. 1.2 Settlement of building and foundation failure during Mexico earthquake 1985, 

Britannica Editors of Encyclopaedia (2023). 

 

 



CHAPTER 1:                                                                               Bibliographic research 

 

8 

1.2.3. Loma Prieta Earthquake (1989) 

The Loma Prieta earthquake, with a magnitude of 6.9, struck the San Francisco Bay Area in 

California. It caused significant damage to various types of foundation structures. Many 

buildings experienced foundation settlement, where the soil beneath the foundation shifted, 

leading to cracks in walls and floors. Some buildings suffered from differential settlement, 

causing uneven settling and structural damage. In extreme cases, the foundations failed 

completely, resulting in building collapse (Fig. 1.3). 

 

1.2.4. Kobe Earthquake (1995)  

The Kobe earthquake, also known as the Great Hanshin earthquake, struck the city of Kobe in 

Japan with a magnitude of 6.9. The earthquake resulted in extensive damage to buildings and 

infrastructures. Numerous buildings encountered both foundation settling and differential 

settlement, leading to structural instability and collapse. The soft and loose soil conditions in 

the region exacerbated the effects of the earthquake on foundation structures (Fig. 1.4). 

 

1.2.5. Boumerdès Earthquake (2003) 

The 2003 Boumerdès Earthquake, also known as the Zemmouri Earthquake, struck northern 

Algeria on May 21, 2003, with a magnitude of 6.8 on the Richter scale. The epicenter was near 

the town of Zemmouri, approximately 60 kilometers east of the capital, Algiers. This seismic 

event was a result of tectonic activity along the convergent boundary between the African and 

Eurasian Plates. 

 

The earthquake's impact on buildings was catastrophic, causing widespread destruction across 

the region. Thousands of residential buildings collapsed or were severely damaged, leaving 

many people homeless and highlighting deficiencies in construction practices and building 

materials. Modern structures, despite being designed to withstand earthquakes, also suffered 

significant damage, including cracked walls, compromised foundations, and the failure of non-

structural elements such as facades and interior partitions (Fig. 1.5). 
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Fig. 1.3 Buildings collapse during Loma Prieta earthquake 1989, Sturzenegger (2015).  

 

 

1.2.6. Haiti Earthquake (2010) 

The magnitude 7.0 earthquake that struck Haiti caused catastrophic damage and loss of life. 

Many buildings, particularly in the capital city of Port-au-Prince, suffered either complete or 

partial collapse. The lack of proper construction practices and poor-quality materials 

contributed to the vulnerability of the structures (Fig. 1.6). The shallow foundations of many 

buildings were unable to withstand the seismic forces, leading to widespread foundation 

failure. 
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Fig 1.4. Building settlement during Kobe Earthquake 1995, Britannica Editors of 

Encyclopaedia (2008). 

 

  

Fig. 1.5 Damage in the affected areas in Boumerdes-Algiers region Ait-Meziane et al. (2018). 

 

1.2.7. Christchurch Earthquake (2010-2011) 

A series of earthquakes struck the city of Christchurch in New Zealand, with the most 

devastating one occurring in February 2011, with a magnitude of 6.3. The earthquakes inflicted 

substantial damage on buildings and infrastructure, resulting in foundation cracking, 

settlement, and lateral spreading in numerous structures. The extensive liquefaction of the soil 

led to widespread foundation failure and structural damage, resulting in the collapse of 

numerous buildings (Fig. 1.7). 
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Fig. 1.6 Damaged buildings in Port-au-Prince, Haiti after earthquake magnitude 7, Center for 

Disaster Philanthropy (2022). 

 

 

  

Fig. 1.7 Building collapse and soil liquefaction during Christchurch Earthquake 2010-2011, 

Wikipedia (2024). 

 

1.2.8. Nepal Earthquake (2015)  

The earthquake with a magnitude of 7.8 that occurred in Nepal caused widespread devastation, 

particularly in the capital city of Kathmandu and surrounding areas. Many buildings, including 

historic structures, suffered from foundation failure and collapse. The combination of 

inadequate construction practices, heavy loadings, and the region's geology contributed to the 

vulnerability of the foundations. Soil liquefaction and landslides further exacerbated the 

damage (Fig. 1.8). 
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Fig. 1.8 Building collapse, land sliding, settlement, soil liquefaction during Nepal earthquake 

2015, Taylor (2016). 

 

 

1.3. Failure mechanism of shallow foundations under static load 

The results of tests on rigid foundations show that there are three potential failure mechanisms 

involving a limited volume of soil. The first is a general mechanism characterized by the 

formation of a wedge beneath the foundation base, which displaces the soil laterally along slip 

lines that emerge at the surface (Fig. 1.9). The foundation settlement generally leads to an uplift 

of the soil, which is more pronounced when the structure is less deformable. This is the case 

for relatively strong soils (Fig. 1.10). The second is a mechanism of localized shearing, 

extending only in the immediate vicinity of the foundation. There is also uplift of the soil, but 

it occurs after significant settlement, particularly in very compressible soils like loose sands 

(Fig. 1.11). The third mechanism is a failure by punching, where the foundation penetrates 

vertically into the ground without disturbing the soil not directly beneath the foundation (Fig. 

1.12). 
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Fig. 1.9 General failure mechanism - strip footing model during the centrifugal test (Bond 

and Harris, 2008). 

 

 

Fig. 1.10 General failure mechanism with: (a) soil failure at surface; (b) load-settlement 

curve. 
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Fig. 1.11 Local shear failure with: (a) soil failure at surface; (b) load-settlement curve. 

 

 

 

 

Fig. 1.12 Punching shear failure with: (a) soil failure at surface; (b) load-settlement curve. 
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1.4. Failure mechanism of shallow foundations under seismic load 

Various analytical approaches in the existing literature have addressed the seismic bearing 

capacity problem. These methods include solutions based on limit equilibrium analysis 

(Richard et al. 1993 and Budhu and Al-Karni 1993), upper-bound kinematic analyses (Soubra 

1999 and Paolucci and Pecker 1997), and lower-bound analyses using the method of stress 

characteristics (Kumar and Mohan Rao 2002). In all these approaches, earthquake loads and 

accelerations are considered as pseudo-static, with adjustments made for modifying soil inertia 

due to horizontal accelerations represented by kh.g and vertical accelerations represented by 

kv.g, where 'g' denotes the acceleration due to Earth's gravity.  

Both Richard et al. (1993) and Budhu and Al-Karni (1993) approached the problem by 

assuming the formation of an asymmetrical Prandtl failure surface, as illustrated in Fig. 1.13. 

For analytical purposes, this was simplified to a two-part Coulomb sliding wedge mechanism 

in Richard et al. (1993), while Budhu and Al-Karni (1993) analyzed the same mechanism 

without this simplification. In both cases, the superstructure forces included the vertical load 

resulting from the structure's weight and the horizontal load due to the structure's inertia during 

the earthquake. The foundation failure occurred through rotation about one corner, specifically 

the right-hand corner in Fig. 1.13. It is noteworthy that as the magnitude of horizontal 

acceleration increases, the size of the failure mechanism diminishes, consequently reducing the 

bearing capacity. 

Considering that the majority of structures have their center of mass positioned well above the 

soil–foundation interface, and given that this interface is where horizontal inertial loads are 

applied, it becomes apparent that substantial moments are induced on the foundation due to 

these inertial forces. These moments result in the foundation rotating about a point that may 

not necessarily be at a corner, and the extent of rotation depends on the magnitude of the applied 

moment. Consequently, this rotation can lead to uplift along a portion of the foundation. An 

upper-bound kinematic analysis, which accounts for these moment effects, is presented in 

Paolucci and Pecker (1997). In this analysis, the failure mechanism, referred to as Mec 2, has 

been adjusted to incorporate uplift by introducing the parameter λ, as depicted in Fig. 1.14. 
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Fig. 1.13 Prandtl failure mechanism modified by Budhu and Al-Karni (1993). 

 

 

Fig. 1.14 Mec2 failure mechanism assumed by Paolucci and Pecker (1997). 

 

1.5. Approaches for Determining Bearing Capacity  

1.5.1. Limit equilibrium method  

The limit equilibrium method is a commonly used engineering approach to analyze and design 

structures or geotechnical systems, especially in the context of soil mechanics and slope 

stability analysis. This method is employed to determine whether a given structure or slope 

will remain stable or if it is at risk of failure under specific conditions. The approach is based 

on the concept of equilibrium, which means that the forces and moments acting on a structure 

or soil mass must balance for it to remain stable.  

The solutions of Terzaghi (1943) and Taylor (1948), which are widely used in building codes 

and soil mechanics courses, are obtained through the limit equilibrium method. 



CHAPTER 1:                                                                               Bibliographic research 

 

17 

In Terzaghi's 1943 work, the concept of "superposition" concerning the bearing capacity of a 

cohesive and frictional medium with a given unit weight and a surface surcharge was 

introduced. In his well-known formula (Eq. 1.1), Terzaghi described the bearing capacity as 

the sum of three independent terms. 

 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾 (1.1) 

 

In which c, q and γ denote respectively the cohesion, the surcharge load and soil unit weight, 

while Nc, Nq and Nγ are the bearing capacity factors.  

 

1.5.2. Limit analysis method 

The limit analysis method is an engineering approach used to assess the safety and stability of 

structures, particularly in geotechnical and structural engineering. This method focuses on 

determining the critical load or the maximum load-carrying capacity that a structure can 

withstand before failure occurs. The limit analysis method is widely used in the design of 

various engineering structures, such as foundations, retaining walls, and bridges.  

The method is built upon the idealized stress-strain relationship of soil, which is termed 

normality or the flow rule, forming the basis for the limit theorems central to limit analysis. 

Under this theoretical framework, the approach is rigorous and, in certain scenarios, provides 

simpler techniques in comparison to the limit equilibrium method. For stability issues such as 

determining the critical heights of unsupported vertical cuts or assessing the bearing capacity 

of nonhomogeneous soils, the plastic limit theorems introduced by Drucker et al. (1952) can 

be conveniently applied to establish both upper and lower bounds for the collapse load. 

The necessary conditions for establishing either an upper-bound or a lower-bound solution are 

fundamentally as follows: 

 

1.5.2.1. Lower-bound theorem 

The loads obtained solely from the distribution of stress, which adheres to (a) equilibrium 

equations, (b) stress boundary conditions, and (c) doesn't violate the yield criterion anywhere, 

do not exceed the actual collapse load. Such a stress distribution that fulfills these criteria is 

termed a statically admissible stress field for the specific problem. Therefore, the lower-bound 

theorem can be summarized as follows: If a statically admissible stress distribution is 

attainable, plastic flow will not occur at a load lower than this. Notably, the lower-bound 
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technique primarily takes into account equilibrium and yield and does not factor in soil 

kinematics. 

 

1.5.2.2.Upper-bound theorem  

The loads, determined by setting the external rate of work equal to the internal rate of 

dissipation within an assumed deformation mode (or velocity field) that adheres to (a) velocity 

boundary conditions and (b) strain and velocity compatibility conditions, do not fall below the 

actual collapse load. The energy dissipation during plastic flow related to this field can be 

calculated using the idealized stress/strain rate relation, often referred to as the flow rule. A 

velocity field that satisfies the aforementioned conditions is termed a kinematically admissible 

velocity field. Therefore, the upper-bound theorem asserts that if a kinematically admissible 

velocity field can be identified, uncontrolled plastic flow either threatens or has occurred in the 

past. The upper-bound technique primarily considers velocity or failure modes and energy 

dissipation, without requiring stress distribution to be in equilibrium, and it is defined solely 

within the deforming regions of the mode. 

Through the appropriate selection of stress and velocity fields, these two theorems allow 

for the collapse load to be closely approximated as needed for the specific problem at hand. 

 

1.5.3. Slip line method  

Impending plastic deformation of the soil occurs when a sufficiently large portion of the soil 

beneath a footing reaches its yield or limiting condition, allowing unrestricted plastic flow 

beneath the footing. During this impending plastic flow, both equilibrium and yield conditions 

are met in the region near the footing. The widely-used Coulomb criterion is applied to soils to 

define this yield condition. By combining the Coulomb criterion with the equations of 

equilibrium, a set of differential equations for plastic equilibrium in this region is established. 

When coupled with stress boundary conditions, these differential equations can be used to 

examine the stress distribution in the soil beneath a footing or behind a retaining wall at the 

point when plastic flow is about to take place. To address specific engineering problems, it is 

practical to transform this set of equations into curvilinear coordinates, where the directions of 

these coordinates align with the directions of potential failure or slip planes. These directions 

are referred to as slip lines, and the entire pattern is known as the slip-line field. 

Kötter (1903) was the pioneer in formulating the slip-line equations, particularly for cases 

of plane deformations. Prandtl (1920) made a significant contribution by being the first to 

derive an analytical closed-form solution for these equations, focusing on a footing placed on 
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a weightless soil. In his analysis, he introduced a singular point and a set of straight slip-lines 

radiating from it. These findings were subsequently utilized by Reissner (1924) and 

Novotortsev (1938) to address specific issues related to the bearing capacity of footings on 

weightless soil. Their work was particularly valuable when straight slip-lines from at least one 

family were involved, allowing for solutions in closed form. 

Nonetheless, the introduction of soil weight significantly complicates the mathematical 

solution, prompting the development of numerous approximate methods. Sokolovskii (1965) 

employed a numerical technique that relies on finite difference approximations of the slip-line 

equations. This approach was particularly useful for solving challenging problems related to 

the bearing capacity of footings, slopes, and the pressure exerted by fill against retaining walls, 

where closed-form solutions were elusive. In contrast, De Jong (1957) took a different route 

and devised a graphical method for arriving at solutions. Other forms of approximate solutions 

encompass the use of perturbation methods (Spencer, 1962) and series expansion methods 

(Dembicki et al., 1964). 

 

1.5.4. Characteristic method 

The method of characteristics is specifically designed to determine stress states that satisfy 

equilibrium and the failure criterion only within the failure zone near the footing. Smith's 

(2005) research and Martin's (2005) work suggest that when soil behavior adheres to the 

associated flow rule, this method can precisely address the bearing capacity problem. It 

accomplishes this when the calculations of the three terms in the bearing capacity formula align 

with a single collapse mechanism. Importantly, the method of characteristics has the benefit of 

eliminating the need for arbitrary assumptions about the shape of the slip surface and accurately 

identifies the depth of the failure zone. 

 

1.6. Traditional Bearing Capacity Assessment: An In-depth Overview 

Over the past seven decades, numerous theories have emerged to estimate the ultimate bearing 

capacity of shallow foundations. This section provides a summary of key contributions and 

significant advancements in this field. 

 

1.6.1. Terzaghi’s theory  

Terzaghi (1943) introduced a well-formulated theory for calculating the ultimate bearing 

capacity of a shallow foundation. This foundation is characterized by being rough, rigid, 

continuous (strip), and supported by a homogeneous soil layer extending to significant depths. 
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Terzaghi (1943) specifically defined a shallow foundation as one in which the width (B) is 

either equal to or less than its depth (Df). It’s bearing capacity formula for a soil cohesion, 

friction and weight defined as:  

 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾 (1.2) 

 

where, Nc, Nq and Nγ are the bearing capacity factors given as:  

 

𝑁𝑞 =
exp 2 (

3𝜋
4 −

𝜑
2) 𝑡𝑎𝑛𝜑

2𝑐𝑜𝑠2 (45 +
𝜑
2)

 

(1.3a) 

𝑁𝑐 = 𝑐𝑜𝑡𝜑 (𝑁𝑞 − 1) (1.3b) 

𝑁𝛾 =
1

2
𝐾𝑝𝛾𝑡𝑎𝑛2𝜑 −

𝑡𝑎𝑛𝜑

2
 

(1.3c) 

 

1.6.2. Meyerhof’s theory  

Meyerhof (1963) introduced a bearing capacity theory applicable to foundations characterized 

by rough surfaces and varying depths, accommodating considerations such as foundation 

shape, load inclination, eccentricity, and the resistance of soil above the foundation base. This 

led to the modification of Terzaghi's general bearing capacity formula by Meyerhof to 

encompass these additional factors. 

 

𝑞𝑢 = 𝑐𝑁𝑐𝑠𝑐𝑑𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑠𝑞𝑑𝑞𝑖𝑞 +
1

2
𝛾𝐵𝑁𝛾𝑠𝛾𝑑𝛾𝑖𝛾 (1.4) 

 

where, si, di and ii are the shape, depth and load inclination factors respectively given in Eqs. 

(1.10) to (1.17).   

Meyerhof (1963) developed his bearing capacity formula by incorporating expressions 

from Prandl (1920) for the Nc factor, Reissner (1924) for the Nq factor, and his own formula 

(Meyerhof, 1961) for the Nγ factor. 
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𝑁𝑞 = exp(𝜋𝑡𝑎𝑛𝜑) 𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
) 

(1.5a) 

𝑁𝑐 = 𝑐𝑜𝑡𝜑 (𝑁𝑞 − 1) (1.5b) 

𝑁𝛾 = (𝑁𝑞 − 1) tan(1.4𝜑) (1.5c) 

 

Shape factor proposed by Meyerhof (1963): 

 

                          𝑠𝑞 = 𝑠𝛾 = 1           if φ = 0° (1.6a) 

                    𝑠𝑐 = 1 + 0.2𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
)

𝐵

𝐿
 (1.6b) 

                               𝑠𝛾 = 𝑠𝑞 = 1 + 0.1𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
)

𝐵

𝐿
     if φ > 0° (1.6c) 

 

Depth factor proposed by Meyerhof (1963): 

 

                          𝑑𝑞 = 𝑑𝛾 = 1           if φ = 0° (1.7a) 

                    𝑑𝑐 = 1 + 0.2𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
)

𝐷

𝐵
 (1.7b) 

                               𝑑𝛾 = 𝑑𝑞 = 1 + 0.1𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
)

𝐷

𝐵
     if φ > 0° (1.7c) 

 

Load inclination factor proposed by Meyerhof (1963): 

 

                          𝑖𝑞 = 𝑖𝑐 = (1 −
𝛿

90
)
2

           
(1.8a) 

                            𝑖𝛾 = (1 −
𝛿

𝜑
)
2

      
(1.8b) 

1.6.3. Hansen’s theory  

Hansen (1970) introduced an approximated relationship for the Nγ factor in the following form:  

 

𝑁𝛾 = 1.5(𝑁𝑞 + 1)tan𝜑 (1.9) 

 

Hansen provided expressions accounting for the influence of the foundation shape, soil 

resistance above the foundation, and applied load inclination, detailed from Eqs. (1.10) to 

(1.13). 
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Shape factor given by Hansen (1970): 

 

                          𝑠𝑞 = 1 +
𝐵

𝐿
𝑠𝑖𝑛𝜑 (1.10a) 

                    𝑠𝑐 = 1 + (
𝑁𝑞

𝑁𝑐

𝐵

𝐿
)  𝜑 ≠ 0 

                    𝑠𝑐 = 1 + (0.2
𝐵

𝐿
)  𝜑 = 0 

(1.10b) 

                               𝑠𝛾 = 1 − 0.4
𝐵

𝐿
 (1.10c) 

 

Depth factor given by Hansen (1970): 

 For D ≤ B: 

                    𝑑𝑞 = 1 + 2𝑡𝑎𝑛𝜑(1 − 𝑠𝑖𝑛𝜑)²
𝐷

𝐵
 (1.11a) 

                                                         𝑑𝑐 = 𝑑𝑞 −
1−𝑑𝑞

𝑁𝑞 tan𝜑
 

          𝑑𝑐 = 1 + 0.4
𝐷

𝐵
 (𝜑 = 0)        

(1.11b) 

𝑑𝛾 = 1 (1.11c) 

 

 For D > B: 

                    𝑑𝑞 = 1 + 2𝑡𝑎𝑛𝜑(1 − 𝑠𝑖𝑛𝜑)²𝑡𝑎𝑛−1 𝐷

𝐵
 (1.12a) 

                                                         𝑑𝑐 = 1 + 0.4𝑡𝑎𝑛−1 (
𝐷

𝐵
) (1.12b) 

𝑑𝛾 = 1 (1.12c) 

 

 

Load inclination factor given by Hansen (1970):  

 

𝑖𝑞 = (1 −
0.5𝐻

𝑉 + 𝐴𝑐 𝑐𝑜𝑡𝜑
)

5

 
(1.13a) 

𝑖𝑐 = 𝑖𝑞 − (
1 − 𝑖𝑞

𝑁𝑞 − 1
) 

(1.13b) 

𝑖𝛾 = (1 −
0.7𝐻

𝑉 + 𝐴𝑐 𝑐𝑜𝑡𝜑
)

5

 
(1.13c) 
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Which, H and V represent the horizontal and the vertical components of the inclined load 

applied on the footing.  

 

Hansen (1970) proposed the incorporation of two factors in the bearing capacity equation 

to consider both base and ground inclination effects. Their expressions are given as follow: 

Base inclination factor given by Hansen (1970): 

 

𝑏𝑞 = 𝑒𝑥𝑝(−2𝛼𝑡𝑎𝑛𝜑) (1.14a) 

𝑏𝑐
𝑎 =

2𝛼

𝜋 + 2
 

(1.14b) 

𝑏𝛾 = exp (−2.7𝛼𝑡𝑎𝑛𝜑) (1.14c) 

 

where, α represents the angle of inclination of the foundation base. 

Ground inclination factor given by Hansen (1970): 

 

𝑔𝑞 = (1 − 0.5𝑡𝑎𝑛𝛽)5 (1.15a) 

𝑔𝑐
𝒂 =

2𝛽

𝜋 + 2
 

(1.15b) 

𝑔𝛾 = 𝑔𝑞 (1.15c) 

 

where, β represents the angle of inclination of the ground adjacent to the foundation. 

 

1.6.4. Vesic’s theory  

Vesic (1973) recommended representing the Nγ factor values provided by Caquot and Kérisel 

(1953) with an error of less than 10% within the range of 15 to 45 degrees of soil friction angle 

(with less than 5% error specifically between 20 and 40 degrees). This representation is 

achieved through the following expression: 

 

𝑁𝛾 = 2(𝑁𝑞 + 1)tan𝜑 (1.16) 

where, Vesic (1973) used the bearing capacity factors Nc and Nq of Prandl (1920) and Reissner 

(1924) respectively. 
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Vesic (1973) gave the following expressions for shape factors: 

 

                          𝑠𝑞 = 1 +
𝐵

𝐿
𝑡𝑎𝑛𝜑 (1.17a) 

                    𝑠𝑐 = 1 +
𝑁𝑞

𝑁𝑐

𝐵

𝐿
 (1.17b) 

                               𝑠𝛾 = 1 − 0.4
𝐵

𝐿
 (1.17c) 

 

The inclination factors, developed by Vesic in 1975 to account the applied load inclination on 

the foundation, are presented as follows:  

 

𝑖𝑞 = (1 −
𝐻

𝑉 + 𝐴𝑐 𝑐𝑜𝑡𝜑
)

𝑚

 
(1.18a) 

𝑖𝑐 =
𝑖𝑞𝑁𝑞 − 1

𝑁𝑞 − 1
 

(1.18b) 

𝑖𝛾 = (1 −
𝐻

𝑉 + 𝐴𝑐 𝑐𝑜𝑡𝜑
)

𝑚+1

 
(1.18c) 

 

1.6.5. Standard European code (Eurocode 7) 

Eurocode 7 (EN 1997) for geotechnical design, particularly in the context of bearing capacity 

calculations, generally follows the Vesic method with some modifications. One notable 

adjustment is the use of Chen's equation for calculating the bearing capacity factor Nγ, which 

assumes a rough base condition. 

 

𝑁𝛾 = 2(𝑁𝑞 − 1)tan𝜑 (1.19) 

 

The Eurocode 7 bearing capacity calculation method does not include a depth factor to increase 

the bearing capacity based on foundation depth and does not allow for foundations on top of 

slopes. Depth factors are considered unreliable and relatively small for shallow foundations, 

leading to their omission. Consequently, the EN 1997-1 method tends to produce slightly 

conservative values compared to other methods. 

 

 

 

 



CHAPTER 1:                                                                               Bibliographic research 

 

25 

Eurocode (2004) gave the following expressions for shape factors: 

 

                          𝑠𝑞 = 1 +
𝐵

𝐿
𝑡𝑎𝑛𝜑 (1.20a) 

                    𝑠𝑐 =
𝑆𝑞𝑁𝑞−1

𝑁𝑞−1
 (1.20b) 

                               𝑠𝛾 = 1 − 0.3
𝐵

𝐿
 (1.20c) 

 

1.6.6. Standard Algerian code DTR-BC 2.331 

The Algerian Geotechnical Code (DTR) relies on the Meyerhof method for calculating the 

bearing capacity of shallow foundations. The Meyerhof method is known for providing 

conservative bearing capacity factor values, ensuring a safer design by incorporating higher 

margins of safety. 

 

The DTR code incorporates shape factors similar to those proposed by Costet and 

Sanglerat (1983) to account for the effects of foundation shape. 

 

                          𝑠𝑞 = 1 (1.21a) 

                    𝑠𝑐 = 1 + 0.2
𝐵

𝐿
 (1.21b) 

                               𝑠𝛾 = 1 − 0.2
𝐵

𝐿
 (1.21c) 

 

For inclined loads applied to footings, the DTR code utilizes Meyerhof’s coefficients. 

 

1.7. Assessment of Bearing Capacity under Seismic Conditions 

In the presence of dynamic loads, foundations experience inertia forces. When subjected to a 

low vertical force, foundations designed with a safety factor FS > 3 against static loads can 

effectively withstand seismic loading (Chatzigogos, 2007). However, a substantial reduction 

in bearing capacity due to inertia forces becomes noteworthy under high vertical forces. 

Foundations with a static safety factor FS < 2 are particularly vulnerable, even under moderate 

seismic conditions (Chatzigogos, 2007). Consequently, evaluating bearing capacity under 

dynamic conditions, considering inertia forces, becomes imperative. 

In this subsection, various studies from the literature addressing the bearing capacity of 

shallow foundations under earthquake loading will be presented. 
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1.7.1. Sarma’s theory 

Sarma and Iossifelis (1990) assessed formulas for seismic bearing capacity factors using limit 

equilibrium with inclined slices. They assumed a failure mechanism consisting of an active 

wedge, a passive wedge, and an internal shear zone positioned between the two wedges, as 

depicted in Fig. 1.15. The form of the failure surface that defines the shear zone is assumed to 

be a log-spiral. Sarma and Iossifelis (1990) indicated that the angles defining these wedges are 

initially unknown and are determined through an iterative process to yield the minimum 

bearing capacity factors. 

The seismic bearing capacity expressions are provided under the assumption that the 

center of the log-spiral is at point O, as illustrated in Fig. 1.15, and that all interslice slip 

surfaces intersect at the same point: 

 

𝑁𝑞 = 𝐿 ×
𝑀

𝐴
 

(1.22a) 

𝑁𝑐 =
𝐷

𝐴
 

(1.22b) 

𝑁𝛾 =
𝑅

𝐴
 

(1.22c) 

 

where L, M, A, D and R are listed in the Eqs. (A.1) to (A.4) in the Appendix.  

When the center of the log-spiral is situated at a different point, while the interslice slip 

surfaces pass through point O, the ultimate seismic bearing capacity is numerically determined 

by the following expression: 

 

𝐸𝑖+1 cos(2𝜑 − 𝛽𝑖 − 𝛿𝑖+1) 𝑠𝑒𝑐𝜑 = 𝑎𝑖 − 𝑝𝑖𝑘𝑐 + 𝐸𝑖cos (2𝜑 − 𝛽𝑖 − 𝛿𝑖)𝑠𝑒𝑐𝜑 (1.23) 

 

The parameters ai, pi, Ri, and Si are detailed in the Eqs. (A.13) to (A.16) in the Appendix, while 

bi represents the slice width, di is the length of the inclined interslice slip surface, βi is the 

inclination of the slip surface to the horizontal, and δi is the inclination of the slip surface to the 

vertical, as depicted in Fig. 1.16.  

Sarma and Iossifelis (1990) visually represented seismic bearing capacity factors in 

relation to the horizontal acceleration coefficient for various internal friction angles of soil. 

This graphical representation can be observed in Fig. 1.17. 
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Fig. 1.15 Failure mechanism used in Sarma and Iossifelis (1990) analysis. 

 

 

 

Fig. 1.16 Interslice thrusts given by Sarma and Iossifelis (1990). 
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Fig. 1.17 Seismic bearing capacity factors obtained by Sarma and Iossifelis (1990). 

 

1.7.2. Richard’s theory 

Richard et al. (1993) employed the limit analysis method to establish precise formulations for 

the seismic bearing capacity factors explicitly linked to their static components.   

A Coulomb-type failure mechanism under dynamic situation caused by earthquake 

loading including inertial forces in the soil and on the footing shows the equilibrium forces in 
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the active and passive wedges (Fig. 1.18).  The figure illustrates the presence of inertial forces 

kh.Wi and kv. Wi in the soil layer resulting from the earthquake accelerations kh.g and kv.g 

respectively. αAE and αPE represent Coulomb’s failure wedges for active and passive conditions, 

determined by the following expressions:  

 

𝛼𝐴𝐸 = 𝛼 + 𝑡𝑎𝑛−1 {
√(1 + 𝑡𝑎𝑛2𝛼)[1 + tan(𝛿 + 𝜃) 𝑐𝑜𝑡𝛼] − 𝑡𝑎𝑛𝛼

1 + tan (𝛿 + 𝜃)(𝑡𝑎𝑛𝛼 + 𝑐𝑜𝑡𝛼)
} (1.24a) 

 

𝛼𝑃𝐸 = −𝛼 + 𝑡𝑎𝑛−1 {
√(1 + 𝑡𝑎𝑛2𝛼)[1 + tan(𝛿 − 𝜃) 𝑐𝑜𝑡𝛼] + 𝑡𝑎𝑛𝛼

1 + tan (𝛿 + 𝜃)(𝑡𝑎𝑛𝛼 + 𝑐𝑜𝑡𝛼)
} (1.24b) 

where, 

𝛼 = 𝜙 − 𝜃 (1.25) 

and 

𝜃 = 𝑡𝑎𝑛−1
𝑘ℎ

1 − 𝑘𝑣
 (1.26) 

 

Richard et al. (1993) recommended in the computation of the seismic bearing capacity 

factors it is advisable to designate the angle of wall friction δ to be equal to half of the friction 

angle ϕ (δ = ϕ/2).  

The density γ and friction angle ϕ are suggested to be constant. The equilibrium of pseudo 

static forces gives the earth pressure coefficient in the seismic case KAE (active pressure) and 

KPE (passive pressure) as follow:  

 

𝐾𝐴𝐸 =
𝑐𝑜𝑠2(𝜙 − 𝜃)

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠(𝛿 + 𝜃) [1 + √
𝑠𝑖𝑛(𝜙 + 𝛿)𝑠𝑖𝑛(𝜙 − 𝜃)

𝑐𝑜𝑠(𝛿 + 𝜃)
]

2 

(1.27a) 

 

𝐾𝑃𝐸 =
𝑐𝑜𝑠2(𝜙 − 𝜃)

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠(𝛿 + 𝜃) [1 − √
𝑠𝑖𝑛(𝜙 + 𝛿)𝑠𝑖𝑛(𝜙 − 𝜃)

𝑐𝑜𝑠(𝛿 + 𝜃)
]

2 

(1.27b) 
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Richard et al. (1993) substituted these seismic earth pressure to directly obtain the seismic 

bearing capacity factors NqE, NγE and NcE:  

 

𝑁𝑞𝐸 =
𝐾𝑃𝐸

𝐾𝐴𝐸
 (1.28a) 

 

𝑁𝛾𝐸 = 𝑡𝑎𝑛𝛼𝐴𝐸 (
𝐾𝑃𝐸

𝐾𝐴𝐸
− 1) (1.28b) 

 

𝑁𝑐𝐸 = (𝑁𝑞𝐸 − 1)𝑐𝑜𝑡𝜙 (1.28c) 

 

Their values are shown in Table 1.1 for different acceleration intensity when ϕ = 30°. 

Tables containing seismic bearing capacity factors for a comprehensive range of friction angles 

can be assembled for seismic design, intended for use alongside their dynamic counterparts 

 

𝑃𝐿𝐸 = 𝑐𝑁𝑐𝐸 + 𝑞𝑁𝑞𝐸 + 0.5𝛾𝐵𝑁𝛾𝐸 (1.29) 

 

where, PLE is the ultimate seismic bearing capacity. 

 

Table 1.1 Seismic bearing capacity factors and ratios to static values (Richard et al. 1993). 

Acceleration 

Intensity tan θ 

Seismic bearing capacity factors 
Seismic-Static bearing capacity 

factors ratio 

NqE NγE NcE NqE / NqS NγE / NγS NcE / NcS 

0.000 16.51 23.76 26.86 1.00 1.00 1.00 

0.087 12.86 15.34 20.55 0.78 0.65 0.77 

0.176 09.84 9.45 15.31 0.60 0.40 0.57 

0.268 7.30 5.36 10.91 0.44 0.23 0.41 

0.364 5.12 2.61 7.14 0.31 0.11 0.27 

0.466 3.21 0.88 3.83 0.19 0.04 0.14 

0.577 1.00 0.00 0.00 0.06 0.00 0.00 
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Fig. 1.18 Seismic Coulomb failure mechanism (Richard et al. 1993). 

 

1.7.3. Budhu’s theory 

Budhu and Al-Karni (1993) presented in their technical note a method for assessing seismic 

bearing capacity factors based on their static counterparts. Their relationships can be given as 

follows: 

 

𝑁𝑞𝐸 = (1 − 𝑘𝑣)𝑁𝑞𝑆𝑒𝑥𝑝(𝛽𝑞) (1.30a) 

 

𝑁𝛾𝐸 = (1 −
2

3
𝑘𝑣)𝑁𝛾𝑆𝑒𝑥𝑝(−𝛽𝛾) (1.30b) 

 

𝑁𝑐𝐸 = 𝑁𝑐𝑆𝑒𝑥𝑝(𝛽𝑐) (1.30c) 

 

where βq, βγ and βc represent the seismic factors related to the static bearing capacity factors 

NqS, NγS and NcS proposed by Vesic (1973) respectively. Which can be expressed as:  

 

𝛽𝑞 =
5.3𝑘ℎ

1.2

1 − 𝑘𝑣
 (1.31a) 

Active zone Passive zone 



CHAPTER 1:                                                                               Bibliographic research 

 

32 

 

𝛽𝛾 =
9𝑘ℎ

1.1

1 − 𝑘𝑣
 (1.31b) 

 

𝛽𝑐 = 4.3 𝑘ℎ
1+𝐷 (1.31c) 

 

In which, D (= c/γh) is the stability factor 

 

ℎ =
0.5𝐵

𝑐𝑜𝑠 (
𝜋
4 +

𝜑
2)

𝑒𝑥𝑝 (
𝜋

2
𝑡𝑎𝑛𝜑) + 𝐷𝑓 (1.32) 

 

Fig. 1.19 shows the normalized seismic bearing capacity factors NqE, NγE and NcE  to the 

static factors  NqS, NγS and NcS . 

 

  

  

 

Fig. 1.19 Normalized seismic bearing capacity factors for various friction angles (Budhu and 

Al-Karni 1993). 
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1.7.4. Choudhury’s theory 

Choudhury and Subba Rao (2005) introduced seismic bearing capacity factors within the 

framework of pseudo-static analysis, employing the limit equilibrium method and 

incorporating a composite failure surface. Their expressions are given as follows:  

 

𝑁𝑐𝑑 =
1

𝑘ℎ
[

𝐾𝑝𝑐𝑑1

cos𝜑 sin(𝛼1 − 𝜑) −
𝑚𝐾𝑝𝑐𝑑2

cos𝜑2
sin (𝛼2 − 𝜑2)

1
tan𝛼1

+
1

tan𝛼2

+
sin𝛼1 𝑡𝑎𝑛 𝜑2 cos 𝛼2

sin(𝛼1 + 𝛼2) tan𝜑

−
sin 𝛼2 cos 𝛼1

sin(𝛼1 + 𝛼2)
] 

(1.33a) 

 

𝑁𝑞𝑑 =
1

𝑘ℎ
[

𝐾𝑝𝑐𝑑1

cos𝜑 sin(𝛼1 − 𝜑) −
𝑚𝐾𝑝𝑐𝑑2

cos𝜑2
sin (𝛼2 − 𝜑2)

1
tan 𝛼1

+
1

tan𝛼2

] (1.33b) 

 

𝑁𝛾𝑑 =
1

𝑘ℎ

[
 
 
 
𝐾𝑝𝑐𝑑1

cos𝜑
sin(𝛼1 − 𝜑) −

𝑚𝐾𝑝𝑐𝑑2

cos𝜑2
sin (𝛼2 − 𝜑2)

(
1

tan𝛼1
+

1
tan𝛼2

)
2

]
 
 
 
−

1

(
1

tan𝛼1
+

1
tan𝛼2

)
 (1.33c) 

 

where Kpcd, Kpqd and Kpγd are given as:  

 

𝐾𝑝𝑐𝑑 =
𝑃𝑝𝑐𝑑 cos 𝛿

2𝑐𝐻
 (1.34c) 

 

𝐾𝑝𝑞𝑑 =
𝑃𝑝𝑞𝑑 cos 𝛿

𝑞𝐻
 (1.34c) 

 

𝐾𝑝𝛾𝑑 =
2𝑃𝑝𝛾𝑑 cos 𝛿

𝛾𝐻2
 (1.34c) 

 

The seismic passive pressures Ppcd, Ppqd and Ppγd values can be found in Choudhury and 

Subba Rao (2002) analysis. Fig. 1.20 illustrates the variation of seismic bearing capacity factors 

in relation to the horizontal acceleration coefficient kh. 
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Fig. 1.20 Seismic bearing capacity factors (Choudhury and Subba Rao 2005). 

 

 

1.8. Conclusion 

This chapter initially provided existing examples of the foundations failure caused by 

numerous earthquakes that occurred in different regions of the world. The various damages to 

infrastructure of cities in general, and foundations in particular have been discussed. After that, 
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the different failure mechanisms of shallow foundations in static and seismic cases were 

presented.  

Traditional methods such as limit equilibrium, limit analysis, slip line method and 

characteristic method can be employed to address these mechanisms for evaluating the 

foundation bearing capacity. As a result of this, several theories exist in the literature for both 

static and seismic cases, enabling geotechnical engineering to estimate the allowable bearing 

capacity in structural design. 

 

 

 

 

 



 

 

 

 

 

 

 

Synthesis of Previous Works 
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2.1. Introduction 

In geotechnical structure analysis and design, input data inherently carry uncertainty, 

resembling random variables or stochastic processes. Despite engineers' recognition of this 

uncertainty, traditional deterministic models oversimplify by treating uncertain parameters as 

deterministic and addressing uncertainties with a global safety factor a somewhat arbitrary 

"factor of ignorance" derived from past experience. In contrast, a reliability-based approach 

proves more rational, as it explicitly considers the inherent uncertainty associated with each 

input variable. 

 

2.2. Previous studies on the bearing capacity under earthquake loading 

The seismic bearing capacity assessment of shallow foundations is an important topic for 

geotechnical engineers in a seismic region. Earthquake loadings diminish the bearing capacity 

and increase the settlement of shallow foundations. Numerous studies have been conducted on 

the seismic bearing capacity topic focusing on the determination of the seismic bearing capacity 

factors following four main approaches: (1) the limit analysis, (2) the limit equilibrium method, 

(3) the characteristic method and (4) the numerical methods. Additionally, a seismic force 

within soil is typically characterized using pseudo-static methods, pseudo-dynamic methods 

and fully dynamic analyses. 

 

Richard et al. (1993) utilized the limit analysis method, incorporating the Coulomb failure 

mechanism and accounting for inertial forces in both the soil and the footing, to assess the 

seismic bearing capacity of foundations. Their findings indicated that the bearing capacity of 

foundations decreases significantly with increasing the seismic acceleration coefficient. (Fig. 

2.1).  

 

Soubra (1997) He calculated the seismic bearing capacity factors of a shallow strip footing 

using the upper bound of the limit analysis method in conjunction with the pseudo-static 

approach. He considered two different failure mechanisms, M1 and M2, where the first 

mechanism consists of a logarithmic sandwich composed of a triangular active wedge, a 

logarithmic spiral radial shear zone, and a triangular passive wedge. Meanwhile the second 

mechanism consists of an arc sandwich composed of a triangular active wedge, a circular radial 

shear zone and a triangular passive wedge. He found that the seismic bearing capacity factors 

diminish with the increment of the seismic acceleration coefficient for the both mechanisms 

(Tables 2.1 to 2.3).  
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Fig. 2.1 Normalized seismic bearing capacity factors to static factors obtained by Richard et 

al. (1993).  

 

Table 2.1 Effect of the seismic acceleration coefficient on the bearing capacity factor NγE 

(Soubra, 1997). 

 kh Friction angle φ (°) 

15 20 25 30 35 40 

M1 0 2.3 5.2 11.4 25.0 57.1 140.5 

0.1 1.1 3.0 6.9 15.6 36.1 88.4 

0.2 - 1.3 3.6 8.9 21.4 53.0 

0.3 - - 1.5 4.5 11.7 30.1 

0.4 - - - 1.8 5.8 16.0 

0.5 - - - - 2.3 7.8 

0.6 - - - - - 3.3 

M2 0 2.1 4.8 11.1 31.5 152.2 5444.4 

0.1 - 2.7 6.6 18.9 85.2 2288.7 

0.2 - 1.2 3.4 10.3 44.4 912.1 

0.3 - - 1.4 4.9 21.3 345.1 

0.4 - - - 1.9 9.1 123.2 

0.5 - - - - 3.3 40.6 

0.6 - - - - 0.8 11.7 

0.7 - - - - - 2.5 
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Table 2.2 Effect of the seismic acceleration coefficient on the bearing capacity factor NcE of 

(Soubra, 1997). 

 kh Friction angle φ (°) 

15 20 25 30 35 40 

M1 0 11.0 14.8 20.7 30.1 46.1 75.3 

0.1 9.5 12.7 17.5 25.0 37.6 60.1 

0.2 7.9 10.5 14.3 20.3 30.0 46.9 

0.3 6.4 8.5 11.5 16.1 23.5 36.1 

0.4 5.1 6.7 9.1 12.6 18.1 27.4 

0.5 4.0 5.2 7.0 9.7 13.8 20.7 

0.6 3.0 4.0 5.4 7.4 10.5 15.5 

 0.7 - - 4.0 5.6 7.9 11.6 

 0.8 - - - 4.2 5.9 8.7 

 0.9 - - - 3.1 4.4 6.5 

 1 - - - - 3.3 4.9 

M2 0 11.9 18.0 31.3 31.5 280.6 - 

0.1 10.2 15.1 25.3 18.9 193.8 - 

0.2 8.5 12.3 19.9 10.3 130.7 - 

0.3 6.8 9.7 15.3 4.9 86.4 - 

0.4 5.3 7.5 11.4 1.9 56.3 - 

0.5 4.1 5.6 8.4 - 36.1 - 

0.6 - 4.1 6.0 - 22.9 - 

0.7 - - 4.2 - 14.2 - 

 0.8 - - - - 8.6 - 
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Table 2.3 Effect of the seismic acceleration coefficient on the bearing capacity factor NqE of 

(Soubra, 1997). 

 kh Friction angle φ (°) 

15 20 25 30 35 40 

M1 0 3.9 6.4 10.7 18.4 33.3 64.2 

0.1 3.1 5.0 8.3 14.3 25.6 48.7 

0.2 2.1 3.6 6.2 10.7 19.0 35.9 

0.3 - 2.2 4.2 7.5 13.6 25.7 

0.4 - - 2.5 5.0 9.4 17.9 

0.5 - - - - 6.0 12.0 

0.6 - - - - 3.5 7.8 

 0.7 - - - - - 4.6 

M2 0 4.2 7.6 15.6 41.4 197.5 - 

0.1 3.2 5.7 11.5 29.1 125.0 - 

0.2 2.1 4.0 8.0 19.5 76.2 - 

0.3 - 2.4 5.1 12.4 44.6 - 

0.4 - - - 7.3 24.9 - 

0.5 - - - 3.6 13.0 - 

0.6 - - - - 5.8 - 

 

Yamamoto (2010) developed seismic bearing capacity factors formula of spread and embedded 

foundations near to a slope using the upper bound of limit analysis method and the pseudo static approach.  

He observed that the seismic bearing capacity factors decrease considerably with increasing the horizontal 

seismic coefficient and the slope inclination angle (Fig. 2.2).  

 

Zhou et al (2015) utilized the limit analysis theory with the pseudo dynamic approach to 

analyze the bearing capacity of shallow foundations rested on rock masses subjected to seismic 

loads. They indicated that the horizontal and vertical seismic acceleration coefficients and the 

amplification factor significantly affect the ultimate bearing capacity of shallow foundations 

(Fig. 2.3). 
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Fig. 2.2 Effect of horizontal seismic acceleration coefficient and slope inclination angle on 

the bearing capacity factors (Yamamoto, 2010). 
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Fig. 2.3 Effect of the horizontal and vertical acceleration coefficient as well as the 

amplification factor on the seismic bearing capacity (Zhou et al., 2015). 

 

Conti (2018) used the upper bound of the limit analysis method and the pseudo static approach 

to derive comprehensive seismic bearing capacity formulas of strip footings resting on 

cohesive-frictional and purely cohesive soils.  His findings indicated that the bearing capacity 

decreases as the seismic acceleration coefficient and the load inclination increase for the both 

soils (Fig. 2.4).  
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Fig. 2.4 Effect of the horizontal seismic acceleration coefficient and load inclination on the 

bearing capacity (Conti (2018) with: (a) cohesive-frictional soil; (b) purely cohesive soil. 

 

Chen et al. (2007) studied the influence of earthquake forces on the bearing capacity factors of 

shallow strip foundations on a sloping ground by employing the limit equilibrium method and 

the pseudo static approach, taking into consideration the effect of the intermediate principal 

stress. Their findings show that the bearing capacity factors are affected by the horizontal and 

vertical seismic acceleration coefficient (Fig. 2.5).  

 

 

 

 

 

(a) 

(b) 
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Fig. 2.5 Effect of the horizontal and vertical acceleration coefficients on the bearing capacity 

factors (Chen et al., 2007). 

 

Debnath and Ghosh (2018) evaluated the seismic bearing capacity of a shallow strip foundation 

resting on two layered soil using the limit equilibrium method in a pseudo static situation. Their 

results reveal that the seismic bearing capacity decreases with increasing both of the horizontal 

and vertical seismic acceleration coefficients (Fig. 2.6).   

 

Nadgouda and Choudhury (2019) derived an equivalent seismic bearing capacity factor for a 

strip footing resting on a dry cohesionless sand using the limit equilibrium method with the 

modified pseudo dynamic approach.  They found that the bearing capacity factor decreases 

with increasing the acceleration coefficients (Fig. 2.7).  
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Fig. 2.6 Effect of seismic acceleration coefficient on the equivalent seismic bearing capacity 

factor (Debnath and Ghosh, 2018). 

 

                              

Fig. 2.7 Effect of seismic acceleration on the equivalent bearing capacity factor (Nadgouda 

and Choudhury, 2019). 

 

Kumar and Mohan Rao (2002) examined the effect of the horizontal earthquake forces on the 

bearing capacity of shallow foundations by employing the stress characteristics method. They 

revealed that the bearing capacity factors decrease as the earthquake forces increase (Fig. 2.8).  
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Fig. 2.8 Effect of earthquake forces on the bearing capacity factors (Kumar and Mohan Rao, 

2002). 

 

Cascone and Casablanca (2016) assessed the static and seismic bearing capacity factors of a 

strip footing using the characteristics method with the pseudo static approach. Their results 

were presented for the both smooth and rough foundations bases. Their results, presented for 

both smooth and rough foundation bases, indicate that the bearing capacity factors decrease 

under seismic conditions as the seismic acceleration factors increase. (Fig. 2.9).   
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Fig. 2.9 Effect of the horizontal acceleration coefficient on the bearing capacity factors for 

both smooth and rough base foundations (Cascone and Casablanca, 2016). 

 

Pane et al. (2016) studied the effect of structural and soil inertia due to seismic loads on the 

bearing capacity of shallow strip footings using a numerical method called finite difference 

combined with the pseudo-static approach. By estimating reduction factors for both inertia 

forces, they determined the reduction in the bearing capacity caused by earthquake forces. The 

results revealed that in certain scenarios, the soil inertia played a significant role in influencing 

the seismic bearing capacity of the system. 

 

Based on the literature studies, the pseudo static approach is the more applicable by the 

investigators than the pseudo dynamic approach because of its simplicity and ability to take 

into account the seismic forces. The pseudo static approach considers the dynamic seismic 

waves induced by earthquakes as time independent, which means that the magnitude and phase 

of the acceleration are uniform throughout a soil layer. Despite its proven effectiveness, the 

pseudo static approach is limited due to its inability to capture the effect of the excitation time 

duration, excitation frequency and phase differences. These limitations have been surmounted 

by the pseudo dynamic approach proposed first by Steedman and Zeng (1990) and developed 

later by Choudhury and Nimbalkar (2005). 

 

Ghosh and Saha (2013) developed a pseudo-dynamic approach that considers the effects of 

both shear and compression wave velocities to predict the seismic passive resistance on the 

back of a battered-faced retaining wall. However, it is well known that the surface waves such 

as Rayleigh waves and Love waves are of utmost importance in earthquake engineering and 
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the understanding of the causes of damage caused by earthquakes (Katdare and Choudhury, 

2012). They have capabilities to cause devastating damage during an earthquake. Thus, their 

propagation throughout soil profiles may lead to considerable effects on the geotechnical 

constructions. Over recent years, the consideration of Rayleigh waves in the pseudo dynamic 

approach has attracted considerable attention. As a result, numerous studies were carried out 

either to analyze the pseudo-dynamic earth pressure considering Rayleigh waves (Choudhury 

and Katdare, 2012 and 2013; Ghosh and Saha, 2013 and 2014) or to analyze the problem of 

pseudo dynamic bearing capacity with considering Rayleigh waves along with primary waves 

and shear waves (Saha and Ghosh, 2017).  

  

Regarding the Love waves, a single study has been encountered in the literature, which was 

carried out by Izadi et al. (2022) who addressed the impact of Love wave propagation on the 

pseudo-dynamic bearing capacity of shallow foundations in terms of the equivalent seismic 

bearing capacity factor (Fig. 2.10).  

 

Fig. 2.10 Effect of Love wave frequency and seismic acceleration coefficient on the 

equivalent seismic bearing capacity factor (Izadi et al., 2022).  

 

2.3. Uncertainty in Soil Properties: Implications for Geotechnical Engineering 

The geotechnical engineering practice categorized the uncertainty into three primary sources, 

which are: (i) natural heterogeneity, (ii) measurement, and (iii) transformation uncertainty, as 

identified by Phoon and Kulhawy (1999a). Der Kiureghian and Ditlevsen (2009) indicated in 
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their research paper called “Aleatory or epistemic? Does it matter?” that the uncertainties can 

be described as epistemic when the modeler realizes an opportunity to reduce them through 

collecting more data or through refining the transformation models. While, the uncertainties 

can be described as aleatory when the modeler does not foresee the chance of mitigating them 

through the collection of additional information. 

 

The measurements and the transformation uncertainties are two types of epistemic uncertainties 

that can be encountered in the geotechnical engineering domain. The first type arises from the 

sampling errors induced by a limited amount of available information. Reducing this 

uncertainty can be possible by incorporating a large number of samples. The second type is 

employed when the field or laboratory measurements undergo transformation into the design 

soil properties through the exploitation of empirical or other correlation models. 

 

Natural heterogeneity is regarded as an essential aspect of aleatory or inherent uncertainty. For 

example, soil properties exhibit spatial variations, while seismic activity varies temporally. The 

spatial variability, or inherent variability, of soil arises primarily from natural geological 

processes that influence the in-situ mass. Regarding seismic loading, temporal variability stems 

from the random nature of acceleration values at different time steps. 

 

2.4. Inherent (Spatial) variability of soil properties 

The spatial variability of soils arises primarily from variations in the soil properties between 

different points in space, attributable to diverse depositional conditions and distinct loading 

histories (Elkateb et al., 2002).  The characterization of the spatial variability of soil properties 

can be efficiently performed statistically by considering three statistical parameters: (i) mean; 

(ii) coefficient of variation (or standard deviation) and (iii) autocorrelation distance (or 

generally the autocorrelation function) (VanMarcke, 1977).  Fig. 2.11 exhibits a typical spatial 

variation of soil properties in a soil profile. This variation is described by the essential 

parameters such the vertical scale of fluctuation δv (or correlation distance r0), the trend 

function t(z) and the deviation from the trend w(z), which play an important role in the site 

characterization.    

 

When conducting probabilistic analysis in geotechnical engineering, it is crucial to employ 

accurate values of the mean, the standard deviation and the autocorrelation distance of the 

uncertain soil properties. To achieve this goal, various geotechnical and geophysical tests must 
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be conducted to quantify these parameters. The difference between those two tests is that the 

first one covers a small area and requires a large number of tests in order to characterize the 

variability of a soil property, whereas the second one covers a large area with a smaller number 

of tests, which represents an efficient option for the geotechnical studies. 

   

Following the collection of various values for a specific soil property, a conventional statistical 

analysis is employed to determine the mean and standard deviation of this property. While this 

analysis reveals the variability of the soil property, it does not offer insight into the spatial 

trend. Therefore, to characterize the spatial variation of a soil property, it is essential to 

determine the autocorrelation distance. Two mathematical techniques presented in the 

literature are available for identifying the autocorrelation structure of a soil property: random 

field theory and geostatistical tools. 

 

 

Fig. 2.11 Statistical representation of soil variability (Phoon and Kulhawy, 1999a).  

 

2.5. Random field theory 

The random field theory is frequently employed in the literature to characterize the spatial 

variability of a soil property. VanMarcke (1983) pointed that the random field theory should 

introduce the observed phenomenon This theory assumes that the actual value of a soil property 

at each location to be a realization of a random variable. That values at adjacent locations 

exhibit greater correlation than those separated by a distance. Thus, an important statistical 

characteristic, namely the autocorrelation function (ACF), is introduced as well as statistical 

parameters such as the mean, the standard deviation, or the coefficient of variation. The 

autocorrelation function (ACF) is a graphical representation of the correlation coefficient 
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plotted against the distance. This autocorrelation function (ACF) serves the purpose of 

identifying either the autocorrelation distance or the scale of fluctuation. When denoting the 

soil property of interest as Z, the correlation coefficient (ρ) between the values of this property 

at two distinct locations is given by the following equation: 

 

𝜌(𝜏) =
𝐶[𝑍(𝑋𝑖), 𝑍(𝑋𝑖+𝜏)]

𝜎𝑧2
=

1

𝜎𝑧2
𝐸{[𝑍(𝑋𝑖) − 𝜇𝑧][𝑍(𝑋𝑖+𝜏) − 𝜇𝑧]} (2.1) 

 

 where, X is the vector of location. For the case of a one dimensional (1D) random field, the 

vector is defined by X = (x), for (2D) random field; X = (x, y) and for (3D) random field; X = 

(x, y, z).  Z(Xi) denotes the value of the property Z at a given location Xi. τ is the separation 

distance between two spatial locations. E[.] is the expectation operator. C represents the 

covariance, μz the mean value of the property Z and σz the standard deviation of the same 

property Z. Five frequently referenced autocorrelation functions (ACFs) are described in the 

literature as listed in Table 2.4. These ACFs are commonly employed to evaluate the distance 

over which a property shows strong correlation. In Table 2.4, ρ designates the ACF and τx and 

τy signify the absolute horizontal and vertical distances between two points within the soil unit, 

respectively. δh and δv designate the horizontal and vertical scale of fluctuation (SOF), 

respectively. 

 

Table 2.4 Various forms of autocorrelation functions (ACFs). 

ACF type Expression 

Single exponential (SNE) 𝜌(𝜏𝑥 , 𝜏𝑦) = exp⁡[−2 (
𝜏𝑥
𝛿ℎ

+
𝜏𝑦

𝛿𝑣
)] 

Cosine exponential (CE) 𝜌(𝜏𝑥 , 𝜏𝑦) = 𝑒𝑥𝑝⁡[− (
𝜏𝑥
𝛿ℎ

+
𝜏𝑦

𝛿𝑣
)] 𝑐𝑜𝑠 (

𝜏𝑥
𝛿ℎ
) 𝑐𝑜𝑠 (

𝜏𝑦

𝛿𝑣
) 

Second-order Markov (SOM) 𝜌(𝜏𝑥 , 𝜏𝑦) = 𝑒𝑥𝑝⁡[−4 (
𝜏𝑥
𝛿ℎ

+
𝜏𝑦

𝛿𝑣
)] (1 +

4𝜏𝑥
𝛿ℎ

) (1 +
4𝜏𝑦

𝛿𝑣
) 

Squared exponential (SQE) 𝜌(𝜏𝑥 , 𝜏𝑦) = exp⁡[−𝜋 (
𝜏𝑥
2

𝛿ℎ
2 +

𝜏𝑦
2

𝛿𝑣
2
)] 

Binary noise (BN) 𝜌(𝜏𝑥 , 𝜏𝑦) = {
(1 −

𝜏𝑥

𝛿ℎ
) (1 −

𝜏𝑦

𝛿𝑣
) ⁡𝑓𝑜𝑟⁡𝜏𝑥 ≤ 𝛿ℎ⁡𝑎𝑛𝑑⁡𝜏𝑦 ≤ 𝛿𝑣

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡
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2.6. Geostatistics 

In the field of geostatistics, the spatial variability of soil properties is described through the 

variogram or semivariogram function (Deutsch and Journel, 1997). The variogram is 

characterized as the variance of the difference {Z (Xi + τ) − Z(Xi)} 

 

2𝛾(𝜏) = 𝑣𝑎𝑟{𝑍(𝑋𝑖+𝜏) − 𝑍(𝑋𝑖)} (2.2) 

 

where, var[.] is the variance operator. By definition, the semivariogram is the half of variogram 

and can be expressed as:  

 

𝛾(𝜏) =
1

2
𝑣𝑎𝑟{𝑍(𝑋𝑖+𝜏) − 𝑍(𝑋𝑖)} (2.3) 

 

Fig. 2.12 illustrates the variation of the semivariogram function γ(τ) with the separation 

distance τ.  It can be notice that the function γ(τ) increases and tends to be stable at a limiting 

value called the sill as the separation distance τ increases. This value is at or near to the variance 

of the stochastic process C(0) = σ². The range where the semivariogram function varies from 

its initial value γ(0) into the sill value is called the range of influence. Occasionally, the 

variogram may exhibit a discontinuity in its behavior near the origin (τ = 0). This discontinuity, 

known as the nugget effect, manifests as an apparent intercept at zero separation distance, 

referred to as the nugget. Small-scale effects or measurement errors can give rise to the nugget 

effect. 

 

The autocovariance distance, alternatively known as the correlation length, autocorrelation 

length, or correlation distance, is determined from the variogram function or the autocorrelation 

function (ACF). It represents the distance at which the spatial variance or autocorrelation has 

decreased to 1/e (37%). Typically falling within the range of 1.4 to 2.0 times the correlation 

length for exponential, Gaussian, and spherical ACFs (Vanmarcke, 1983). Furthermore, in 

geostatistics, the ACF is referred to as a correlogram. 

 

 

 

 

 



CHAPTER 2:                                                                      Synthesis of Previous Works 

 

 

53 

 

 

Fig. 2.12 Variation of semivariogram with separation distance. 

 

2.7. Discretization of random field theory 

Many geotechnical problems necessitate discrete fields to precisely capture the spatial 

variability. The commonly used approaches for discretizing the random field theory include 

the Karhunen–Loève (KL) expansion method, the covariance matrix decomposition method 

and the local average subdivision method (LAS). 

 

2.7.1. Karhunen-Loéve (K-L) Expansion approach 

This approach which was introduced in 1991 by Ghanem and Spanos, also known as principal 

component analysis (PCA), is a mathematical technique used to decompose a random field into 

a series of uncorrelated modes or eigenfunctions. These modes represent different scales of 

variability, ordered by their contribution to the overall variance of the field. In this approach, 

the random field is based on the spectral decomposition of a covariance function: 

 

𝑍(𝑋, 𝜃) = 𝜇(𝑋) +∑√𝜆𝑖𝜑𝑖(𝑋)𝜀𝑖(𝜃)

∞

𝑖=1

 (2.4) 

 

In Eq. (2.4), X represents the coordinate of a point in continuous domain Ω, θ represents the 

coordinate in the sample space, μ(X) represents the mean of the random field and εi(θ) the 

represent the uncorrelated standard random variables. φi and λi are the eigenfunctions and 

eigenvalues of covariance matrix, respectively. 
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Those eigen parameters (φi, λi) may be obtained through solving the homogeneous Fredholm 

integral equation of the second kind: 

 

∫ 𝐶(𝑋, 𝑋′)𝜑𝑖(𝑋′)𝑑𝑋′
Ω

= 𝜆𝑖𝜑𝑖(𝑋) (2.5) 

 

By truncating the ordered series, the approximated random field is defined as follow:  

 

𝑍(𝑋, 𝜃) = 𝜇(𝑋) +∑√𝜆𝑖𝜑𝑖(𝑋)𝜀𝑖(𝜃)

𝑀

𝑖=1

 (2.6) 

 

where M is the truncating level. The optimal choice of this parameter is heavily depending 

upon the targeted precision and the covariance function inherent in the random field. 

 

2.7.2. Covariance Matrix Decomposition approach 

This approach supposes that the parameters at diverse positions in the field are correlated 

random variables. It is relevant to any configuration of the simulated locations and any 

covariance model. In a one-dimensional problem, the space is discretized into n points, with 

the soil property at each point considered as a random variable. A covariance matrix denoted 

as C is assumed for the correlated random variables. When the covariance matrix is positive, a 

correlated standard normal random field Z can be generated by utilizing independent standard 

normal random variables, as expressed in the following expression: 

 

𝑍 = 𝐿𝑈 (2.7) 

 

where, L represents the lower triangular matrix which can be obtained through applying the 

Cholesky decomposition method on L.LT = C. U represents the vector of the n-independent 

standard normal random variables. Z represents the vector of the n-correlated standard normal 

random variables.  

 

For a single soil property Z’ of the normal random field with a mean and standard deviation, 

the generation of a soil property may be acquired using the generation of the correlated standard 

normal random variable Z as:   
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𝑍′ = 𝜇𝑧𝐼 + 𝜎𝑧 . 𝑍 (2.8) 

 

In Eq. ‘2.8), I represents the unit matrix and μz and σz represent the mean and standard deviation 

of Z’.  

 

For non-normal random fields, an appropriate transformation of a normally distribution random 

field must be implicated.  For instance, a log-normally random field can be attained as:   

 

𝑍′ = 𝑒𝑥𝑝(𝜇𝑙𝑛𝑧𝐼 + 𝜎𝑙𝑛𝑧 . 𝑍) (2.9) 

 

where μlnz and σlnz are the mean and standard deviation of ln(Z’), respectively. 

 

2.7.3. Local Average Subdivision approach 

Fenton and Vanmarcke (1990) proposed a fast and an accurate approach for generating 

realizations of a random process called Local Average Subdivision (LAS) method. This 

approach is constructed on the stochastic subdivision methods (Carpenter, 1980; Fournier et 

al., 1982) and combines the concept of local averaging. For a better understanding of the basic 

concept of this approach, Fenton and Vanmarcke (1990) showcased an example that illustrated 

the LAS procedure for a one-dimensional stationary random field in their research paper. 

 

2.8. Ranges of variability in some geotechnical soil properties 

This section presents frequently used values of the coefficient of variations (COVs) for various 

geotechnical soil properties, as well as correlation coefficients between these properties and 

their scale of fluctuations. 

  

2.8.1. Coefficient of variations (COVs) 

The reported COVs of certain soil parameters from the literature are listed in Table 2.5. In this 

table, UC denotes the unconfined compression test; UU denotes the unconsolidated-undrained 

triaxial compression test and CIUC denotes the isotropic consolidated undrained triaxial 

compression test.  
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Table 2.5 Coefficients of variation of some soil properties. 

Parameter Type of soil COV (%) Authors 

Density All soils 5-10 Lumb (1974) 

Unit weight γ (kN/m3) Fine grained 3-20 Phoon and Kulhawy (1999) 

Dry unit weight γd (kN/m3) Fine grained 2-13 Phoon and Kulhawy (1999) 

Dr (%) (direct method) Sand 11-36 Phoon and Kulhawy (1999) 

Dr (%) (indirect method) Sand 49-74 Phoon and Kulhawy (1999) 

Cu (UC) Clay 30-50 Lumb (1972) 

 Clay 60-85 Lumb (1972) 

Undrained shear strength (Cu) Clay (triaxial) 5-20 Lacasse and Nadim (1996) 

Undrained shear strength (Cu) Clay 10-35 Lacasse and Nadim (1996) 

Clayey silt 10-30 Lacasse and Nadim (1996) 

Cu (UC) Fine grained 6-56 Phoon and Kulhawy (1999) 

Cu (UU) Clay, silt 11-49 Phoon and Kulhawy (1999) 

Cu (CIUC) Clay 18-42 Phoon and Kulhawy (1999) 

Undrained cohesion Clay 20-50 Lumb (1974) 

Sand 2-5 Lacasse and Nadim (1996) 

Friction angle φ (°) Clay 40 Kotzias et al. (1993) 

Alluvial 16 Wolff (1996) 

Tailings 5-20 Baecher et al. (1983) 

Sand 5-11 Phoon and Kulhawy (1999) 

Clay, silt 4-50 Phoon and Kulhawy (1999) 

 

2.8.2. Correlation coefficients  

A correlation coefficient is a statistical measure that quantifies the degree of association or 

relationship between two parameters. The cohesion and friction angle are commonly assumed 

to be correlated geotechnical strength parameters. Table 2.6 shows the reported values of the 

correlation coefficients between these two parameters. 

 

Table 2.6 Correlation coefficients of (c, φ). 

Authors rc, φ 

Lumb (1970) -0.7 to -0.37 

Yucemen et al. (1973) -0.49 to -0.24 

Wolff (1985) -0.47 

Cherubini (2000) -0.61 
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2.8.3. Scale of fluctuations  

In geotechnical engineering, the scale of fluctuation refers to the spatial or temporal range over 

which variations occur in a specific geotechnical property or parameter. This concept is 

essential for understanding the heterogeneity or variability of soil characteristics within a given 

site. Table 2.7 shows the reported values of the scale of fluctuation for different soil properties 

where CPT denotes the Cone Penetration Test, FVT denotes the Field Vane Test, VST denotes 

Vane Shear Test and DSS denotes the Direct Simple Shear Test. It can be concluding generally 

from this table that, the horizontal scale of fluctuation can be varying from 10 to 100m. While 

the vertical scale of fluctuation varies from 0 to 10m.  

 

Table 2.7 Scale of fluctuation for different soil properties. 

Soil Soil property 
Scale of fluctuation 

δ(m) 
Test Authors 

  δh δv   

Marine clay 

(different levels) 

Average cone 

resistance 

35-60 - CPT Tang (1979) 

Marine clay (0-

3m below sea 

bottom) 

Average cone 

resistance 

55 - CPT Tang (1979) 

Sensitive clay CPT tip resistance 

qc 

- 2 CPT Chiasson et al. (1995) 

Glacial sands CPT tip resistance 

qc 

20-35 - CPT Vrouwenvelder and Calle 

(2003) 

// CPT tip resistance 

qc 

- 0.8-1.8 CPT Popescu et al. (1995) 

Clay CPT tip resistance 

qc 

- 1 CPT Vanmarcke (1977) 

Offshore soils CPT tip resistance 

qc 

14-38 - CPT Keaveny et al. (1989) 

Silty clay CPT tip resistance 

qc 

5-12 1 CPT Lacasse and de 

Lamballerie (1995) 

Clean sand CPT tip resistance 

qc 

- 1.6 CPT Kulatilake and Ghosh 

(1988) 

Sand, clay CPT tip resistance 

qc 

3-80 0.1-2.2 CPT Phoon and Kulhawy 

(1996) 

Clay Corrected CPT tip 

resistance, qT 

23-66 0.2-0.5 CPT Phoon and Kulhawy 

(1996) 
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- Undrained shear 

strength cu 

- 2 FVT Chiasson et al. (1995) 

Clay Undrained shear 

strength cu 

- 2.5-6 FVT Asaoka and A-Grivas 

1982) 

Sensitive clay Undrained shear 

strength cu 

23 - FVT DeGroot and Baecher 

(1993) 

Sensitive clay Undrained shear 

strength cu 

- 1 FVT Baecher (1982) 

Chicago clay Undrained shear 

strength cu 

- 0.5 Unconfined 

compression 

test 

Wu (1974) 

Offshore soils Undrained shear 

strength cu 

- 0.3-0.6 Triaxial 

tests 

and DSS 

tests 

Keaveny et al. (1989) 

Clay Undrained shear 

strength cu 

- 0.8-6.1 Laboratory 

test 

Phoon and Kulhawy 

(1996) 

Clay Undrained shear 

strength cu 

46-60 2-6.2 VST Phoon and Kulhawy 

(1996) 

Clay, loam Total unit weight γ - 2.4-7.9 - Phoon and Kulhawy 

(1996) 

Clay Effective unit 

weight γ 

- 1.6 - Phoon and Kulhawy 

(1996) 

 

2.9.  Previous works on reliability analysis  

Reliability calculations offer a way to assess the collective impact of uncertainties and to 

identify situations where uncertainties are notably high or low. Despite its potential utility, 

reliability theory is not extensively applied in standard geotechnical practices for two main 

reasons. Firstly, the theory introduces terms and concepts that are unfamiliar to many 

geotechnical engineers. Secondly, there is a prevailing perception that integrating reliability 

theory into practice would demand more data, time, and effort than what is typically available 

in most situations. 

 

2.9.1. Essential principles of reliability 

The initial phase in assessing the reliability of any system, involves identifying the pertinent 

uncertain input parameters within the geotechnical model. These parameters are referred to as 
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basic random variables (Xi), and their connection with the system's performance (Z) is 

established. 

𝑍 = 𝑔(𝑋) = 𝑔(𝑋1, 𝑋2, … , 𝑋𝑛) (2.10) 

 

In Eq. (2.10), X represents the vector of the random variable Xi and g(X) is the state function or 

performance function. The failure of the structure is described by the condition Z < 0 and the 

safety (security) of the structure is described by the condition Z > 0, thus the limit state function 

is Z = 0 which represents the boundary between safe and failure regions.   

 

The probability of failure corresponds to the probability that the system is unable to execute its 

intended function, represented by the following integral: 

 

𝑃𝑓 = 𝑃(𝑍 < 0) = ∫ ∫…∫𝑓𝑥(𝑥1, 𝑥2, … , 𝑥𝑛)𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛
𝑋∈𝐹

 (2.11) 

 

where fx (x1, x2, …, xn) is the joint probability density function (PDF) for X.  

 

Reliability is characterized as the probabilistic metric assessing the confidence in performance 

assurance. It is common to represent the reliability through a reliability index (β), which is 

calculated as the ratio of the mean to the standard deviation of the performance function 

 

𝛽 =
𝜇𝑧
𝜎𝑧

 (2.12) 

 

where μz and σz are, respectively, the mean and standard deviation of Z.   

 

The probability of failure can be expressed in term of the reliability index (β) as follow: 

  

𝑃𝑓 = 𝑃(𝑍 < 0) = Φ(
0 − 𝜇𝑧
𝜎𝑧

) = Φ(−𝛽) = 1 −Φ(𝛽) (2.13) 

 

where Φ(.) signifies the cumulative distribution function (CDF) of the standard normal 

distribution. 
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2.9.2. Reliability analysis methods  

From the perspective of geotechnical engineering, obtaining the integral in Eq. (2.11) is 

challenging, and the assessment of multiple integrals proves to be exceedingly complex. For 

this purpose, different reliability analysis methods have been developed to align with the 

diverse types and complexities of performance functions.  

 

2.9.2.1. First order reliability method 

The First-Order Reliability Method (FORM) is an analytical probabilistic approach employed 

for assessing the probable reliability of an engineering problem. FORM solves the failure 

probability integral given in Eq. (2.11) by approximating the failure function or limit state 

function(s) g(X)=0, using a first-order Taylor series expansion centered at the most probable 

point (MPP). The FORM analysis contains three fundamental steps: (i) transformation of the 

random variables, (ii) search for the most probable point (MPP) and (iii) computation of 

probability of failure (Pf).  

 

The first step concerns a transformation of a vector of random variables X = [X1, X2, …, Xn]
T 

(in X-space) into standard normal variables U = [U1, U2, …, Un]
T using the Rosenblatt 

transformation 

 

𝑈𝑖 = Φ−1[𝐹𝑋𝑖(𝑥𝑖)], 𝑖 = 1, 2, … , 𝑛⁡ (2.14) 

 

where Φ-1 represents the inverse of the cumulative distribution function (CDF) of the standard 

normal distribution. 𝐹𝑋𝑖(𝑥𝑖) represents the CDF of the random variable Xi. As a result of that 

transformation, the limit state function g(X)=0 in X-space becomes g(U)=0 in U-space. Fig. 

2.13 shows a graphic illustration of this space transformation.  

 

The next step is searching for the most probable point (MPP). It is expressed mathematically 

as follow:   

 

{
min 𝛽 = ||𝑈||

𝑠. 𝑡.⁡⁡⁡⁡⁡⁡⁡𝑔(𝑈) = 0
⁡ (2.15) 
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where β represents the reliability index, which is the distance between the MPP and the origin 

in U-space as depicted in Fig. 2.13. An optimization algorithm based on gradients can be 

employed, where the calculation involves determining the search direction and the 

corresponding vector with normalized magnitude. 

 

The last step is the computation of the probability of failure. At the Most Probable Point (MPP), 

the joint Probability Density Function (PDF) of U attains its maximum value on the limit state 

in U-space. To minimize the loss of accuracy, the Limit State Function (LSF) is linearized at 

the MPP in U-space. Subsequently, the probability in Eq. (2.11) is analytically calculated using 

the following equation: 

 

𝐹𝑍(𝑧) = 𝑃[𝑍 ≤ 0] ≅ Φ(−β) (2.16) 

 

 

Fig. 2.13 Transformation of random variables into standard normal random variables. 

 

2.9.2.2. Monte Carlo Simulation method 

The Carlo simulation is a computational technique used to assess the probability distribution 

of the output variable based on the probability distributions of a specified set of input random 

variables.  An essential step in the Monte Carlo simulation involves generating suitable values 

for the random variables, i.e., generating random numbers in alignment with the Probability 

Density Function (PDF) of the input random variables. 
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To illustrate the use of the Monté Carlo simulation in assessing failure probability, it's 

important to initially recognize that the probability of failure can be expressed mathematically 

as follows: 

𝑃𝑓 = ∫…∫∫𝐼(𝑥)𝑓𝑥(𝑥)𝑑𝑥 (2.17) 

 

where fx(x) is the probability density function and I(x) is the indicator function which is equal 

to 1 when x is in the failure region while it is equal to 0 when x is in the safe region.  

 

The mean value of the indicator function I(x) describes the failure probability with the 

following expression:  

𝑃̂𝑓 ≈
1

𝑁
∑𝐼(𝑥′)

𝑁

𝑖=1

 (2.18) 

 

where 𝑃̂𝑓 represents the approximation of the failure probability Pf . x’ is the ith sample of x and 

N represents the number of random simulations.   

 

2.9.2.3. Importance Sampling method 

The Importance Sampling method is a technique employed to improve the efficiency of Monte 

Carlo simulations, especially when rare events, such as system failures, are of interest. 

Concerning Monte Carlo simulations, samples are directly drawn from the probability density 

function fX(x) of the random variable X. In contrast, concerning importance sampling, samples 

are drawn from a distinct sampling function s(x) instead of directly from fX(x). Thus, Eq. (2.17) 

is rewritten as follow:  

 

𝑃𝑓 = ∫…∫∫{𝐼(𝑥)𝑤(𝑥)]𝑠(𝑥)𝑑𝑥 (2.19) 

 

where w(x) denotes a weighting function expressed by the following equation:  

 

𝑤(𝑥) =
𝑓𝑥(𝑥)

𝑠(𝑥)
 (2.20) 
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Therefore, the estimated failure probability linked to an estimator is given as follows (Ang and 

Tang, 1984): 

𝑃̂𝑓 ≈
1

𝑁
∑𝐼(𝑥′)

𝑁

𝑖=1

𝑤(𝑥′) (2.21) 

 

2.9.2.4. Additional methods 

Numerous reliability analysis methods have been documented in the literature, such as the 

Second-Order Reliability Method (SORM), Subset Simulation, Response Surface Method 

(RSM), Advanced First-Order Reliability Method (AFORM) and various Hybrid Methods. 

Due to space limitations, it is not feasible to comprehensively cover all of these methods in this 

thesis. 

 

2.9.3. Quantification of geotechnical uncertainties   

The seismic bearing capacity analysis is typically performed assuming homogeneous soils and 

deterministic earthquake properties. However, soil properties, including shear strength 

parameters, exhibit random variations even within a single soil layer (Johari et al. 2017). 

Therefore, reliability analysis offers a suitable approach to account for this randomness, 

providing a rational framework for selecting appropriate bearing capacities. This approach 

empowers geotechnical designers to assess the reliability of their designs effectively. 

 

Numerous studies have explored the reliability analysis of shallow foundations under static 

loads considering the stochastic nature of soil properties in terms of statistical moments or 

failure probability (Griffiths et al.,  2002; Al-Bittar and Soubra, 2014; Pula and Chwala, 2015; 

Al-Bittar and Soubra, 2016; Jha, 2016; Al-Bittar et al., 2018; Brahmi et al., 2018; Pula and 

Chwala, 2018; Wu et al., 2019; Simoes et al., 2020). 

 

Griffiths et al. (2002) conducted a probabilistic analysis on the bearing capacity of a shallow 

rough rigid strip footing on weightless cohesive soil. They employed analysis is a combination 

of the random field theory and the conventional nonlinear finite element algorithm, integrated 

with Monte Carlo simulations. Their findings indicated that the mean bearing capacity, 

accounting for spatially varying shear strength, consistently appeared lower than the 

deterministic bearing capacity. Moreover, they noted a decrease in the bearing capacity with 
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an increase in both the coefficient of variation of the undrained cohesion (COVcu) and the 

spatial correlation length (Fig. 2.14). 

 

 

Fig. 2.14 Influence of COVcu and correlation length on the mean bearing capacity (Griffiths 

et al., 2002). 

 

Al-Bittar and Soubra, (2016) conducted a probabilistic investigation focused on evaluating the 

probability density function associated with the bearing capacity of a shallow strip footing. 

This analysis was carried out considering a rock mass characterized by spatial variability and 

assuming adherence to the generalized Hoek-Brown failure criterion. Their results revealed 

that the variability of the bearing capacity increases with the increase of the coefficient of 

variation of the rock parameters (σc and GSI).  

 

Brahmi et al. (2018) integrated a finite element limit analysis with the random field theory to 

conduct a probabilistic assessment of the undrained bearing capacity of strip footings situated 

near slopes and subjected to inclined loads. Their results revealed a substantial influence of the 

coefficients of variation of the undrained cohesion (COVcu) and the spatial correlation length 

on the undrained bearing capacity. 
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Fig. 2.15 Influence of rock parameters uncertainties on the PDF of bearing capacity (Al-

Bittar & Soubra, 2016). 

 

In the dynamic bearing capacity context, only four studies on the reliability analysis of shallow 

foundations are available. Massih et al. (2008) employed a probabilistic methodology to 

analyze the behavior of a shallow strip footing subjected to vertical loads, both with and 

without pseudo-static seismic loads. Their investigation revealed a noteworthy impact on the 

failure probability of the bearing capacity, specifically driven by variations in the coefficient 

of friction angle and the horizontal seismic acceleration coefficient. Johari et al. (2017) used 

the random field theory to evaluate the reliability of the seismic bearing capacity of a strip 

footing considering the geotechnical and earthquake properties uncertainty. Their results 

indicated that, the reduction in the correlation length led to an increase in the mean of the 

seismic bearing capacity and a simultaneous decrease in the standard deviation. Hamrouni et 

al. (2021) applied the finite difference method to assess the reliability of the pseudo static 

seismic bearing capacity of a shallow strip footing. They have shown that the option of the 

negative correlation between the soil shear strength parameters provides a conservative result.  

Krishnan et al. (2021) incorporated the spatial variability of soil properties into their seismic 

bearing capacity factor model through the discretization of the random field theory using the 

KL-expansion method. Their findings revealed that as the vertical correlation distance 

increased, the seismic bearing capacity factor exhibited a decrease. Furthermore, they noted 

that the failure probability was not directly influenced by the magnitude of the mean seismic 

bearing capacity factor. 
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2.10. Conclusion 

This chapter begins with a review of previous studies on the seismic bearing capacity of 

shallow foundations. After that, it discusses different sources of uncertainties and their 

characterization. Finally, it introduces the reliability analysis methods for dealing with 

uncertainty and their application in static and dynamic bearing capacity analyses. 

 



 

 

 

 

 

 

 

Reliability-based analysis of 
seismic bearing capacity 
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3.1. Introduction  

The objective of this chapter is to perform a reliability analysis of the seismic bearing capacity 

for shallow strip footings situated on soils with randomly varying properties and earthquake 

parameters. This analysis utilizes existing seismic bearing capacity formulas developed by 

Conti (2018) that considers two types of soil supporting the strip footing: purely cohesive and 

cohesive-frictional. These formulas extend to more general conditions other literature results, 

allowing to take into account easily the effects of inertia forces acting both on the superstructure 

(load inclination and eccentricity) and into the foundation soil. The randomness inherent in soil 

parameters is accounted for using the Karhunen-Loève (KL) expansion method within the 

framework of random field theory. The chapter investigates the impact of Autocorrelation 

Functions (ACFs), Scale of Fluctuations (SOFs), and the coefficients of variation (COVs) of 

the parameters on the probability density function (PDF), probability of failure (Pf), and 

statistical moments (mean, standard deviation, and COV) of the seismic bearing capacity. 

 

3.2. Numerical procedure 

This work employs a numerical technique that incorporates both probabilistic and reliability 

assessments to evaluate the impact of spatial variations in soil properties. This method 

combines simplified seismic bearing capacity formulas with random field theory to account for 

uncertainties in the soil properties of cohesive or cohesive-frictional soils. It uses the KL 

expansion method (Constantine, 2022) to generate realistic variations in the soil properties 

across one or two dimensions. The seismic bearing capacity analysis proceeds through the 

following steps: 

1) Defining Statistical Inputs: Establish parameters such as mean value, variance (or 

coefficient of variation), number of simulations (Nsim) and autocorrelation function. 

For the cohesive frictional soil, determine the cross-correlation coefficient (ij) between 

the cohesion and the frictional angle. Define horizontal and vertical scales of fluctuation 

(autocorrelation lengths). 

2) Discretizing Random Fields: Create a mesh around the footing's edge for analysis (refer 

to Fig. 3.1). 

3) Generating Realizations of Cross-Correlated Random Fields: Simulate Nsim 

realizations of the cross-correlated random field. Example shear strength parameter 

realizations (cohesion c and friction angle φ) are depicted in Fig. 3.2. 
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4) Incorporating Realizations into bearing capacity formulas: Utilize the Nsim realizations 

of the random fields for the parameters in a Monte Carlo simulation to compute seismic 

bearing capacities using the provided formulas in Table A.1 of Appendix. 

5) Analyzing Statistical Response: Evaluate outputs such as mean, standard deviation, 

coefficient of variation of bearing capacity, and probability density function. 

6) Calculating Probability of Failure: Employ bearing capacities from Nsim simulations 

in Eq. (2.10) of the limit state function. Adjust applied load values to transition from 

the safe domain (𝑝𝑓 = 0) to the failure domain 𝑝𝑓 = 1 at each step. 

 

These steps are implemented in a MATLAB code, permitting the presentation and analysis of 

results through tables and figures. 

 

Fig. 3.1 The mesh employed for discretizing the random fields. 

 

3.3. Validation examples 

This section conducts validation examples to confirm the accuracy of the obtained results and 

to compare them with other numerical and rigorous methods. 

 

3.3.1.  Random field realizations 

To begin, an example of random fields illustrating the cohesion and the friction angle, 

discretized according to the normal distribution with statistical inputs outlined in Table 3.1, is 

presented. A mesh measuring 128 x 64 dimensions is utilized. The mean and standard deviation 

values attained through the Karhunen–Loève (KL) expansion method are compared in Table 

3.1 with those derived from the local average subdivision method (LAS) (Alamanis and 

Dakouakas, 2019). Table 3.1 demonstrates that the KL method yields mean and standard 

deviation values for the cohesion (c) and a standard deviation value for the friction angle (φ), 
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which are closest to the exact values when compared to the LAS method. Additionally, a single 

realization of the random fields for the cohesion and the friction angle is illustrated in Fig. 3.2. 

 

 

Table 3.1. Comparison between the exact and estimated values of soil properties obtained 

using the KL method and LAS method. 

Parameter 
Exact 

mean (µ) 

Attained µ by 

present KL 

Attained µ 

by LAS 

Exact standard 

deviation (σ) 

Attained σ by 

present KL 

Attained 

σ by LAS 

Cohesion c (kPa) 30 30.0453 30.0746 9 8.7336 7.579 

Friction angle   

(degree) 
30 30.0508 30.0096 6 5.8752 5.111 

 

 

 

Fig 3.2 Simulation of Gaussian random fields with δh=20m and δy=2m for: (a) soil cohesion 

with µc = 30 kPa and σc = 9 kPa , (b) soil friction angel with µϕ = 30 kPa and σϕ = 9. 

 

(a) 

(b) 
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3.3.2. Validation of the statistical moments associated with the static bearing 

capacity 

This first example involves verifying the statistical moments of the bearing capacity of a 

shallow strip footing situated on soils with spatially and randomly varying properties. The 

comparison is made with previously published results in the static case (kh=0). Since not all 

statistical moments of the bearing capacity may be available in a single study, various examples 

of the mean (μ) and standard deviation (σ) or coefficient of variation (COV) values of the 

strength parameters are considered for comparison. 

 

Fig. 3.3 compares the variation of the mean normalized bearing capacity against the coefficient 

of variation of the undrained shear strength (cohesion cu) (COVcu) for a strip footing situated 

on a purely cohesive soil with a mean value of cu equal to 100 kPa, to that published by Griffiths 

et al. (2002). In their study, Griffiths et al. (2002) conducted bearing capacity analyses using a 

conventional nonlinear finite element algorithm combined with the random field theory, in 

conjunction with a Monte Carlo method, for a 1m wide strip footing. As depicted in Fig. 3.3, 

both sets of results exhibit a similar trend, with a maximum relative difference of approximately 

28% observed for a COVcu of 50%. 

 

Fig. 3.3 Comparison between the normalized bearing capacity obtained in the present study 

and that reported by Griffiths et al. (2002) for a case of µcu = 100 kPa, δx = δy = 2m and kh = 0. 

 

In the second example, the current results obtained using the simplified Conti (2018) formulas 

are verified against those obtained by Luo and Bathurst (2017) when conducting a reliability 

bearing capacity analysis of a footing on cohesive soil slopes using the random finite element 

method (RFEM). Fig. 3.4 illustrates the variation of the coefficient of variation (COV) of the 
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bearing capacity factor (Nc) for a 1m wide footing resting on purely cohesive soil with unit 

weight and mean cohesion of 20 kN/m3 and 20 kPa, respectively. The results presented by Luo 

and Bathurst (2017) correspond to the scenario of a strip footing on level ground, i.e., without 

slope. As depicted in the figure, the current results align well with those of Luo and Bathurst 

(2017) and remain slightly lower, as observed in the previous example. 

 

 

Fig. 3.4 Comparison between the coefficient of variation (COV) of the bearing capacity 

factor (Nc) obtained in the present study and that reported by Luo and Bathurst (2017) for a 

case of µcu = 20 kPa, γ = 20 kN/m3 and kh = 0. 

 

In the third example, we verify the statistical moments of the static bearing capacity obtained 

in the present study against those provided by Cho and Park (2010). Cho and Park investigated 

the impact of the spatial variability of the cross-correlated strength parameters (c and φ) on the 

bearing capacity of a strip footing using an approach integrating a commercial finite difference 

method and random field theory. They generated cross-correlated non-Gaussian random fields 

based on the Karhunen-Loève method. 

 

It's worth noting that in the deterministic analysis, Cho and Park (2010) estimated the bearing 

capacity to be 1.01 MPa, which closely matched the value of 1.04 MPa obtained from the 

Terzaghi (1943) formula. In contrast, in the present study, it is estimated to be 1.03 MPa. This 

disparity is expected since the Conti (2018) formulas used in our study were based on 

Terzaghi's equation for vertical bearing capacity. 

 

θ/B = 0.5 

θ/B = 0.125 
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Figs. 3.5 and 3.6 illustrate the variation of the mean value, standard deviation, and coefficient 

of variation (COV) of the bearing capacity against the horizontal and vertical standardization 

of fluctuation (SOF), respectively. It can be observed from these figures that the present results 

exhibit similar patterns to those of Cho and Park (2010) but are consistently lower. In other 

words, the present results, based on the simplified Conti (2018) formulas, are always 

conservative concerning cohesive-frictional soils due to the utilization of the all-minimum 

procedure as concluded by Conti (2018). 

 

Furthermore, in the case of cohesive-frictional soil, the mean static bearing capacity remains 

nearly constant as the horizontal standardization of fluctuation (SOF) increases from 5m to 

30m, a trend comparable to that identified by Cho and Park (2010) (Fig. 3.5a). Dobrzański and 

Kawa (2021) also observed this pattern for purely cohesive soil within the same range of SOF. 

 

However, as depicted in Fig. 3.6a, the mean static bearing capacity exhibits minimal 

fluctuations around a value of 1060 kPa as the vertical SOF increases from 1m to 10m, 

mirroring the pattern identified by Cho and Park (2010). It's worth noting that this behavior 

was observed for COVc = 30% and COVφ = 20%. 

 

In contrast, for purely cohesive soil, Jha (2016) noted that regardless of whether δh = δv or δh 

differs from δv, the mean normalized static bearing capacity experiences a slight decrease as 

the horizontal SOF increases, reaching a minimum, and then slightly increasing. The maximum 

variation increment is less than 1%. This trend was observed for two values of COVcu (30% 

and 50%), with the reduction being less pronounced for COVcu of 30%. A similar pattern was 

also observed in the results obtained by Pula and Chwala (2018). 

 

3.3.3. Validation of the failure probability associated with the static bearing 

capacity 

In this fourth and final validation example, we compare the failure probability of the static 

bearing capacity obtained in the present study with the results of Massih et al. (2008) and 

Krishnan and Chakraborty (2021). Krishnan and Chakraborty (2021) explored the seismic 

bearing capacity of a strip footing over a c-φ soil using a finite element lower bound limit 

analysis formulation in conjunction with a modified pseudo-dynamic approach for considering 
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Fig. 3.5 Validation of the statistical characteristics of the static bearing capacity obtained in 

the present study compared to those reported by Cho and Park (2010) for a case of r (c,ϕ)= − 

0.5, COVc = 30%, COVϕ =20%, v = 1m and kh = 0. 

(a) 

(b) 

(c) 
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Fig. 3.6 Validation of the statistical characteristics of the static bearing capacity obtained in 

the present study compared to those reported by Cho and Park (2010) for a case of r (c,ϕ)= − 

0.5, COVc=30%, COVϕ =20%, h=10m and kh = 0. 

 

seismic action. They discretized soil properties (c and φ) spatially using the Karhunen-Loève 

(KL) expansion method and obtained statistical responses via Monte Carlo Simulation. 

 

(a) 

(b) 

(c) 
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On the other hand, Massih et al. (2008) investigated the ultimate bearing load of a c-ϕ soil in a 

reliability context using a pseudo-static approach with the help of the upper bound limit 

analysis. It's noteworthy that in the present study, the random parameters are generated 

according to the normal distribution, whereas in the other two papers for comparison, they are 

obtained with the lognormal distribution. 

 

Fig. 3.7 presents a comparison of the failure probability (or cumulative distribution function, 

CDF) plots of the ultimate bearing capacity for the static case among the three studies. Despite 

the use of normal distribution for the parameters in the present study versus the lognormal 

distribution in the other two studies, it is evident from Fig. 3.7 that the present study offers the 

highest failure probabilities, while of Massih et al. (2008) provides the lowest. In other words, 

the bearing capacity formulas used in the present analysis, based on the all-minimum 

procedure, are more conservative than those obtained by the lower bound method (Krishnan 

and Chakraborty, 2021) and consequently, those obtained by the upper bound method (Massih 

et al. 2008). Unfortunately, there are no results available for comparison in the seismic case. 

 

 

Fig. 3.7 Validation of the failure probability associated with the bearing capacity obtained in 

the present study compared to that reported by Massih et al. (2008) and Krishnan and 

Chakraborty (2021) for: r (c, ϕ) =−0.5,µϕ = 30°, µc=20kPa, COVϕ =10%, , COVc=20% and 

kh = 0. 
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3.4. Results and discussions 

The objective of this section is to examine the influence of the autocorrelation functions 

(ACFs), the scale of fluctuations (SOFs) and the coefficient of variation (COV) of the key 

parameters governing the seismic bearing capacity on the probabilistic outcomes for two 

distinct soil types. 

 

To achieve this objective, we analyze a shallow strip footing with a width of 1m subjected to 

seismic loading (q = 20 kPa). The strip footing is assumed to rest on two different types of soil: 

cohesive frictional soil (with c ≠ 0, φ ≠ 0) and purely cohesive soil (with c = cu, φ = 0). Each 

soil type is characterized by its statistical inputs as provided in Tables 3.2 and 3.3. 

 

Table 3.2. Statistical parameters for the cohesive frictional soil. 

Parameter Mean (µ) Coefficient of variation (COV) PDF 

Cohesion c (kPa) 20 20% Normal 

Friction angle   (degree) 30 10% Normal 

Horizontal seismic coefficient kh 0.2 25% Log-Normal 

 

Table 3.3. Statistical parameters for the purely cohesive soil. 

Parameter Mean (µ) Coefficient of variation (COV) PDF 

Undrained shear strength cu (kPa) 20 20% Normal 

Horizontal seismic coefficient kh 0.15 25% Log-Normal 

 

3.4.1. Impact of Autocorrelation functions (ACFs) on the seismic bearing capacity 

In the case of cohesive frictional soil, Figs. 3.8a and 3.8b depict the Probability Density 

Function (PDF) and the failure probability, respectively, of the ultimate seismic bearing 

capacity for five different types of Autocorrelation Functions (ACFs) outlined in Table 2.4 

(Chapter 2). It's evident from these figures that all ACF types yield similar variability (PDF) 

of the seismic bearing capacity and corresponding probability of failure (Pf) for purely cohesive 

soil. However, only the SNE ACF yields a PDF and Pf distinct from the other four ACFs for 

the cohesive frictional soil. 

 

Furthermore, we examine the impact of the ACF type on the statistical moments of the seismic 

bearing capacity (mean value μ(qu), standard deviation σ (qu), coefficient of variation COV(qu)) 

as presented in Table 3.4. It is notable from Table 3.4 that only the SNE ACF yields statistical 
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moments of the bearing capacity differing from those provided by the other ACF types and 

smaller than them, specifically for the cohesive frictional soil. This observation suggests that 

the commonly used SNE type of ACFs produces conservative results. It is important to note 

that only the SNE ACF will be utilized in all subsequent applications. 

 

  

 
 

Figure 3.8 Impact of different types of autocorrelation functions (ACFs), with δh = 20m and 

δv = 2m, on the probability density function (PDF) and the failure probability (Pf) of the 

seismic bearing capacity of a shallow strip footing resting on: (a) and (b) cohesive frictional 

soil, (c) and (d) purely cohesive soil. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Table 3.4. Impact of the type of autocorrelation functions (ACFs) on the statistical moments 

of the seismic bearing capacity of a shallow strip footing for δh = 20m and δv = 2m. 

ACF type Cohesive frictional soil Purely cohesive soil 

 𝜇𝑞𝑢
 (kPa) 𝜎𝑞𝑢

 (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 𝜇𝑞𝑢
 (kPa) 𝜎𝑞𝑢

 (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 

SNE 206.17 57.55 27.91 95.21 20.51 21.54 

CE 237.08 64.47 27.19 95.21 20.51 21.54 

SOM 237.07 64.47 27.19 95.21 20.51 21.54 

SQE 237.07 64.47 27.19 95.21 20.51 21.54 

BN 237.07 64.47 27.19 95.21 20.51 21.54 

 

3.4.2. Impact of COVs of seismic coefficients and strength parameters on seismic 

bearing capacity 

In the case of cohesive frictional soil, Figs. 3.9a, 3.9b, and 3.9c illustrate the Probability 

Density Function (PDF) of the seismic bearing capacity for various values of the coefficient of 

variation (COV) of the seismic coefficient (COVkh), the cohesion (COVc) and the friction angle 

(COVφ), respectively. For each of these figures, the COV of the parameter under consideration 

is varied while the COVs of the other two parameters remain equal to the values given in Table 

3.2. The results indicate that increasing the COV of the cohesion or friction angle enhances the 

variability of the seismic bearing capacity, while this variability remains unchanged when the 

COV of the seismic coefficient increases. 

 

Moreover, it is observed that the increase in the variability is more pronounced for the friction 

angle. The statistical moments of the seismic bearing capacity also exhibit sensitivity to the 

randomness of the soil parameters, as shown in Tables 3.5 and 3.6. For instance, increasing the 

COVc from 10% to 20% (while maintaining COVφ and COVkh at 10% and 25%, respectively) 

leads to a 22.49% increase in the COV of the seismic bearing capacity (COVqu). Similarly, 

increasing COVφ from 5% to 10% (with COVc and COVkh at 20% and 25%, respectively) 

results in a 32.80% increase in COVqu. On the other hand, increasing COVkh from 20% to 40% 

leads to only a 0.56% increase in COVqu. 

 

In the case of purely cohesive soil, Figs. 3.10a and 3.10b depict the PDF of the undrained 

seismic bearing capacity for various values of the COVkh and COVcu (COV of the undrained 

shear strength), respectively. Each figure follows the same approach as in the previous case of 

the cohesive frictional soil. The results reveal that increasing the COVcu enhances the 

variability of the seismic bearing capacity (Fig. 3.10b). Similarly, increasing the COVcu from 
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15% to 20% (with COVkh at 25%) results in a 35.22% (Table 3.6) increase in COVqu. However, 

the increase in the COVkh from 20% to 40% does not influence the COVqu (Table 3.6). 

 

Table 3.5. Impact of the coefficients of variation (COVs) of the seismic coefficient (kh), 

cohesion (c), and friction angle (φ) on the statistical characteristics of the seismic bearing 

capacity of a shallow strip footing resting on cohesive frictional soil for δh = 20m and δv = 2m 

𝐶𝑂𝑉𝑘ℎ  (%) 𝐶𝑂𝑉𝑐 ( %) 𝐶𝑂𝑉ɸ  (%) 𝜇𝑞𝑢
 (kPa) 𝜎𝑞𝑢

 (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 

20 20 10 678.96 155.03 22.83 

40 20 10 677.77 155.65 22.96 

60 20 10 675.52 156.72 23.20 

25 10 10 584.59 97.77 16.72 

25 20 10 563.50 115.40 20.48 

25 30 10 509.64 153.44 30.11 

25 20 5 571.70 89.92 15.73 

25 20 10 563.56 117.72 20.89 

25 20 15 549.17 155.85 28.38 

 

 

Table 3.6. Impact of the coefficients of variation (COVs) of the seismic coefficient (kh) and 

undrained shear strength (cu) on the statistical characteristics of the seismic bearing capacity 

of a shallow strip footing resting on purely cohesive soil for δh = 20m and δv = 2m. 

𝐶𝑂𝑉𝑘ℎ  (%) 𝐶𝑂𝑉𝑐𝑢 ( %) 𝜇𝑞𝑢
 (kPa) 𝜎𝑞𝑢

 (kPa) 𝐶𝑂𝑉qu (%) 

20 20 98.77 12.87 13.36 

40 20 98.77 12.87 13.36 

60 20 98.77 12.87 13.36 

25 15 100.49 10.12 10.08 

25 20 99.09 13.50 13.63 

25 25 94.20 16.92 17.97 
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Fig. 3.9 Probability Density Function (PDF) of the seismic bearing capacity of strip footing 

resting on cohesive frictional soil for δh = 20m and δv = 2m for various COVs of: (a) seismic 

coefficient, (b) cohesion, (c) frictional angle. 

(a) 

(b) 

(c) 
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Fig. 3.10 Probability Density Function PDF of seismic bearing capacity of strip footing 

resting on purely cohesive soil for δh = 20m and δv = 2m for various COVs of: (a) seismic 

coefficient, (b) undrained shear strength. 

 

3.4.3. Impact of scale of fluctuations (SOFs) on the seismic bearing capacity 

Fig. 3.11 depicts the influence of variations in horizontal and vertical scale of fluctuations 

(SOFs) on the Probability Density Function (PDF) and failure probability of the seismic 

bearing capacity of a shallow strip footing on cohesive frictional soil. The results indicate that 

as the vertical SOF increases, the PDF becomes more dispersed. Additionally, the failure 

probability exhibits greater sensitivity to changes in vertical SOF compared to horizontal SOF. 

Similarly, in the case of the purely cohesive soil shown in Fig. 3.12, the effect of the horizontal 

and vertical SOF on the PDF and the failure probability of the seismic bearing capacity is 

(a) 

(b) 
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examined. Consistent with the cohesive frictional soil case, the PDF is less dispersed with 

increasing the horizontal SOF, and the failure probability is more responsive to changes in the 

vertical SOF compared to the horizontal SOF. Notably, the impact of vertical SOF on the PDF 

and failure probability is more pronounced than that of horizontal SOF. 

 

Tables 3.7 and 3.8 provide insight into the influence of SOFs on the statistical moments (mean 

μ(qu), standard deviation σ(qu) and coefficient of variation COV (qu)) of the seismic bearing 

capacity. The results show slight fluctuations in the mean seismic bearing capacity, with 

fluctuations ranging between 0.4% and 2% for both soil types and for both horizontal and 

vertical SOFs. This finding aligns with the observations made by Chwala and Pula (2020) in 

their evaluation of the static bearing capacity of shallow foundations in a two-layered soil 

medium where the spatial variability in the soil strength parameters was considered only for 

the bottom purely cohesive layer. 

 

Furthermore, the standard deviation of the seismic bearing capacity (σqu) increases with 

increasing the horizontal or vertical SOF for both soil types. However, the coefficient of 

variation (COVqu) exhibits different trends, increasing for purely cohesive soil while 

fluctuating for cohesive frictional soil as the horizontal or vertical SOF increases. 

 

 

Table 3.7. Impact of the horizontal SOF on the statistical moments of the seismic bearing 

capacity of a shallow strip footing for δv =6m. 

Soil type Cohesive frictional soil Purely cohesive soil 

𝛿ℎ (m) 𝜇𝑞𝑢  (kPa) 𝜎𝑞𝑢  (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 𝜇𝑞𝑢  (kPa) 𝜎𝑞𝑢  (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 

20 561.14 114.61 20.43 98.15 13.55 13.81 

40 560.27 124.53 22.23 97.48 13.60 13.96 

60 568.76 137.88 24.24 98.30 13.81 14.05 

80 568.29 131.01 23.05 98.52 13.99 14.21 

100 559.05 127.71 22.85 97.73 14.50 14.85 
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Table 3.8. Impact of the vertical SOF on the statistical moments of the seismic bearing 

capacity of a shallow strip footing for δh =60m. 

Soil type Cohesive frictional soil Purely cohesive soil 

𝛿𝑣 (m) 𝜇𝑞𝑢  (kPa) 𝜎𝑞𝑢  (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 𝜇𝑞𝑢  (kPa) 𝜎𝑞𝑢  (kPa) 𝐶𝑂𝑉𝑞𝑢  (%) 

2 561.14 114.61 20.43 98.15 13.55 13.81 

4 573.68 141.23 24.62 98.79 15.14 15.33 

6 553.93 159.89 28.86 98.78 16.08 16.29 

8 563.33 151.40 26.88 99.46 16.40 16.49 

10 556.56 155.99 28.03 98.39 16.52 16.80 

 

  

 
 

 

Fig. 3.11 Probability density function and failure probability of the seismic bearing 

capacity of a strip footing on cohesive frictional soil for various values of: (a) and (b) 

horizontal SOF and δv = 2m, (c) and (d) vertical SOF and δh = 20m. 

 

(a) 
(b) 

(c) (d) 
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Fig. 3.12 Probability density function and failure probability of the undrained seismic 

bearing capacity of a strip footing on a purely cohesive soil for various values of: (a) and 

(b) horizontal SOF and δv = 2m, (c) and (d) vertical SOF and δh = 20m. 

 

3.5. Conclusion 

This chapter delved into the seismic bearing capacity analysis of a shallow strip footing, 

incorporating the variability of the shear strength properties and the seismic coefficients. The 

investigation was conducted in the framework of random field theory, involving reliability 

analysis of the seismic bearing capacity for two types of soils: purely cohesive and cohesive 

frictional. The Karhunen-Loève (KL) expansion method was employed to capture the 

randomness of the soil parameters. Results were presented in terms of statistical moments, 

probability density function, and failure probability of the seismic bearing capacity, accounting 

for the influence of the Autocorrelation Functions (ACFs), Scale of Fluctuations (SOFs) and 

(a) (b) 

(c) (d) 
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coefficient of variation of the random parameters. The main conclusions derived from this 

study include: 

 The statistical moments of the bearing capacity differ only when using the SNE ACF 

compared to other ACF types, presenting conservative estimates for the cohesive 

frictional soil. However, for the purely cohesive soil, all the ACF types yield consistent 

results. 

 The variability of the seismic bearing capacity increases with the higher coefficients of 

variation for the cohesion or friction angle, whereas the variability remains unaffected 

by increasing the coefficient of variation for the seismic coefficient. 

 The mean seismic bearing capacity exhibits slight fluctuations when the horizontal SOF 

ranges from 20 m to 100 m and the vertical SOF ranges from 2 m to 10 m, with 

variations of less than 2% observed for both soil types and for both horizontal and 

vertical SOFs. 

 

This study validates the reliability of the simplified formulas through comparisons with results 

obtained from rigorous methods, affirming their effectiveness and suitability for practical 

design applications. 
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4.1. Introduction  

Surface waves typically arise when an earthquake originates near the Earth's surface. As their 

name implies, these waves travel just beneath the ground surface. While they move more 

slowly than S-waves, they often have larger amplitudes, making them a highly destructive type 

of seismic wave. The two most common types of surface waves are Rayleigh waves and Love 

waves. 

 

Shallow foundations, being in direct contact with the Earth's surface, are particularly 

susceptible to the ground motion induced by the surface waves. The bearing capacity of these 

foundations, which is the ability to support vertical loads without excessive settlement or 

failure, becomes a critical concern in earthquake-prone regions. For this purpose, numerous 

studies were carried out considering the effect of these surface waves on the bearing capacity 

of shallow foundations (Saha and Ghosh, 2014, 2017; Pakdel et al., 2019; Izadi et al., 2022). 

Those studies are conducted under the assumption of a homogenous isotropic soil condition.  

 

Another surface wave called torsional wave only propagates in non-homogeneous media 

(Rayleigh, 1945; Kumari and Sharma, 2014; Gupta et al., 2015; Vaishnay et al., 2017; Manna 

et al., 2018) did not gain any attention by researchers to take it into account through the 

estimation of the bearing capacity of shallow foundations.   

 

Based on this point, the present chapter is dedicated to propose a comprehensive formula for 

the seismic bearing capacity of a strip footing over an anisotropic non-homogeneous soil layer 

covering a heterogeneous half-space taking the effects of the surface torsional wave using the 

pseudo-dynamic approach with the limit equilibrium method. 

 

4.2. Torsional wave motions 

To analyse the propagation of the torsional surface waves, a cylindrical coordinate system (r, 

θ, z), where the origin O is placed at the interface between the anisotropic non-homogeneous 

layer and the heterogeneous half-space, is adopted. The r-axis represents the direction of the 

wave propagation and the z-axis is oriented positively downward in the layered media, as 

depicted in Fig. 4.1. In this figure, a non-homogeneous anisotropic layer of finite thickness H 

is considered, where the non-homogeneity is assumed to vary exponentially with depth in the 

soil rigidity and mass density, along with the anisotropy in the rigidity (𝑁 = 𝑁0𝑒
𝑧

𝛼, 𝐿 = 𝐿0𝑒
𝑧

𝛼, 
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𝜌 = 𝜌0𝑒
𝑧

𝛼). This layer is positioned over a heterogeneous half-space with a quadratic variation 

of the rigidity and the mass density (𝜇 = 𝜇1 (1 +
𝑧

𝑏1
), 𝜌 = 𝜌1 (1 +

𝑧

𝑏1
)).   and b1 are constants 

having dimension equal to that of length.  

 

Let u, v and w represent the particle displacement components along the radial (r), azimuthal 

(θ) and vertical (z) directions, respectively (Fig. 4.1). The torsional wave is characterized by 

the following displacement field (Love, 1944; Pramanik and Manna, 2022):  

 

𝑢 = 0 , 𝑤 = 0, 𝑣 = 𝑣(𝑟, 𝑧, 𝑡) (4.1a) 

 

The displacement component along the azimuthal direction (), 𝑣(𝑟, 𝑧, 𝑡), is expressed as 

 

𝑣(𝑟, 𝑧, 𝑡) = 𝑉(𝑧)𝐽1(𝑘𝑟)𝑒𝑖𝜔𝑡 (4.1b) 

 

where V(z) represents the amplitude that describes how the particle displacement varies with 

depth. J1(kr) is the Bessel’s function of the first order and first kind and k is the wave number.  

 

For the displacement components given by Eq. (4.1a), the governing equations for the 

cylindrical coordinates (𝑟, , 𝑧) (Kundu et al. 2014), in absence of body forces, is reduced to 

the following equation 

 

𝜕𝜏𝑟𝜃

𝜕𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+

2𝜏𝑟𝜃

𝑟
= 𝜌

𝜕2𝑣

𝜕𝑡2
 (4.2) 

                    

where the stress components 𝜏𝑟𝜃 and 𝜏𝜃𝑧 are related to the displacement component by Eqs. 

(4.3a) for the non-homogeneous layer and by Eqs. (4.3b) for the heterogeneous half-space: 

 

𝜏𝑟𝜃 = 𝑁 (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)           ;      𝜏𝜃𝑧 = 𝐿 (

𝜕𝑣

𝜕𝑧
) (4.3a) 

𝜏𝑟𝜃 = 𝜇(𝑧) (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)      ;      𝜏𝜃𝑧 = 𝜇(𝑧) (

𝜕𝑣

𝜕𝑧
) (4.3b) 

 

Substituting the displacement equation (Eq. (4.1b)) in the stress components (Eq. (4.3)), taking 

into account the variations in the rigidity and density as shown in Fig. 4.1 and setting 
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𝑉(𝑧) =
𝑉1(𝑧)

√𝐿
 

for the layer and 

𝑉(𝑧) =
𝑉1(𝑧)

√𝜇
 

for the half-space where V1(z) is a new variable used to make the equations as unified as 

possible, the governing Eq. (4.2) takes the form of Eq. (4.4a) and (4.4b) for the layer and the 

half-space, respectively 

 

𝑑2𝑉1(𝑧)

𝑑𝑧2
+ 𝑚1

2𝑉1(𝑧) = 0 (4.4a) 

𝑑2𝑉1(𝑧)

𝑑𝑧2
+ 𝑚2

2𝑉1(𝑧) = 0  (4.4b) 

 

The wave numbers in the layer and the half-space 𝑚1 and 𝑚2, respectively, are given as 

 

𝑚1 = 𝑘𝑇√[𝛽𝑟
−1 (

𝑣𝑇
2

𝑣𝑠
2 − 1) −

1

4
𝜈𝑝

2] ; 𝑚2 = 𝑘𝑇√1 −
𝑣𝑇

2

𝑣𝑠1
2  

 

in which vT is the torsional wave velocity and vs and vs1 are the shear wave velocities in the 

layer and the half-space, respectively (𝑣𝑠 = √
𝑁0

𝜌0
 , 𝑣𝑠1 = √

𝜇1

𝜌1
 ). The ratio N0/L0 is denoted as 

the inverse of the rigidity anisotropy of the medium along the horizontal and vertical directions, 

respectively (𝛽𝑟
−1=N0/L0).  The non-homogeneity parameter is denoted as νP (νP =1/αkT). 

 

The solutions of Eqs. (4.4a) and (4.4b) are the amplitudes describing the variation of the particle 

displacements with the depth in the layer and the half-space, respectively. They take the forms 

of Eqs. (4.5a) and (4.5b) for the layer and the half-space, respectively. 

  

𝑉1(𝑧) = 𝐴1 cos(𝑚1𝑧) + 𝐴2sin (𝑚1𝑧) (4.5a) 

𝑉1(𝑧) = 𝐷1𝑒−𝑚2𝑧 (4.5b) 

 

Note that Eq. (4.5b) satisfies the bounded displacement condition (𝑉1(𝑧) ⟶ 0 𝑎𝑠 𝑧 ⟶ ∞). 
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In Eqs. (4.5), Ai (i = 1, 2) and D1 are the amplitudes of the torsional waves in the layer and the 

half-space, respectively.  

 

Fig. 4.1 A non-homogeneous anisotropic layer over a heterogeneous half-space. 

 

The velocity of the torsional waves in the layer/half-space system is given from the dispersion 

equation obtained after eliminating the wave amplitudes (𝐴1 , 𝐴2 𝑎𝑛𝑑 𝐷1) from the boundary 

conditions equations: nullity of stress at the free surface (𝑧 = −𝐻), continuity of displacements 

and stresses at the interface layer/half-space (𝑧 = 0) and vanishing of the displacement in the 

half-space for 𝑧 → ∞.  The dispersion equation may be written in terms of the torsional wave 

frequency (𝐾𝑇𝐻) as 

 

𝑡𝑎𝑛 [𝐾𝑇𝐻√{𝛽𝑟
−1 (

𝑣𝑇
2

𝑣𝑠
2 − 1) −

1

4
𝜈𝑝

2}] =
𝜇1

𝐿0

√𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2{
1

𝑏1𝑘
+√(1−

𝑣𝑇
2

𝑣𝑠
2

𝑣𝑠
2

𝑣𝑠1
2 )}

𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

𝜇1
2𝛼𝑘𝐿0

{
1

𝑏1𝑘
+√(1−

𝑣𝑇
2

𝑣𝑠
2

𝑣𝑠
2

𝑣𝑠1
2 )}

  (4.6a) 

                                  

or, alternatively, in terms of the wavelength  ( = 2π𝑣𝑠/ω) as  

 

 

 

 

Free surface 

z = 0 

z = - H 

z 

r Heterogeneous half-space: 

  𝜇 = 𝜇1 (1 +
𝑧

𝑏1
)  ,   𝜌 = 𝜌1 (1 +

𝑧

𝑏1
) 

Non-homogeneous layer: 

  𝑁 = 𝑁0𝑒
𝑧

𝛼 ,  𝐿 = 𝐿0𝑒
𝑧

𝛼 , 𝜌 = 𝜌0𝑒
𝑧

𝛼 
H 

Footing 

 

Torsional wave 
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tan [2𝜋
𝐻

𝜆
√𝑋] =

𝜇1

𝐿0

√𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2{
1

𝑏1𝑘
+√(1−

𝑣𝑇
2

𝑣𝑠
2

𝑣𝑠
2

𝑣𝑠1
2 )}

𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

𝜇1
2𝛼𝑘𝐿0

{
1

𝑏1𝑘
+√(1−

𝑣𝑇
2

𝑣𝑠
2

𝑣𝑠
2

𝑣𝑠1
2 )}

  (4.6b) 

 

where 𝑋 = [𝛽𝑟
−1 (1 −

𝑣𝑠
2

𝑣𝑇
2) −

𝑣𝑠
2

𝑣𝑇
2

1

4
𝜈𝑝

2]. 

 

The torsional wave velocity can be obtained graphically or numerically as shown in Fig. 4.2 

for given values of the excitation frequency, the layer thickness, the shear wave velocity, the 

density as well as the directional rigidities and inhomogeneity parameters in each medium 

(layer or half-space).  

 

In order to obtain the torsional wave velocity, the Left-side (LS) and right-side (RS) of Eqs. 

(4.6) are plotted simultaneously for different values of the torsional/shear wave velocity ratio 

(vT/vs).  Each intersection between the LS and RS curves corresponds to the real value of the 

torsional wave velocity with respect to the constraint vs < vT < vs1. The first root of the 

dispersion equation is called the fundamental mode while the other solutions are called 

overtones. 

 

Fig. 4.2 Roots of the dispersion equation. 
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4.3. Anisotropy and non-homogeneity of soils 

Based on the findings from previous research, it is common to apply the linear Mohr-Coulomb 

failure criterion to a non-homogeneous and anisotropic clay. In accordance with the study 

conducted by Casagrande and Carillo (1944), Fig. 4.3 displays the variation in the anisotropy 

of the cohesion (c). In this figure, ζ represents the angle between the maximum principal stress 

and the vertical direction. The cohesion of the soil, denoted as cζ, can be determined using the 

following equation 

 

𝑐ζ =  𝑐ℎ + (𝑐𝑣 − 𝑐ℎ)𝑐𝑜𝑠2ζ (4.7) 

 

where the term cv represents the vertical cohesion strength of the soil with its maximum 

principal stress positioned horizontally. Similarly, ch denotes the horizontal cohesion strength 

of the soil where its maximum principal stress is situated vertically. Lo (1965) proved that the 

anisotropy coefficient, denoted as βc (βc = cv/ch), exhibits a nearly constant value, which shows 

the anisotropy of soil. By incorporating the anisotropy coefficient βc into Eq. (4.7), one may 

obtain the following expression 

 

𝑐ξ = 𝑐𝑣[𝛽𝑐
−1 + (1 − 𝛽𝑐

−1)𝑐𝑜𝑠2ζ] (4.8) 

 

When the inverse anisotropy coefficient 𝛽𝑐
−1 equals 1.0, the soil is considered isotropic. Lo 

(1965) has given values of 𝛽𝑐
−1 ranging from approximately 0.6 to 1.3. Additionally, Davis and 

Christian (1971) observed a range of 𝛽𝑐
−1 values from 0.75 to about 1.56 based on extensive 

anisotropic strength data reported by different researchers. In the current study, the range of 

𝛽𝑐
−1 is set between 0.4 and 2. 

 

The non-homogeneity of the cohesion tends to amplify as the depth z increases. Fig. 4.4 depicts 

the changing pattern of the cohesion non-homogeneity. It can be observed that the cohesion 

exhibits a linear variation with depth z. The cohesion value at a specific depth h can be 

determined using the following equation: 

 

𝑐v = 𝑐𝑣0 + 𝜆ℎ (4.9) 
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in which, cv represents the vertical cohesion strength when z is equal to h. Furthermore, cv0 

denotes the vertical cohesion strength at the foundation's base (z = 0) and λ represents the 

gradient of cv as z increases. 

 

Fig. 4.3 Anisotropy of soil cohesion. 

 

 

Fig. 4.4 Non-homogeneity of soil cohesion.  

 

On the other hand, in order to take into account of the variation of the friction angle in different 

directions, a linear estimation in an anisotropic soil was introduced by Meyerhof (1978)  

 

𝜑 = 𝜑𝑚𝑎𝑥 −
2𝜃

𝜋
(𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛) (4.10) 
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where the angle θ represents the deviation between the major principal stress and the vertical 

deposition direction while φ denotes the anisotropic internal friction angle. The non-

homogeneity in the friction angle and anisotropy of the unit weight are not addressed in this 

paper due to the no availability of any data related to these aspects in the literature. On the 

contrary, the non-homogeneity of the unit weight is effectively incorporated in the dispersion 

equation of the torsional wave (Eq. 4.6) based on the assumption given in Figure 1 (𝜌 = 𝜌0 𝑒
𝑧

𝛼). 

Consequently, the density value at a particular depth H can be written as 

 

𝜌 = 𝜌0 𝑒
𝐻
𝛼  (4.11) 

 

By multiplying Eq. (4.11b) by the acceleration of gravity (g), the unit weight is deduced as 

 

𝛾 = 𝛾0 𝑒
𝑘𝑇𝐻
𝛼𝑘𝑇  (4.12) 

 

where KTH is the torsional wave frequency and αkT is the non-homogeneous coefficient, which 

can be denoted as νp.  

 

4.4. Analysis method  

4.4.1. Model definition and assumptions  

The purpose of this subsection is to develop a model that takes into account the influence of 

the torsional wave propagation on the seismic bearing capacity of a shallow foundation in a 

non-homogeneous medium. As shown in Fig. 4.5, a shallow strip footing of width B embedded 

in the soil at a depth Df from the ground surface and subject to a central vertical load (P) is 

considered. The environment of the footing consists in a non-homogeneous anisotropic layer 

of finite thickness H, of a unit weight γ and Mohr–Coulomb characteristics (c–ϕ), resting on a 

heterogeneous bedrock as shown in Fig. 4.1. The layer/bedrock system extends horizontally to 

infinity. The Coulomb failure mechanism (Fig. 4.5) is adopted in this study due to its efficiency 

in the computation of the seismic bearing capacity as a viable alternative to the general shear 

failure mechanism as proven by Ghosh (2008), Saha and Ghosh (2017), Izadi et al. (2022), 

Ghosh and Debnath (2017) and Izadi et al. (2019). This failure mechanism consists of an active 

zone (ABC) below the footing and a passive zone (BCD) adjacent to the active zone as well as 

a wall interface between the two zones (BC) (Fig. 4.5).  
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The body forces acting on the active and passive wedges are shown in Fig. 4.6a and Fig. 4.6b, 

respectively, where PA is the active thrust pushing the adjacent passive zone and PP is the 

passive thrust resisting the active wedge. The interface friction angle between the active and 

passive wedges is denoted by δ. The inclination angles of the horizontal surface with the 

borders in the active and passive wedges are denoted by α and β, respectively.  

 

In this subsection, the equivalent pseudo dynamic bearing capacity factor will be derived by 

the limit equilibrium method with considering the simultaneous actions of all the contributors 

including the soil cohesion, the loading of the footing (i.e., P) and the surcharge q, which 

represents the soil weight within the embedment depth. In order to account for the effects of 

the torsional wave propagation, the pseudo dynamic analysis will be employed.   

 

Fig. 4.5 Seismic Coulomb failure mechanism.  
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Fig. 4.6 Body forces: (a) active wedge, (b) passive wedge. 

 

The equivalent pseudo-dynamic bearing capacity factor can be obtained by succeeding the 

following four main steps. 

(i) Calculating the inertia forces induced by the seismic excitation in the active and 

passive zones (QhA and QhP) using the pseudo dynamic analysis,  

(ii) Determining the active pressure (PA) and passive resistance (PP) from the equilibrium 

of forces in the two wedges,  

(iii) Equating the active pressure and passive resistance (𝑃𝐴 = 𝑃𝑝) in order to find the 

maximum load acting on the foundation (PL),  

(iv) Finally, deducing the equivalent pseudo dynamic bearing capacity factor (NγE) via the 

following expression (Saha and Ghosh, 2014; Pakdel et al., 2021; Saha et al., 2019): 

 

𝑁𝛾𝐸 =
2𝑃𝐿

𝛾0𝐵
 (4.13) 
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4.4.2. Pseudo dynamic analysis 

4.4.2.1. Seismic inertia forces 

The present analysis considers the torsional wave velocity vT acting within the soil layer during 

the earthquake in the azimuth direction. The seismic acceleration due to the torsional wave can 

be found by deriving Eq. (4.1b) twice with respect to time (𝑎ℎ(𝑟, 𝑧, 𝑡) =
𝜕2𝑣(𝑟,𝑧,𝑡)

𝜕𝑡2 ) and 

considering only the real part as well as the stress nullity condition, leading to  𝐴1 = 𝐴2 as 

 

𝑎ℎ(𝑟, 𝑧, 𝑡) =
𝜕2𝑣(𝑟, 𝑧, 𝑡)

𝜕𝑡2
= −𝜔2𝐴1(cos(𝑚1𝑧) + sin (𝑚1𝑧))𝐽1(𝑘𝑟)cos (𝜔𝑡) (4.14) 

 

A thin element of thickness dz at a depth z from the surface top and width dr at a distance r 

from the wall is considered in Fig. 4.6. Its masses in the active and passive wedges are 

expressed by Eq. (4.15a) and (4.15b), respectively, 

 

𝑚𝐴(𝑟, 𝑧) =
𝛾

𝑔 
𝑑𝑟 𝑑𝑧                                                                     (4.15a) 

𝑚𝑃(𝑟, 𝑧) =
𝛾𝑒

𝑔 
𝑑𝑟 𝑑𝑧        (4.15b) 

 

Where 𝛾𝑒 is the simultaneous action of the soil unit weight and the surcharge at the surface of 

the footing base, which can be expressed as 

 

𝛾𝑒 = 𝛾 (1 +
2𝐷𝑓

𝐵𝑡𝑎𝑛𝛼
) (4.16) 

 

The total horizontal seismic inertia forces acting on the active and passive wedges, respectively, 

can be written as  

 

𝑄ℎ𝐴(𝑡) = ∫ 𝑚𝐴(𝑟, 𝑧)𝑎ℎ(𝑟, 𝑧, 𝑡)𝑑𝑧
𝐻

0
                                                            (4.17a) 

𝑄ℎ𝑃(𝑡) = ∫ 𝑚𝑃(𝑟, 𝑧)𝑎ℎ(𝑟, 𝑧, 𝑡)𝑑𝑧

𝐻

0

 (4.17b) 
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After integration and substitution of the amplitude A1 from Eq. (4.14), the seismic inertia forces 

can be expressed in terms of the acceleration coefficient 

𝑘ℎ (
𝑎ℎ

𝑔
, with g is the gravity acceleration) as follow 

 

𝑄ℎ𝐴 =

𝛾𝑘ℎ

𝑡𝑎𝑛𝛼

1

𝐾𝑇
2[𝛽𝑟

−1(
𝑣𝑇

2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2]

{[cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])−1]+𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2][sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+1]}

cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])

  
(4.18a) 
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𝛾𝑒𝑘ℎ

𝑡𝑎𝑛𝛽

1

𝐾𝑇
2[𝛽𝑟

−1(
𝑣𝑇

2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2]

{[cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])−1]+𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2][sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+1]}

cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])

  
(4.18b) 

 

4.4.2.2. Determination of the active pressure (PA) and passive resistance (PP) 

By applying the equilibrium of forces in the active wedge in the horizontal and vertical 

directions, one may get, respectively, Eq. (4.19a) and Eq. (4.19b) 

 

𝑅𝐴 =
𝑃𝐴𝑐𝑜𝑠𝛿−𝑄ℎ𝐴+𝑐𝐴𝐶𝑐𝑜𝑠𝛼

𝑠𝑖𝑛(𝛼−𝜑)
  (4.19a) 

 

𝑃𝐴𝑠𝑖𝑛𝛿 = −𝑅𝐴𝑐𝑜𝑠(𝛼 − 𝜑) + 𝑊𝐴 − 𝑐𝐴𝐶𝑠𝑖𝑛𝛼 − 𝐶𝐵𝐶 + 𝑃𝐿𝐵 (4.19b) 

 

Where WA is the weight of the active wedge (𝑊𝐴 =
1

2
𝛾𝐵2 𝑡𝑎𝑛𝛼). By substituting Eq. (4.19a) 

into Eq. (4.19b) and after some simplifications, the active force PA is written as follow  

 

𝑃𝐴 =
𝑄ℎ𝐴cos (𝛼 − 𝜑)

cos (𝛼 − 𝜑 − 𝛿)
+

𝑊𝐴sin (𝛼 − 𝜑)

 cos (𝛼 − 𝜑 − 𝛿)
+ 𝑃𝐿𝐵

sin (𝛼 − 𝜑)

cos (𝛼 − 𝜑 − 𝛿)

− 𝐶𝐴𝐶 {
cosα cos(𝛼 − 𝜑)

cos(𝛼 − 𝜑 − 𝛿)
+

𝑠𝑖𝑛𝛼 sin (𝛼 − 𝜑)

cos(𝛼 − 𝜑 − 𝛿)
}

− 𝐶𝐵𝐶

sin (𝛼 − 𝜑)

cos (𝛼 − 𝜑 − 𝛿)
 

 

(4.20) 

where  
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𝐶𝐴𝐶 =
𝑐𝑣ℎ𝛽𝑐

−1

𝑠𝑖𝑛𝛼
+

(1 − 𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝑐𝑣ℎ

𝑠𝑖𝑛𝛼
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

(1 − 𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝜆𝑐ℎ2

𝑠𝑖𝑛𝛼
 

 

and  

 

𝐶𝐵𝐶 = 𝑐ℎℎ + 𝜆𝑐ℎ2 = 𝑐𝑣ℎ𝛽𝑐
−1 + 𝜆𝑐ℎ2 

 

Similarly, applying the equilibrium of forces in the active wedge in the horizontal and vertical 

directions, one may obtain  

 

𝑅𝑃 =
𝑃𝑃𝑐𝑜𝑠𝛿+𝑄ℎ𝑃−𝑐𝐷𝐶 𝑐𝑜𝑠𝛽

𝑠𝑖𝑛(𝛽+𝜑)
  (4.21a) 

 

𝑃𝑃𝑠𝑖𝑛𝛿 = 𝑅𝑃𝑐𝑜𝑠(𝛽 + 𝜑) − 𝑊𝑃 − 𝐶𝐷𝐶  𝑠𝑖𝑛𝛽 − 𝐶𝐵𝐶  (4.21b) 

 

Where WP is the weight of the passive wedge (𝑊𝑃 =
1

2
𝛾𝑒𝐵2  

𝑡𝑎𝑛𝛼2

𝑡𝑎𝑛𝛽
). By substituting Eq. (4.21a) 

into Eq. (4.21b) and after some simplifications, the active force PP is written as  

 

𝑃𝑃 =
−𝑄ℎ𝑃cos (𝛽+𝜑)

cos (𝛽+𝜑+𝛿)
+

𝑊𝑃sin (𝛽+𝜑)

 cos (𝛽+𝜑+𝛿)
+ 𝐶𝐷𝐶 {

cosβ cos(𝛽+𝜑)

 cos(𝛽+𝜑+𝛿)
+

𝑠𝑖𝑛𝛽 sin (𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
} +

𝐶𝐵𝐶
sin (𝛽+𝜑)

cos (𝛽+𝜑+𝛿)
   

(4.22) 

 

where  

 

𝐶𝐵𝐶 = 𝑐ℎℎ + 𝜆𝑐ℎ2 = 𝑐𝑣ℎ𝛽𝑐
−1 + 𝜆𝑐ℎ2 

 

and  

 

𝐶𝐷𝐶 =
𝑐𝑣ℎ𝛽𝑐

−1

𝑠𝑖𝑛𝛽
+

(1 − 𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝑐𝑣ℎ

𝑠𝑖𝑛𝛽
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1 − 𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝜆𝑐ℎ2

𝑠𝑖𝑛𝛽
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4.4.2.3.Pseudo dynamic bearing capacity factor  

At this stage, by equating the active pressure PA (Eq. 4.20) and the passive resistance PP (Eq. 

4.22), the maximum load acting on the foundation (PL) can be deduced from the following 

equation  

 

𝑃𝐿𝐵
sin (𝛼−𝜑)

cos (𝛼−𝜑−𝛿)
= −

𝑄ℎ𝐴 cos(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
−

𝑄ℎ𝑃 cos(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
+

𝑊𝑃 sin(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
−

𝑊𝐴 sin(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
+

[
𝑐𝑣ℎ𝛽𝑐

−1

𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝑐𝑣ℎ

𝑠𝑖𝑛𝛼
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝜆𝑐ℎ2

𝑠𝑖𝑛𝛼
] {

cosα cos(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
+

𝑠𝑖𝑛𝛼 sin (𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
} + (𝑐𝑣ℎ𝛽𝑐

−1 + 𝜆𝑐ℎ2) {
sin(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
+

sin(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
} + [

𝑐𝑣ℎ𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝑐𝑣ℎ

𝑠𝑖𝑛𝛽
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝜆𝑐ℎ2

𝑠𝑖𝑛𝛽
] {

cosβ cos(𝛽+𝜑)

 cos(𝛽+𝜑+𝛿)
+

𝑠𝑖𝑛𝛽 sin (𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
}  

(4.23a) 

 

as 

 

𝑃𝐿 =
1

2
𝛾𝐵 [

2

𝛾𝐵2

co s(𝛼−𝜑−𝛿)

si n(𝛼−𝜑)
{−

𝑄ℎ𝐴 cos(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
−

𝑄ℎ𝑃 cos(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
+

𝑊𝑃 sin(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
−

𝑊𝐴 sin(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
}] + 𝑐𝑣 [

ℎ𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2ℎ

𝑠𝑖𝑛𝛼
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑐𝑣 𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝜆𝑐ℎ2

 𝑐𝑣 𝑠𝑖𝑛𝛼
]

1

𝐵

co s(𝛼−𝜑−𝛿)

si n(𝛼−𝜑)
{

cosα cos(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
+

𝑠𝑖𝑛𝛼 sin (𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
} + 𝑐𝑣 (ℎ𝛽𝑐

−1 +

𝜆𝑐ℎ2

𝑐𝑣
)

1

𝐵

co s(𝛼−𝜑−𝛿)

si n(𝛼−𝜑)
{

sin(𝛼−𝜑)

cos(𝛼−𝜑−𝛿)
+

sin(𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
} + 𝑐𝑣 [

ℎ𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2ℎ

𝑠𝑖𝑛𝛽
+

𝜆𝑐ℎ2𝛽𝑐
−1

𝑐𝑣 𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝜆𝑐ℎ2

𝑐𝑣 𝑠𝑖𝑛𝛽
]

1

𝐵

co s(𝛼−𝜑−𝛿)

si n(𝛼−𝜑)
{

cosβ cos(𝛽+𝜑)

 cos(𝛽+𝜑+𝛿)
+

𝑠𝑖𝑛𝛽 sin (𝛽+𝜑)

cos(𝛽+𝜑+𝛿)
}  

(4.23b) 

 

where the first term in the right side of Eq. (4.23b), i.e  

 

1

2
𝛾𝐵 [

2

𝛾𝐵2

co s(𝛼 − 𝜑 − 𝛿)

si n(𝛼 − 𝜑)
{−

𝑄ℎ𝐴 cos(𝛼 − 𝜑)

cos(𝛼 − 𝜑 − 𝛿)
−

𝑄ℎ𝑃 cos(𝛽 + 𝜑)

cos(𝛽 + 𝜑 + 𝛿)
+

𝑊𝑃 sin(𝛽 + 𝜑)

cos(𝛽 + 𝜑 + 𝛿)

−
𝑊𝐴 sin(𝛼 − 𝜑)

cos(𝛼 − 𝜑 − 𝛿)
}] 

 

represents the contribution of the soil unit weight and surcharge (or embedment) to the bearing 

capacity of the shallow foundations while the remaining part of the right side of Eq. (4.23b) 

represents the contribution of the cohesion. 
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Finally, the equivalent pseudo dynamic bearing capacity factor NγE, which takes into account 

the effects of the torsional wave propagation in an anisotropic non-homogeneous layer over a 

heterogeneous half-space, is deduced from Eq. (4.13) using Eqs. (4.12) and (4.23b), in terms 

of the wavelength () as follows 

 

𝑁𝛾𝐸 = [
𝑡𝑎𝑛𝛼2 sin(𝛽+𝜑) cos(𝛼−𝜑−𝛿)

𝑡𝑎𝑛𝛽 cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
(1 +

2𝐷𝑓

𝐵𝑡𝑎𝑛𝛼
) − 𝑡𝑎𝑛𝛼] exp (2𝜋

𝐻

𝜆
 

𝑣𝑆

𝑣𝑇
 𝜈𝑝) −

[
2𝑘ℎ

𝑡𝑎𝑛𝛼

𝑡𝑎𝑛𝛼2

(2𝜋
𝐻

𝜆
)

2
[𝑋]

𝑎ℎ1 (
1

tan(𝛼−𝜑)
)] exp (2𝜋

𝐻

𝜆
 

𝑣𝑆

𝑣𝑇
 𝜈𝑝) −

[ 
2𝑘ℎ

𝑡𝑎𝑛𝛽

𝑡𝑎𝑛𝛼2(1+
2𝐷𝑓

𝐵𝑡𝑎𝑛𝛼
)

(2𝜋
𝐻

𝜆
)

2
[𝑋]

𝑎ℎ1 (
cos(𝛽+𝜑) cos(𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿) sin(𝛼−𝜑)
)] exp (2𝜋

𝐻

𝜆
 

𝑣𝑆

𝑣𝑇
 𝜈𝑝) +

2𝑐𝑣

𝛾0𝐵
[

𝑡𝑎𝑛𝛼 𝛽𝑐

𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝑡𝑎𝑛𝛼

𝑠𝑖𝑛𝛼
+ 𝜈𝑐

𝑡𝑎𝑛𝛼2𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

𝜈𝑐
(1−𝛽𝑐

−1)𝑐𝑜𝑠𝛼2𝑡𝑎𝑛𝛼2

𝑠𝑖𝑛𝛼
] {

cosα cos(𝛼−𝜑)

sin (𝛼−𝜑)
+ 𝑠𝑖𝑛𝛼} +

2𝑐𝑣

𝛾0𝐵
(𝑡𝑎𝑛𝛼𝛽𝑐

−1 + 𝜈𝑐𝑡𝑎𝑛𝛼2) {1 +

sin(𝛽+𝜑)cos (𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
} +

2𝑐𝑣

𝛾0𝐵
[

𝑡𝑎𝑛𝛼 𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝑡𝑎𝑛𝛼

𝑠𝑖𝑛𝛽
+ 𝜈𝑐

𝑡𝑎𝑛𝛼2𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

𝜈𝑐
(1−𝛽𝑐

−1)𝑐𝑜𝑠𝛽2𝑡𝑎𝑛𝛼2

𝑠𝑖𝑛𝛽
] {

cosβ cos(𝛽+𝜑)cos (𝛼−𝜑−𝛿)

 cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
+

𝑠𝑖𝑛𝛽 sin (𝛽+𝜑)cos (𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
}  

(4.24) 

 

where 

 

𝑎ℎ1 =
{[cos(2𝜋

𝐻

𝜆
√[𝑋])−1]+2𝜋

𝐻

𝜆
√[𝑋][sin(2𝜋

𝐻

𝜆
√[𝑋])+1]}

cos(2𝜋
𝐻

𝜆
√[𝑋])+sin(2𝜋

𝐻

𝜆
√[𝑋])

  

 

Or, alternatively, in terms of the torsional wave frequency (𝑘𝑇𝐻) as 
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𝑁𝛾𝐸 = [
𝑡𝑎𝑛𝛼2 sin(𝛽+𝜑) cos(𝛼−𝜑−𝛿)

𝑡𝑎𝑛𝛽 cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
(1 +

2𝐷𝑓

𝐵𝑡𝑎𝑛𝛼
) − 𝑡𝑎𝑛𝛼] exp(𝐾𝑇𝐻 𝜈𝑝) −

[
2𝑘ℎ

𝑡𝑎𝑛𝛼

𝑡𝑎𝑛𝛼2

𝐾𝑇𝐻2[𝛽𝑟(
𝑣𝑇

2

𝑣𝑠
2−1)−

1

4𝛼2𝑘2]

𝑎ℎ2 (
1

tan(𝛼−𝜑)
)] exp(𝐾𝑇𝐻 𝜈𝑝) −

[
2𝑘ℎ

𝑡𝑎𝑛𝛽

𝑡𝑎𝑛𝛼2(1+
2𝐷𝑓

𝐵𝑡𝑎𝑛𝛼
)

𝐾𝑇𝐻2[𝛽𝑟(
𝑣𝑇

2

𝑣𝑠
2−1)−

1

4𝛼2𝑘2]

𝑎ℎ2 (
cos(𝛽+𝜑) cos(𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿) sin(𝛼−𝜑)
)] exp(𝐾𝑇𝐻 𝜈𝑝) +

2𝑐𝑣

𝛾0𝐵
[

𝑡𝑎𝑛𝛼 𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛼2𝑡𝑎𝑛𝛼

𝑠𝑖𝑛𝛼
+ 𝜈𝑐

𝑡𝑎𝑛𝛼2𝛽𝑐
−1

𝑠𝑖𝑛𝛼
+

𝜈𝑐
(1−𝛽𝑐

−1)𝑐𝑜𝑠𝛼2𝑡𝑎𝑛𝛼2

𝑠𝑖𝑛𝛼
] {

cosα cos(𝛼−𝜑)

sin (𝛼−𝜑)
+ 𝑠𝑖𝑛𝛼} +

2𝑐𝑣

𝛾0𝐵
(𝑡𝑎𝑛𝛼𝛽𝑐

−1 + 𝜈𝑐𝑡𝑎𝑛𝛼2) {1 +

sin(𝛽+𝜑)cos (𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
} +

2𝑐𝑣

𝛾0𝐵
[

𝑡𝑎𝑛𝛼 𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

(1−𝛽𝑐
−1)𝑐𝑜𝑠𝛽2𝑡𝑎𝑛𝛼

𝑠𝑖𝑛𝛽
+ 𝜈𝑐

𝑡𝑎𝑛𝛼2𝛽𝑐
−1

𝑠𝑖𝑛𝛽
+

𝜈𝑐
(1−𝛽𝑐

−1)𝑐𝑜𝑠𝛽2𝑡𝑎𝑛𝛼2

𝑠𝑖𝑛𝛽
] {

cosβ cos(𝛽+𝜑)cos (𝛼−𝜑−𝛿)

 cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
+

𝑠𝑖𝑛𝛽 sin (𝛽+𝜑)cos (𝛼−𝜑−𝛿)

cos(𝛽+𝜑+𝛿)sin (𝛼−𝜑)
}  

(4.25) 

 

where  

 

𝑎ℎ2 =

{[cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])−1]+𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2][sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+1]}

cos(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])+sin(𝐾𝑇𝐻√[𝛽𝑟
−1(

𝑣𝑇
2

𝑣𝑠
2−1)−

1

4
𝜈𝑝

2])

  

 

4.5. Conclusion 

In this chapter, an equivalent seismic bearing capacity factor NγE has been derived using the 

limit equilibrium method associated to the pseudo-dynamic approach considering the effect of 

the torsional wave. The seismic coulomb failure mechanism was used to develop a 

mathematical model of the seismic bearing capacity factor. The anisotropy and the non-

homogeneity of the soil properties were also introduced in this mathematical model.  

 

In the next chapter, the proposed equivalent bearing capacity factor will be validated and 

compared with published results, alongside a parametric study. 



 

 

 

 

 

 

 

Deterministic and reliability 
analyses of seismic bearing 

capacity due to torsional 
waves 



CHAPTER 5:  Deterministic and reliability analyses of seismic bearing capacity due to torsional waves  

 

105 

5.1. Introduction 

The current chapter is considered as continuity of the previous chapter. At the first stage, an 

optimization of the bearing capacity factor will be done in order to find out the optimized 

resistance. The results of the equivalent bearing capacity factor will be validated and compared 

with published results. Then, a parametric study, showing the effects of various parameters 

governing the bearing capacity factor, will be conducted. At the second stage, a reliability 

analysis based on the Monte Carlo simulations will be carried out in order to investigate the 

influence of the soil anisotropy, soil non-homogeneity and the soil-earthquake parameter 

uncertainties on the equivalent seismic bearing capacity factor. 

 

5.2. Optimization of the dynamic bearing capacity factor 

In this subsection, an optimization of the equivalent dynamic bearing capacity factor NγE with 

respect to the inclination angles α and β is carried out in order to find out the optimized 

resistance. The minimum value is taken as an optimized value. A MATLAB algorithm 

describing the various steps involved in the optimization of the bearing capacity factor is 

addressed in Fig. 5.1. The function ‘fminunc’ used in the algorithm is a part of the optimization 

toolbox integrated in MATLAB, which provides a set of tools for solving optimization 

problems. This function uses the Unconstrained Nonlinear Minimization Algorithm (UNMA), 

which is a gradient-based optimization method. Their advantages have made it a valuable tool 

for solving optimization problems in MATLAB and its ease of use, robustness, speed, 

flexibility and integration with MATLAB make it an excellent choice for many optimization 

problems. 

 

The optimized bearing capacity factor NγE values are listed in Table A.2 (Appendix) for the 

static case and in Tables A.3 to A.5 (Appendix) for the seismic case. H/λ is taken equal to 0.3 

in the current study as considered for the most geotechnical structures (Ghosh, 2008; Saha and 

Ghosh, 2017; Saha and Ghosh, 2015). The range of variation of the parameters is practically 

as follows:  = 20 - 40°, δ = 0 -  , kh = 0 - 0.3, 
𝐷𝑓

𝐵
 = 0.25 – 1, 

2𝑐𝑣

𝛾0𝐵
 = 0 - 0.5, βϕ = 1 - 3, 𝛽𝑐

−1
 = 0.4 

– 2, νc = 0 - 30 . The ratio of the torsional wave velocity to the shear wave velocity (
𝑣𝑇

𝑣𝑆
) is 

obtained graphically for the following selected parameters: 
𝑣𝑠

2

𝑣𝑠1
2  = 0.2, 𝛽𝑟

−1 = 0.5 – 1, 
𝜇1

𝐿0
=

1.8 and 
1

𝑏1𝑘
= νp = 0 – 0.5. A parametric study will be conducted later to evaluate the impact of 

all these parameters. 
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// Initialize the input parameters of bearing capacity factor 

      𝑁𝛾𝑑 = 𝑓(𝛼, 𝛽, 𝜑, 𝛿,
𝑣𝑇

𝑣𝑆
, 𝐾𝑇𝐻,

𝐻

𝜆
, 𝑘ℎ ,

𝐷𝑓

𝐵
,

2𝑐

𝛾𝐵
) 

// Define the number of variables (α and β) 

     m = “number of variables” 

// Define the number of populations 

     n = “number of population” 

// Define the lower and upper bounds of the variables (LB, UB) 

     LB = [ Lower bound of first variable, Lower bound of second variable] 

     UB = [Upper bound of first variable, Upper bound of second variable]     

// Define the bearing capacity factor equation  

     fun = @(x) Nγd 

// Initialize the population  

     for each i, where i = 1: n do  

        for each j, where j = 1: m do 

                          x0 (i, j) = round(LB(j)+rand()*(UB(j)-LB(j))) 

        end  

     end 

// Minimization function  

     [x, Nγd min] = fminunc (fun, x0) 

// Condition to obtain a minimum positive output   

       if Nγd min < 0 do 

          run “file name” till condition satisfied (Nγd min  0) 

       else  

      end 

 

Fig. 5.1 Algorithm for optimizing the dynamic bearing capacity factor. 

 

5.3. Validation of the model  

Because of the scarcity of any solution for the dynamic bearing capacity of shallow foundations 

due to the effect of the torsional wave, only the static bearing capacity factors could be 

compared to previous findings. As shown in Fig. 5.2, the results of the current study (Table 

A.2 in Appendix) are compared to those of Saha and Ghosh (2017) for different values of the 

embedment depth ratio (Df/B), the dimensionless cohesion ratio (2cv/γ0B) and the internal 
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friction angle (). It can be noted from this Figure that the current results are in a perfect 

agreement with those of Saha and Ghosh (2017).   

 

To assess the influence of the anisotropy and non-homogeneity of the soil, the results of the 

present study (Eq. 4.23b) are compared with the results of previous studies conducted under 

static conditions (kh = 0). The comparison is presented in Figs. 5.3 to 5.6.  

 

Fig. 5.3 illustrates the comparison of the unit weight bearing capacity factor, obtained from Eq. 

(4.23b) by equating cv to zero, with the findings of Hansen (1970) and Meyerhof (1978) for the 

isotropic homogeneous state of the soil unit weight. The results demonstrate a remarkable 

similarity between the results for δ =  /2 and the existing results. 

 

Figs. 5.4 and 5.5 show a comparison between the present cohesive bearing capacity factor 

results and those obtained by Reddy and Srinivasan (1970), Reddy and Rao (1981), Al-

Shamrani and Moghal (2005) and Yang and Du (2016) for an anisotropic non-homogeneous 

soil cohesion condition. The comparison indicates that the current bearing capacity factor 

values closely align with those reported by Reddy and Srinivasan (1970) and Reddy and Rao 

(1981). For instance, from Fig. 5.4, for νc = 30, the deviations from the Reddy and Srinivasan 

(1970) values are approximately + 5% for 𝛽𝑐
−1 = 0.4, + 10% for 𝛽𝑐

−1 = 1.0 and + 11% for 𝛽𝑐
−1 

= 1.6. Similarly, when compared to Reddy and Rao (1981), the differences amount to 

approximately - 13%, + 5%, and + 13% for 𝛽𝑐
−1 = 0.4, 1.0 and 1.6, respectively. On the other 

hand, from Fig. 5.5, for 𝛽𝑐
−1 = 1.6, the deviation from the Reddy and Srinivasan (1970)  values 

are about + 7% for νc = 5, + 11% for νc = 20, and + 11% for νc = 30. Similarly, when compared 

to Reddy and Rao (1981), the differences amount to approximately + 20%, + 16%, and + 13% 

for νc = 5, 20, and 30, respectively. All these deviations are reasonably expected due to 

disparities in the analysis methods and the utilization of different failure mechanisms. 

 

Fig. 5.6 shows the comparison of the unit weight bearing capacity factor Nγ with the findings 

of Pakdel et al. (2021) for the only anisotropic state of the soil internal friction angle. The 

results indicate that the current bearing capacity factor values are in a perfect agreement with 

those of Pakdel et al. (2021) due to the similarity of the used method of analysis and failure 

mechanism. 
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Fig. 5.2 Validation of the present static bearing capacity factor with published results: (a)  = 

30° and δ =  /2, (b) δ =  /2 and 2cv/γ0B = 0.25. 
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Fig. 5.3 Validation of the present Nγ static bearing capacity factor with published results for 

isotropic homogeneous condition of soil unit weight for: Df/B = 0, 𝛽𝑟
−1 = 1 and νp= 0. 
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Fig. 5.4 Validation of the present Nc bearing capacity factor with published results for 

different anisotropic degree values of soil cohesion. 
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Fig. 5.5 Validation of the present Nc bearing capacity factor with published results for 

different non-homogeneity degree values of soil cohesion. 

 

 

Fig. 5.6 Validation of the present Nγ static bearing capacity factor with published results for 

different anisotropic degree values of soil friction angle for: 2cv/γ0B = 0.0, Df/B = 0, δ = ϕ, 

𝛽𝑟
−1 = 1 and νp = 0. 
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defined. In fact, according to Eq. (4.10) and referring to Fig. 4.6, in the active wedge, θ is 

assumed to be 0, whereas in the passive wedge, θ is considered to be π⁄2. Pakdel et al. (2021) 

concluded that the active wedge exhibits the highest value of the friction angle (φmax) while the 

passive wedge demonstrates the lowest value of the friction angle (φmin) such that φmin = φmax / 

βφ with βφ represents the anisotropic coefficient of the friction angle. 

 

5.4.1. Impact of the internal soil friction angle   

Fig. 5.7 shows the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the torsional wave acceleration coefficient (kh) when varying the soil friction angle from 

20° to 40° while the other parameters are kept unchanged (Df/B = 0.5, 2cv/γ0B = 0.25, δ = ϕ /2, 

𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15). It can be seen from Fig. 5.7 that the bearing 

capacity factor increases as the soil friction angle increases. This result means that the internal 

resistance of the soil particles increases as the soil friction angle increases.  

 

 

Fig. 5.7 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of the soil friction angle for Df/B = 0.5, 2cv/γ0B = 0.25, δ = ϕ 

/2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 

 

5.4.2. Impact of the interface wall friction angle δ  
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from this Figure that the bearing capacity factor is increasing with the increase in the wall 

friction angle. It is to highpoint that when  changes from 0 to , the increment of variation in 

the pseudo dynamic bearing capacity factor is about 40%, 38%, 36% and 34% for the values 

of kh equal to 0, 0.1, 0.2 and 0.3, respectively. These results may indicate that the wall friction 

angle increases the forces acting on the passive and active wedges in the failure mechanism, 

which consequently increases the soil resistance. 

 

 

Fig. 5.8 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of the wall friction angle for  = 30°, Df/B = 0.5, 2cv/γ0B = 

0.25, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 

 

5.4.3. Impact of the embedment depth ratio Df /B  

Fig. 5.9 shows the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the torsional wave acceleration coefficient (kh) for different values of the embedment 

depth ratio (Df /B = 0, 0.25, 0.5, 0.75 and 1) when  = 30°, 2cv/γ0B = 0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, 

βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νp = 0.1 and νc = 15. It can be seen from Fig. 5.9 that the bearing capacity 

factor increases as the depth ratio Df/B increases. This indicates that the footings with higher 

embedment depth ratio can support higher limit loads.  
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Fig. 5.9 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of the embedment ratio for:  = 30°, 2cv/γ0B = 0.25, δ =  /2, 

𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 

 

5.4.4. Impact of the dimensionless cohesion 2cv / γ0B  

Fig. 5.10 displays the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the torsional wave acceleration coefficient (kh) for different values of the dimensionless 

cohesion ratio (2cv / γ0B = 0, 0.25 and 0.5) when  = 30°, Df / B=0.5, δ =  /2, 𝛽𝑟
−1 = 0.7, βϕ = 

1.5, 𝛽𝑐
−1 = 0.5, νp = 0.1 and νc = 15. It is clear from Fig. 5.10 that the bearing capacity factor is 

increasing with the increase in the dimensionless cohesion ratio.  

 

Fig. 5.10 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different dimensionless values of the cohesion ratio for:  = 30°, Df / B=0.5, δ 

=  /2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 
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5.4.5. Impact of the wavelength and the seismic acceleration of the torsional wave  

Fig. 5.11 depicts the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the torsional wave frequency (KTH) for different values of the seismic acceleration 

coefficient (kh =  0.1, 0.2 and 0.3) when  = 30°, Df/B = 0.5, 2cv/γ0B=0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, 

βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νp = 0.1 and νc = 15. The ratio of the torsional wave velocity to the shear 

wave velocity (vT/vs) is calculated for each torsional wave frequency value (KTH) using the 

dispersion equation (Eq. 4.6a).  Fig. 5.11 appearances that the bearing capacity factor is 

increasing with the increase in the torsional wave frequency. The influence of the frequency 

on the bearing capacity factor is significantly magnified at the maximum acceleration 

coefficient (kh = 0.3). For example, at kh = 0.3, the bearing capacity coefficient increases by 

42%, 13%, 3% and 2% when KTH increases from 0.25 to 0.5, 0.5 to 0.75, 0.75 to 1 and 1 to 2, 

respectively. While for kh = 0.2, there is an increase by about 21%, 7%, 2% and 1% for the 

same increase of KTH, respectively. In fact, as reported by Izadi et al. (2022), the increase of 

the wave frequency means that the wavelength decreases and therefore a reflected effect will 

be noted on the bearing capacity factor. Therefore, it can be concluded that as the wavelength 

of the torsional wave increases, the seismic bearing capacity factor decreases. On the other 

hand, it can be also noted from Fig. 5.11 that the bearing capacity factor decreases as the 

acceleration coefficient increases.  

 

Fig. 5.11 Variation of the pseudo dynamic bearing capacity factor versus the torsional wave 

frequency for different values of the seismic acceleration coefficient for:  = 30°, Df/B = 0.5, 

2cv/γ0B=0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 
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5.4.6. Impact of soil anisotropy  

Fig. 5.12 illustrates the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the seismic acceleration coefficient for various values of the anisotropy degree of the 

rigidity when  = 30°, Df/B = 0.5, 2cv/γ0B=0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νγ = 0.1 and νc = 

15. It is observed from Fig. 5.12 that as the anisotropy degree increases, there is a slight 

decrease in the seismic bearing capacity factor. However, this decrement remains within 5% 

when the anisotropy of the rigidity (βr) increases from 1 to 2 (corresponding to a variation of  

𝛽𝑟
−1 from 1 to 0.5) with a specific example of νγ = 0.5. 

 

Fig. 5.13 illustrates the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the seismic acceleration coefficient for various values of the anisotropy degree of the 

internal friction angle when  = 30°, Df/B = 0.5, 2cv/γ0B=0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, 𝛽𝑐

−1 = 0.5, 

νp = 0.1 and νc = 15. It is noted from this figure that the seismic bearing capacity decreases as 

the anisotropy degree of the friction angle increases.  Notably, a significant impact is evident 

when the anisotropy degree increases from 1 to 1.5, resulting in an estimated reduction in the 

bearing capacity factor of approximately 44% while from 1.5 to 2, 2 to 2.5 and 2.5 to 3 the 

reductions amount to approximately 18%, 10% and 6%, respectively, for kh=0.3. This observed 

trend can be attributed to the correlation between the anisotropy degree and the minimum 

internal friction angle. Increasing the anisotropy degree leads to a decrease in the minimum 

internal friction angle, resulting in a reduction in the shear strength within certain sub-

horizontal planes. 

 

Fig. 5.14 illustrates the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the seismic acceleration coefficient for various values of the anisotropy degree of the 

cohesion when  = 30°, Df/B = 0.5, 2cv/γ0B = 0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, νp = 0.1 and 

νc = 15. It is evident from the findings that the seismic bearing capacity factor decreases as the 

anisotropy degree of cohesion increases. A notable impact was found when the anisotropy 

degree increases from 1.25 to 2.5 (corresponding to a variation of  𝛽𝑐
−1 from 0.8 to 0.4) resulting 

in a reduction by about 43% while from 0.5 to 0.625 (corresponding to 𝛽𝑐
−1  varies from 2.0 to 

1.6), 0.625 to 0.83 (corresponding to a variation of  𝛽𝑐
−1  from 1.6 to 1.2) and 0.83 to 1.25 

(corresponding to a variation of  𝛽𝑐
−1  from 1.2 to 0.8) by about 18%, 22% and 29%, 

respectively, for kh=0.3. Another significant finding highlights the increasing impact of the 

cohesion anisotropy as the seismic acceleration increases. For example, the reduction in the 
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bearing capacity factor when the anisotropy degree varies from 1.25 to 2.5 (corresponding to 

𝛽𝑐
−1  varying from 0.8 to 0.4)  for kh = 0, 0.1, 0.2 and 0.3 is about 33%, 35%, 38% and 43%, 

respectively. 

 

  

  

 

Fig. 5.12 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of anisotropy degree of rigidity for:  = 30°, Df/B = 0.5, 

2cv/γ0B=0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νγ = 0.1 and νc = 15. 
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Fig. 5.13 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of anisotropy degree of internal friction angle for:  = 30°, 

Df/B = 0.5, 2cv/γ0B=0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 15. 

 

 

 

 

Fig. 5.14 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of the inverse anisotropy degree of cohesion for:  = 30°, Df/B 

= 0.5, 2cv/γ0B = 0.25, δ =  /2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, νp = 0.1 and νc = 15. 
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5.4.7. Impact of soil non-homogeneity  

Fig. 5.15 shows the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the seismic acceleration coefficient for various values of the non-homogeneity 

parameter coefficient when  = 30°, Df/B=0.5, 2cv/γ0B = 0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5 and 

νc = 15. It is noted from Fig. 5.15 that the bearing capacity factor increases as the non-

homogeneity coefficient increases. This effect is particularly significant in the static cases (kh 

= 0).  

 

Nevertheless, when investigating the range of non-homogeneity from 0 to 0.5, the observed 

increase does not exceed 4%. Furthermore, it is worth noting that this increment tends to 

approach zero as the seismic acceleration coefficient increases. 

 

Fig. 5.16 shows the variation of the equivalent pseudo dynamic bearing capacity factor NγE 

versus the seismic acceleration coefficient for various values of the cohesion non-homogeneity 

coefficient when  = 30°, Df/B=0.5, 2cv/γ0B = 0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5, 𝛽𝑟

−1 = 0.7, νp 

= 0.1. This figure reveals that the bearing capacity factor increases as the non-homogeneity 

coefficient increases.  

 

Furthermore, the increment of variation in the bearing capacity factor exhibits a more 

significant trend when the cohesion non-homogeneity varies in the range of 0 to 15, as 

compared to the range of 15 to 30. As an example, when considering kh = 0.3, the observed 

increment is approximately 160% for the non-homogeneity coefficients ranging from 0 to 15 

and around 60% for coefficients ranging from 15 to 30.  

 

Additionally, it is found that as the seismic acceleration coefficient increases, the increment of 

variation of the bearing capacity factor increases. For example, for the cohesion non-

homogeneity ranging from 0 to 15, the maximum increment of variation is approximately 

106% and 160% for kh = 0 and 0.3, respectively. 
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Fig. 5.15 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of non-homogeneity parameter for:  = 30°, Df/B=0.5, 2cv/γ0B 

= 0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5 and νc = 15. 
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Fig. 5.16 Variation of the pseudo dynamic bearing capacity factor versus the acceleration 

coefficient for different values of non-homogeneity coefficient of cohesion for:  = 30°, 

Df/B=0.5, 2cv/γ0B = 0.25, δ =  /2, βϕ = 1.5, 𝛽𝑐
−1 = 0.5, 𝛽𝑟

−1 = 0.7, νp = 0.1. 

 

5.5. Reliability analysis  

To ensure a comprehensive and thorough investigation,this section aims to incorporate the 

uncertainties around the main soil and earthquake parameters that govern the seismic bearing 

capacity of shallow foundations (friction angle  and seismic coefficient kh) due to the torsional 

wave propagation and to study their effects on the seismic bearing capacity factor.  

 

This study is carried out in a reliability context using the Monte Carlo simulations. The 

uncertainties in the above cited parameters ( and kh) are introduced in terms of the coefficient 

of variation of each parameter (COV and COVkh ). The concerned parameters are assumed 

random variables following the Log-normal distribution to avoid getting negative values of the 

seismic bearing capacity factor (Griffiths et al., 2002; Cherubini, 2000; Fenton and Griffiths, 

2003; Babu et al., 2006). All the parameters involved in the present analysis are summarized 

in Table 5.1. The statistical moments such as the mean and the standard deviation of the seismic 

bearing capacity factor (µNγE, SDNγE) and the probability of failure (Pf) of the footing are 

determined for different values of the torsional wave frequency (KTH). Pf is defined as the 

probability that the mean bearing capacity factor value (μNγE) is less than the deterministic value 

of NγE.  
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Table 5.1 Summary of the parameters used in the reliability analysis 

Description Parameter Value 

Friction angle    (°) 30 

Coefficient of variation of friction angle  COV (%) 5, 10, 15 

Seismic acceleration coefficient kh 0.2 

Coefficient of variation of seismic coefficient  COVkh (%) 5, 10, 15 

Torsional wave frequency  KTH 0.25 - 2.0 

Wall friction angle  δ (°) φ/2 

Embedment depth  Df/B 0.5 

Dimensionless cohesion 2cv/γ0B 0.25 

 

5.5.1. Validation  

The present validation is concerned with the case of the static bearing capacity factor due to 

the unavailability of results for the seismic case. The results of the present study are compared 

to those of Massih et al. (2008) and Krishnan and Chakraborty (2021) in the static case (kh=0) 

in terms of the probability of failure (Fig. 5.17). Note that the latest authors examined the 

seismic bearing capacity of a strip footing resting on a (c-) soil using the finite element lower 

bound limit analysis formulation in conjunction with a modified pseudo-dynamic approach for 

the consideration of the seismic action. As shown in Fig. 5.17, the findings of the current study 

align closely with those reported by Massih et al. (2008).  

 

 

Fig. 5.17 Comparison of probability of failure with published results for  = 30°, c = 20 kPa, 

COV = 10%, COVc = 20%, and kh = 0. 
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5.5.2. Determination of the required number of realizations  

In the present seismic case, the determination of the required number of Monte Carlo 

simulations is based on a convergence study, as illustrated in Fig. 5.18. The figure demonstrates 

that the failure probability begins to converge after 500 simulations. Therefore, all the analyses 

in this study are conducted using 500 realizations. 

 

 

Fig. 5.18 Convergence of the failure probability with respect to the number of simulations for 

=30°, kh = 0.2, COV = 10%, COVkh = 15%,  𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc 

= 15. 

 

5.5.3. Effects of the COV and  COVkh on the statistical moments of NγE  and on the failure 

probability  

Fig. 5.19 shows the variation of the statistical moments (mean and standard deviation) of the 

equivalent pseudo dynamic bearing capacity factor NγE with respect to the torsional wave 

frequency for different coefficients of variation of the friction angle () and the seismic 

coefficient (kh). It can be noted that the mean bearing capacity factor decreases as the COV 

increases in the static case (kh=0) and seismic case (kh=0.2). However, the standard deviation 

of the bearing capacity factor increases as the COV increases. A similar trend was showed by 

Krishnan and Chakraborty (2021) about the effect of the COV on the mean bearing capacity 

factor in the static and seismic cases. It can also be noted that the COVkh does not exert an 

important impact on the mean and standard deviation of the bearing capacity factor.  
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Fig. 5.19 Variation of statistical moments of pseudo dynamic bearing capacity factor versus 

the torsional wave frequency for different COV: (a) and (b)  = 30°, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 

= 0.5, νp = 0.1, νc = 15. (c) and (d)  = 30°, kh = 0.2, 𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 0.5, νp = 0.1, 

νc = 15.  

 

Figs. 5.20a to  5.20d show the effect of the coefficient of variation of the friction angle (COV) 

and Figs. 5.20e to  5.20f show the effect of the coefficient of variation of the seismic 

acceleration coefficient (COVkh) on the probability of failure of the equivalent seismic bearing 

capacity factor (NγE) for different values of the torsional wave frequency (KTH). The obtained 

failure probability was calculated as the cumulative normal distribution function of the log-
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normal variables using Eq. (5.1) where a limit state function is defined as 𝑔 (µ𝑁𝛾𝐸
 ≤  𝑁𝛾𝐸) =

0 (Pula and Chwala, 2018). 

𝑃𝑓 (𝜇𝑁𝛾𝐸
≤ 𝑁𝛾𝐸) = Φ [

ln(𝑁𝛾𝐸)−𝜇𝑁𝛾𝐸𝑙𝑛

𝜎𝑁𝛾𝐸𝑙𝑛

]  (5.1) 

In Eq. (5.1), Φ denotes the cumulative normal distribution function while 𝜇𝑁𝛾𝑑𝑙𝑛
 and 𝜎𝑁𝛾𝐸𝑙𝑛

 are 

the log-normally transformed mean and standard deviation of the seismic bearing capacity 

factor, respectively. These Figures reveal that the failure probability is more and strongly 

influenced by the COV than it is by the COVkh. Fig. 5.20a to 5.20d exhibit that for relatively 

large COV (15%), the probability of failure is conservative (overestimated) for the smaller 

values of 𝑁𝛾𝐸 (𝑁𝛾𝐸 ≤ 76) (Fig. 5.20d) and unconservative (underestimated) for relatively high 

values of 𝑁𝛾𝐸 (𝑁𝛾𝐸 > 76). 
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Fig. 5.20 Variation of the failure probability of NγE factor for  = 30° and kh = 0.2 with 

respect to the torsional wave frequency. 
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Fig. 5.21 Variation of the statistical moments of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of anisotropy degree of rigidity for: 

 = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νγ = 0.1 and νc = 15. 

 

However, for higher values of wave frequency (KTH > 0.5), these moments tend to stabilize. 

Moreover, the impact of the rigidity anisotropy on the failure probability is shown in Fig. 5.22. 

It can be seen that the failure probability shows an increasing trend as the anisotropy increases 

for the lower value of the wave frequency (KTH = 0.25). However, for higher values of the 

wave frequency (KTH = 0.75, 1, 2), the failure probability tends to stabilize. 

 

Fig. 5.23 shows the variation of the statistical moments (mean and standard deviation) of the 

equivalent pseudo dynamic bearing capacity factor NγE with respect to the torsional wave 

frequency for different values of the internal friction angle anisotropy. It can be noted that the 

statistical moments decrease as the friction angle anisotropy increases. The decrease is more 

pronounced when the degree of anisotropy changes from 1 to 2 compared to the change from 

2 to 3. 
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Fig. 5.22 Variation of the failure probability of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of non-homogeneity degree for:  = 

30°, kh = 0.2, COV = 10%, COVkh = 5%,  βϕ = 1.5, 𝛽𝑐
−1 = 0.5, νγ = 0.1 and νc = 15. 
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Fig. 5.23 Variation of the statistical moments of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of anisotropy degree of friction angle 

for:  = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, 𝛽𝑐

−1= 0.5, νp = 0.1 and νc = 15. 

 

Furthermore, the impact of the internal friction angle anisotropy on the failure probability is 

shown in Fig. 5.24. The failure probability exhibits a significant increase as the anisotropy 

degree increases, with a noticeable spike when the degree of anisotropy changes from 1 to 2.  

 

Fig. 5.25 shows the variation of the statistical moments (mean and standard deviation) of the 

equivalent pseudo dynamic bearing capacity factor NγE with respect to the torsional wave 

frequency for different values of the anisotropy degree of cohesion. As the anisotropy degree 

increases, there is a noticeable decrease in the statistical moments.  
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Fig. 5.24 Variation of the failure probability of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of anisotropy degree of friction angle 

for:  = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, 𝛽𝑐

−1 = 0.5, νp = 0.1 and νc = 

15. 
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Fig. 5.25 Variation of the statistical moments of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of anisotropy degree of cohesion for: 

 = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, βϕ = 1.5, νp = 0.1 and νc = 15. 

 

 

Otherwise, the impact of the cohesion anisotropy on the failure probability is shown in Fig. 

5.26.  The figure clearly demonstrates that the failure probability rises with an increasing 
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Fig. 5.26 Variation of the failure probability of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of anisotropy degree of cohesion for: 

 = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, βϕ = 1.5, νp = 0.1 and νc = 15. 

 

5.5.5. Effect of soil non-homogeneity on the statistical moments of NγE and on the failure 

probability 

Fig. 5.27 shows the variation of the statistical moments (mean and standard deviation) of the 

equivalent pseudo dynamic bearing capacity factor NγE with respect to the torsional wave 

frequency for different values of non-homogeneity parameter. The findings demonstrate that 

the statistical moments of the seismic bearing capacity factor increases as the non-homogeneity 
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increases.  It is evident that the impact of the non-homogeneity is more significant as the wave 

frequency increases.  

 

  

 

Fig. 5.27 Variation of the statistical moments of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of non-homogeneity parameter for: 

 = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  βϕ = 1.5, 𝛽𝑐
−1 = 0.5, 𝛽𝑟

−1 = 0.7 and νc = 15. 

 

Besides that, the impact of the non-homogeneity parameter on the failure probability is shown 

in Fig. 5.28. This figure reveals that the failure probability decreases as the non-homogeneity 

increases.  

 

Fig. 5.29 shows the variation of the statistical moments (mean and standard deviation) of the 

equivalent pseudo dynamic bearing capacity factor NγE with respect to the torsional wave 

frequency for different values of the cohesion non-homogeneity. The results show that the 

statistical moments of the seismic bearing capacity increase as the non-homogeneity increases.  
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Fig. 5.28 Variation of the failure probability of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of non-homogeneity coefficient for: 

 = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  βϕ = 1.5, 𝛽𝑐
−1 = 0.5, 𝛽𝑟

−1= 0.7 and νc = 15. 
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Fig. 5.29 Variation of the statistical moments of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of non-homogeneity coefficient of 

cohesion for:  = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 2 

and νp = 0.1. 

 

The impact of the cohesion non-homogeneity on the failure probability is also shown in Fig. 

5.30, which reveals that the failure probability decreases as the non-homogeneity increases. 
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Fig. 5.30 Variation of the failure probability of the pseudo dynamic bearing capacity factor 

versus the torsional wave frequency for different values of non-homogeneity coefficient of 

cohesion for:  = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  𝛽𝑟
−1 = 0.7, βϕ = 1.5, 𝛽𝑐

−1 = 2  

and νp = 0.1. 

 

5.5.6. Effect of wavelength on the failure probability 

Fig. 5.31 shows the variation of the failure probability of the equivalent seismic bearing 

capacity factor NγE for different torsional wave frequencies. It is observed that as the torsional 
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noteworthy that the failure probability is particularly affected by low wave frequencies (KTH 

< 0.75), which correspond to longer wavelengths. 

 

Fig. 5.31 Variation of the failure probability of NγE factor for different torsional wave 

frequencies for  = 30°, kh = 0.2, COV = 10%, COVkh = 5%,  βϕ = 1.5, 𝛽𝑐
−1 = 0.5, 𝛽𝑟

−1 = 

0.7, νp = 0.1 and νc = 15. 

 

5.5.7. Effect of FOS on Pf 

In order to complete the reliability analysis, the variation of the failure probability of the 

equivalent seismic bearing capacity factor (NγE) with respect to the factor of safety (FOS) was 

studied by modifying Eq. (5.2) as follows 

 

𝑃𝑓 (𝜇𝑁𝛾𝐸
≤ 𝑁𝛾𝐸/𝐹𝑂𝑆) = Φ [

ln(𝑁𝛾𝐸/𝐹𝑂𝑆)−𝜇𝑁𝐸𝑑𝑙𝑛

𝜎𝑁𝛾𝐸𝑙𝑛

]  (5.2) 

 

Generally, the factor of safety used for shallow foundations is between 3 and 4 (Griffiths et al., 

2002). In the present study, the failure probability is determined for a safety factor varying 

from 1 to 4 with respect to different values of the COV in the static and seismic case, 

respectively, as shown in Fig. 5.32a and Fig. 5.32b. The figures indicate that the failure 

probability decreases as the FOS increases. When a higher FOS is taken, the chance of the 

failure in the static case is reduced to 0%, 1% and 37% for COV = 5%, 10% and 15% 

respectively, while in the seismic case is reduced to 0%, 6% and 49% . It is evident that for a 

high degree of uncertainty (COV = 15%), a FOS greater than 4 is required in both cases. 
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Fig. 5.32 Variation of the failure probability of NγE factor with respect to the FOS for 

different values of the COV  for  = 30°, KTH = 0.25, βϕ = 3, 𝛽𝑐
−1 = 0.4, 𝛽𝑟

−1 = 0.5, νp = 0.5 

and νc = 30. 

 

5.6. Conclusion 

In this chapter, the influence of the torsional wave propagation and the soil-earthquake 

parameter uncertainties on the seismic bearing capacity of shallow foundations in anisotropic 

non-homogeneous media was investigated.  

 

The most important conclusions that can be drawn out from the present chapter are summarized 

in the following points.  

1) The increase in the soil shear strength parameters (, δ and c) as well as the depth of 

the footing leads to an increase in the seismic bearing capacity factor and, consequently, 

an increase in the ultimate seismic bearing capacity of foundations.   

2) The anisotropy of the soil strength parameters exerts a notable effect on the seismic 

bearing capacity factor, which leads to a decrease in the ultimate seismic bearing 

capacity of foundations. 

3) The non-homogeneity of the soil strength parameters significantly affects the seismic 

bearing capacity factor, leading to an increases in the ultimate seismic bearing capacity 

of foundations.  
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4) The seismic bearing capacity factor decreases as the acceleration coefficient of the 

torsional wave increases.  

5) The seismic bearing capacity factor increases as the wave frequency increases. The 

increase of the wave frequency means a decrease in the wavelength and therefore a 

reflected effect will be noted on the bearing capacity factor. Hence, the seismic bearing 

capacity factor decreases as the wavelength of the torsional wave increases. 

6) As the coefficients of variation of the soil and earthquake parameters ( and kh) 

increase, the mean value of the seismic bearing capacity factor decreases while the 

standard deviation increases.  

7) The probability of failure of the seismic bearing capacity factor is more significantly 

affected by the uncertainties around the angle of internal friction than it is for the 

uncertainties included in the acceleration coefficient of the torsional wave. 

8) For relatively large COV , the probability of failure is conservative for the smaller 

values of 𝑁𝛾𝐸 (𝑁𝛾𝐸 ≤ 76) and unconservative for relatively high values of 𝑁𝛾𝐸 (𝑁𝛾𝐸 >

76).  

9) As the anisotropy of the soil strength parameters increases, the statistical moments of 

the seismic bearing capacity factor decrease accordingly. This decrease leads to an 

increase in the failure probability. 

10) As the non-homogeneity of the soil strength parameters increases, the statistical 

moments of the seismic bearing capacity factor correspondingly increase. 

Consequently, this leads to a decrease in the failure probability. 

11) The failure probability increases as the wavelength of the torsional wave increases. 

12) Finally, the adopted safety factor (FOS) of 3 to 4 for shallow foundations may not 

provide sufficient guarantee for the structure's safety against failure. Therefore, it is 

necessary to incorporate a probabilistic analysis into the design charts to identify 

potential risks to structures. 
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1. General conclusions 

This thesis focuses on the reliability analysis of the bearing capacity of shallow foundations 

under dynamic loading. It encompasses two main studies. The first one involves a numerical 

application that explores the impact of randomly varying soil and earthquake parameters on 

the seismic bearing capacity of shallow strip footing resting on: (i) a cohesive-frictional soil 

layer and (ii) a purely cohesive soil layer. The Karhunen-Loève (KL) expansion method within 

the context of random field theory was employed in that study. The second one introduces a 

formulation for determining the seismic bearing capacity factor of a shallow strip footing 

influenced by torsional surface wave propagation and resting on anisotropic heterogeneous 

soil. The limit equilibrium method in conjunction with the pseudo-dynamic approach were 

employed here. In addition to that, a reliability analysis based on the Monte Carlo simulation 

method was conducted in order to incorporate the soil-earthquake uncertainties and 

investigating their effects.  

 The main findings from the both studies can be outlined as follows: 

 The influence of the autocorrelation function (ACF) type on the probabilistic outcomes 

appears to be relatively minor when contrasted with the variability in soil-earthquake 

parameters as represented by the coefficient of variation (COV) and the scale of 

fluctuation (SOF). 

 The proposed seismic bearing capacity factor can be applicable in order to quantify the 

torsional wave propagation, the anisotropy and the non-homogeneity of the soil 

properties.  

 The anisotropy and non-homogeneity of the soil strength parameters exerts a notable 

impact on the seismic bearing capacity factor.  

 Torsional wavelength (or wave frequency) and the seismic acceleration significantly 

affect the seismic bearing capacity factor.  

 The uncertainty in the soil and earthquake parameters, as indicated by the coefficient 

of variation, significantly impacts the statistical moment and the failure probability of 

the obtained seismic bearing capacity factor. 

 The failure probability is influenced by the torsional wavelength, the anisotropy and 

the non-homogeneity.  

 The necessity of the incorporation a probabilistic analysis in the seismic design of 

shallow foundations instead of safety factor is very important.  
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2. Recommendations for future works 

This study presents both deterministic and probabilistic analyses of the seismic bearing 

capacity of shallow foundations situated on a single soil layer posed on a half-space. However, 

given that the Earth's surface is typically composed of non-homogeneous multiple soil layers, 

the assessment of the seismic bearing capacity of shallow foundations in a multi-layered soil 

profile would provide a more realistic insight in the geotechnical engineering field. 

While the study of wave propagation in porous media has long captivated researchers' interest, 

the exploration of bearing capacity concerning shallow foundations on such substrates has not 

garnered commensurate attention. Despite the pioneering efforts of Biot, this facet remains 

underexplored. Consequently, delving into this area represents a promising research avenue 

ripe for exploration and potential breakthroughs. 

In addition, Rahmani Kouadri in her thesis (Rahmani Kouadri, 2022) and Rahmani Kouadri 

and co-authors (2022) proved that the damping characteristics of the skeleton within a porous 

medium play a crucial role in governing wave propagation dynamics within such materials. As a result, 

they wield considerable influence over the bearing capacity of foundations situated within these media. 

Surprisingly, this aspect remains relatively unexplored by researchers, indicating a promising avenue 

for further investigation and potential breakthroughs in understanding and optimizing foundation 

performance in porous environments. 
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𝐴 = sin(𝜑 − 𝛼𝑖 − 𝑖) sec 𝑖 cos 𝜑  × 𝑒𝑥𝑝(−𝜓 𝑡𝑎𝑛 𝜑)/𝑠𝑖𝑛(2𝜑 − 𝛼1 − 𝛼4) (A.1) 

 

𝑀 = sin(𝜑 + 𝛼2 + 𝛼3) sec 𝑖  × cos 𝜑 /𝑠𝑖𝑛(2𝜑 − 𝛼2 − 𝛼3) (A.2) 

 

𝐷 = {𝐿1𝑐𝑜𝑠𝜑 − 𝑟1cos (𝜑 + 𝛼2 + 𝛼3)}  ×
cos 𝜑

𝑠𝑖𝑛(2𝜑 + 𝛼2 + 𝛼3)

− {𝐿0𝑐𝑜𝑠𝜑 − 𝑟0cos (𝜑 − 𝛼1 − 𝛼4)} ×
𝑐𝑜𝑠𝜑 exp(−𝜓 𝑡𝑎𝑛 𝜑)

sin(2𝜑 − 𝛼1 − 𝛼4)

+ 𝑟1{1 − exp (−2𝜓 tan 𝜑)}/𝑡𝑎𝑛𝜑 

(A.3) 

 

𝑅 = 𝛿𝑟1
2 sec 𝑖 cos 𝜇 {𝑒𝑥𝑝(−𝑏 𝑡𝑎𝑛 𝜇) × 𝑠𝑖𝑛(𝛼3 + 𝜓 + 𝑖 − 𝜇) − sin (𝛼3 + 𝑖 − 𝜇)}

+ 𝑟1𝐿𝑀 sin 𝛼3 − 𝐴𝐿0𝑠𝑖𝑛𝛼1 
(A.4) 

𝜇 = 𝑡𝑎𝑛−1(3𝑡𝑎𝑛𝜑) (A.5) 

 

𝑖 = 𝑡𝑎𝑛−1(𝑘𝑐) (A.6) 

 

𝜓 = 𝜋 − 𝛼3 − 𝛼4 (A.7) 

 

𝑟0 = sin(𝛼1)/sin (𝛼1 + 𝛼4) (A.8) 

 

𝑟1 = 𝑟0 𝑒𝜓𝑡𝑎𝑛𝜑 (A.9) 

 

𝐿0 = sin(𝛼4) /sin (𝛼1 + 𝛼4) (A.10) 

 

𝐿1 = 𝑟1 sin(𝛼3) /sin (𝛼2) (A.11) 

 

𝐿 = 𝑟1 sin(𝛼2 + 𝛼3) /sin (𝛼2) (A.12) 

 

The dimensions r0, r1, L0, L1 and L can be obtained as fraction of foundation width B as defined 

in the Fig. 1.14. The angles α1, α2, α3 and α4 are shown also in the same figure. 
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𝛼𝑖 = 𝑤𝑖 sin(𝜑 − 𝛽𝑖) + 𝑅𝑖𝑐𝑜𝑠𝜑 + 𝑆𝑖+1 sin(𝜑 − 𝛽𝑖 − 𝛿𝑖+1) − 𝑆𝑖𝑠𝑖𝑛(𝜑 − 𝛽𝑖 − 𝛿𝑖) (A.13) 

 

𝑝𝑖 = 𝑤𝑖 cos(𝜑 − 𝛽𝑖) (A.14) 

 

𝑅𝑖 = 𝑐𝑏𝑖 sec(𝛽𝑖) (A.15) 

 

𝑆𝑖 = c𝑑𝑖 (A.16) 

 

Table A.1. Seismic bearing capacity formulas for cohesive-frictional and purely cohesive soils (Conti 

2018). 

 Cohesive-frictional soil Purely cohesive soil 

Ultimate seismic bearing 

capacity 𝑞𝑢𝐸 =
1

2
𝛾𝐵𝑁𝛾𝐸 + 𝑐𝑁𝑐𝐸 + 𝑞𝑁𝑞𝐸 

Seismic bearing capacity 

factors 

𝑁𝑞𝐸 = 𝑒𝑞
𝑘𝑁𝑞𝑆 

𝑁𝑐𝐸 = 𝑒𝑐
𝑘𝑁𝑐𝑆 

𝑁𝛾𝐸 = 𝑒𝛾
𝑘𝑁𝛾𝑆 

𝑁𝑞𝐸 = 𝑒𝑞
𝑘𝑁𝑞𝑆 

𝑁𝑐𝐸 = 𝑒𝑐
𝑘𝑁𝑐𝑆 

𝑁𝛾𝐸 = 𝑒𝛾
𝑘 

Static bearing capacity 

factors 

𝑁𝑞𝑆 = (
1 + 𝑠𝑖𝑛𝜑

1 − 𝑠𝑖𝑛𝜑
) 𝑒𝜋𝑡𝑎𝑛𝜑 

𝑁𝑐𝑆 = (𝑁𝑞𝑆 − 1)𝑐𝑜𝑡𝜑 

𝑁𝛾𝑆 = 1.5(𝑁𝑞𝑆 − 1)𝑡𝑎𝑛𝜑 

𝑁𝑞𝑆 = 1 

𝑁𝑐𝑆 = 2 + 𝜋 

𝑁𝛾𝑆 = 0 

Soil inertia 

𝑒𝑞
𝑘 = (1 −

𝑘ℎ

𝑡𝑎𝑛𝜑
)(0.37𝑡𝑎𝑛𝜑0.5) 

𝑒𝑐
𝑘 = 1 

𝑒𝛾
𝑘 = (1 −

𝑘ℎ

𝑡𝑎𝑛𝜑
)0.47 

𝑒𝑞
𝑘 = 1 − 𝑎𝑞 (

𝑘ℎ

𝑘ℎ,𝑙𝑖𝑚

) − 𝑏𝑞(
𝑘ℎ

𝑘ℎ,𝑙𝑖𝑚

)2 

𝑒𝑐
𝑘 = 1 

𝑒𝛾
𝑘 = −𝑎𝛾 (

𝑘ℎ

𝑘ℎ,𝑙𝑖𝑚

) − 𝑏𝛾(
𝑘ℎ

𝑘ℎ,𝑙𝑖𝑚

)2 

Where: 

𝑎𝑞 = 0.75𝑘ℎ,𝑙𝑖𝑚 𝑏𝑞 = 1.4𝑘ℎ,𝑙𝑖𝑚 

𝑎𝛾 = 1.75𝑘ℎ,𝑙𝑖𝑚 𝑏𝛾 = 1.4𝑘ℎ,𝑙𝑖𝑚  

𝑘ℎ,𝑙𝑖𝑚 =
𝑐𝑢

𝛾(𝐷 +
𝐵
2

)
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Table A.2. Static bearing capacity factor Nγs. 

 

  Df/B 

  𝜑 =20° 𝜑 =30° 𝜑 =40° 

δ 2cv/γ0B 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

0 0 5.45 7.72 9.93 12.10 15.38 20.32 25.13 29.87 45.65 57.26 68.60 79.78 

0.25 8.84 11.04 13.22 15.37 20.90 25.72 30.46 35.16 55.34 66.74 77.96 89.06 

0.5 12.11 14.28 16.44 18.59 26.25 31.01 35.71 40.38 64.79 76.07 87.20 98.24 

𝜑/2 0 7.66 10.86 13.97 17.03 27.61 36.56 45.30 53.92 123.33 155.31 186.64 217.56 

0.25 11.85 14.95 18.00 21.03 35.98 44.73 53.36 61.90 144.65 176.17 207.21 237.94 

0.5 15.91 18.96 21.99 25.00 44.15 52.79 61.34 69.84 165.62 196.81 227.64 258.21 

𝜑 0 10.61 15.05 19.38 23.65 55.45 73.69 91.53 109.15 - - - - 

0.25 15.99 20.29 24.55 28.78 70.84 88.72 106.37 123.86 - - - - 

0.5 21.20 25.44 29.66 33.87 85.91 103.58 121.09 138.49 - - - - 
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Table A.3. Equivalent pseudo dynamic bearing capacity factor NγE for different anisotropy degree of rigidity and non-homogeneity parameter when kh=0.2 

Df/B = 0.5, βϕ = 1.5, 𝜷𝒄
−𝟏 = 0.5, and νc = 15  

   𝛽𝑟
−1= 0.5 𝛽𝑟

−1= 0.7 𝛽𝑟
−1= 1.0 

   νp 

𝜑 δ 2cv/γ0B 0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5 

20° 0 0 - - - - - - - - - - - - 

0.25 28.70 28.99 29.60 30.21 28.88 29.25 30.05 30.12 28.98 29.41 30.38 31.51 

0.5 55.41 55.72 56.38 57.06 55.58 55.97 56.82 56.88 55.68 56.13 57.16 58.36 

𝜑/2 0 - - - - - - - - - - - - 

0.25 31.71 32.06 32.75 33.45 31.93 32.36 33.29 33.38 32.05 32.55 33.69 34.99 

0.5 61.11 61.48 62.24 63.04 61.31 61.77 62.77 62.84 61.43 61.96 63.17 64.59 

𝜑 0 - - - - - - - - - - - - 

0.25 34.74 35.12 35.88 36.63 34.99 35.47 36.51 36.62 35.14 35.71 36.97 38.40 

0.5 66.93 67.38 68.19 69.07 67.17 67.68 68.81 68.90 67.31 67.91 69.27 70.86 

30° 0 0 - - - - - - - - - - - - 

0.25 60.32 61.29 63.37 65.66 60.62 61.77 64.35 64.39 60.79 62.11 65.16 68.83 

0.5 113.70 114.68 116.79 119.13 113.99 115.16 117.77 117.80 114.16 115.49 118.58 122.31 

𝜑/2 0 - - - - - - - - - - - - 

0.25 72.65 73.89 76.57 79.51 73.06 74.55 77.89 77.95 73.29 75.00 78.96 83.70 

0.5 136.37 137.63 140.37 143.38 136.77 138.28 141.67 141.73 137.00 138.73 142.75 147.58 

𝜑 0 - - - - - - - - - - - - 

0.25 86.74 88.26 91.51 95.04 87.30 89.13 93.21 93.34 87.62 89.73 94.59 100.39 

0.5 162.68 164.23 167.57 171.22 163.23 165.09 169.26 169.37 163.54 165.68 170.64 176.58 

40° 0 0 19.71 22.41 28.30 34.91 20.32 23.48 30.63 30.55 20.66 24.24 32.62 42.78 

0.25 131.93 134.68 140.70 147.47 132.48 135.70 142.98 142.87 132.79 136.44 144.96 155.30 

0.5 243.52 246.28 252.33 259.13 244.07 247.30 254.61 254.50 244.38 248.04 256.60 266.99 

𝜑/2 0 28.30 32.22 40.76 50.28 29.37 34.00 44.45 44.47 29.96 35.24 47.54 62.43 

0.25 178.00 182.01 190.77 200.58 178.89 183.61 194.25 194.17 179.40 184.75 197.25 212.39 

0.5 326.51 330.54 339.35 349.23 327.39 332.13 342.83 342.73 327.89 333.27 345.83 361.05 

𝜑 0 39.14 44.66 56.61 69.83 40.94 47.52 62.30 62.52 41.95 49.47 66.95 88.07 

0.25 245.40 251.08 263.44 277.19 246.89 253.61 268.76 268.79 247.74 255.40 273.26 294.81 

0.5 449.47 455.19 467.65 481.52 450.94 457.71 472.95 472.97 451.78 459.49 477.45 499.16 



Appendix 

 160 

Table A.4. Equivalent pseudo dynamic bearing capacity factor NγE for different anisotropy degree of internal friction angle for kh=0.2. 

𝜷𝒓
−𝟏 = 0.7, 𝜷𝒄

−𝟏 = 0.5, νp = 0.1 and νc = 15 

   βϕ = 1.0 βϕ = 2.0 βϕ = 3.0 

   Df/B 

𝜑 δ 2cv/γ0B 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 

20° 0 0 - - - - - -- - - - - - - 

0.25 31.91 33.83 35.72 37.57 26.23 27.25 28.21 29.13 24.64 25.41 26.10 26.71 

0.5 61.03 62.98 64.91 66.82 51.82 52.90 53.95 54.98 49.21 50.17 50.88 51.66 

𝜑/2 0 - - - - - - - - - - - - 

0.25 38.15 40.50 42.80 45.06 28.23 29.31 30.33 31.28 25.94 26.73 27.43 28.04 

0.5 72.52 74.91 77.28 79.62 55.66 56.82 57.94 59.04 51.73 52.62 53.47 54.29 

𝜑 0 - - - - - - - - - - - - 

0.25 46.84 49.72 52.54 55.30 29.89 31.00 32.03 32.99 26.74 27.53 28.23 28.81 

0.5 88.69 91.63 94.54 97.41 58.91 60.12 61.28 62.42 53.36 54.26 55.12 55.94 

30° 0 0 11.31 15.55 19.66 23.70 - - - - - - - - 

0.25 73.67 78.30 82.85 87.35 53.28 55.33 57.35 59.33 48.26 49.72 51.13 52.48 

0.5 135.88 140.54 145.17 149.76 102.97 105.07 107.16 109.22 94.68 96.22 97.73 99.22 

𝜑/2 0 18.91 25.70 32.32 38.84 - - - - - - - - 

0.25 108.18 115.43 122.60 129.69 60.34 62.69 64.98 67.22 52.21 53.78 55.29 56.73 

0.5 197.22 204.53 211.79 219.00 116.33 118.74 121.12 123.48 102.31 103.98 105.61 107.22 

𝜑 0 34.72 46.86 58.73 70.43 - - - - - - - - 

0.25 186.94 199.80 212.51 225.10 65.93 68.44 70.88 73.27 53.80 55.37 56.86 58.28 

0.5 338.50 351.48 364.36 377.16 127.11 129.71 132.27 134.80 105.55 107.23 108.88 110.49 

40° 0 0 39.66 50.45 60.98 71.33 - - - - - - - - 

0.25 181.97 193.49 204.87 216.13 112.05 116.17 120.24 124.28 97.51 100.28 103.00 105.68 

0.5 323.68 335.32 346.87 358.34 212.43 216.59 220.73 224.84 188.38 191.23 194.05 196.85 

𝜑/2 0 98.56 124.90 150.68 176.10 - - - - - - - - 

0.25 386.84 414.23 441.33 468.18 134.33 139.37 144.35 149.28 107.87 110.93 113.94 116.88 

0.5 674.79 702.37 729.76 756.98 253.87 258.97 264.05 269.09 208.19 211.36 214.49 217.60 

𝜑 0 623.87 790.64 954.35 1116.20 - - - - - - - - 

0.25 - - - - - - - - - - - - 

0.5 - - - - - - - - - - - - 
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Table A.5. Equivalent pseudo dynamic bearing capacity factor NγE for different anisotropy degree and non-homogeneity coefficient of cohesion for kh = 0.2. 

Df/B = 0.5,  𝜷𝒓
−𝟏 = 0.7, βϕ = 1.5 and νp = 0.1 

   𝛽𝑐
−1= 0.4 𝛽𝑐

−1= 1.2 𝛽𝑐
−1= 2.0 

   νc 

𝜑 δ 2cv/γ0B 0 5 15 30 0 5 15 30 0 5 15 30 

20° 0 0 - - - - - - - - - - - - 

0.25 - 12.25 25.97 46.03 - 21.23 51.01 95.35 - 29.69 75.13 142.99 

0.5 - 22.48 49.58 89.56 8.21 39.73 99.02 187.60 9.14 56.42 147.06 282.71 

𝜑/2 0 - - - - - - - - - - - - 

0.25 - 13.71 28.68 50.56 - 23.79 56.80 105.89 - 33.27 83.87 159.39 

0.5 - 25.09 54.61 98.21 9.49 44.38 110.03 208.08 10.27 63.04 163.90 314.84 

𝜑 0 - - - - - - - - - - - - 

0.25 - 15.12 31.37 55.10 - 26.38 62.82 116.98 - 36.96 93.13 176.93 

0.5 - 27.71 59.70 106.97 10.71 49.21 121.62 229.76 11.32 69.98 181.90 349.36 

30° 0 0 - - - - - - - - - - - - 

0.25 11.36 26.69 55.29 97.70 12.65 44.39 105.20 196.07 13.80 61.44 153.47 291.19 

0.5 14.96 45.40 102.33 187.02 17.71 80.17 201.50 383.12 20.12 113.97 297.77 573.13 

𝜑/2 0 - - - - - - - - - - - - 

0.25 14.74 32.75 66.49 116.52 16.08 54.82 128.67 238.96 17.27 76.00 188.88 357.71 

0.5 19.66 55.26 122.38 222.27 22.56 98.41 245.67 466.08 25.07 140.33 365.65 703.18 

𝜑 0 - - - - - - - - - - - - 

0.25 18.25 39.43 79.10 137.90 19.62 66.90 156.75 290.86 20.80 93.28 232.20 439.92 

0.5 24.81 66.49 145.34 262.72 27.84 120.10 299.15 567.12 30.39 172.25 449.46 864.70 

40° 0 0 23.48 23.48 23.48 23.48 23.49 23.48 23.48 23.50 23.48 23.48 23.48 23.48 

0.25 28.95 60.67 122.27 214.10 31.64 97.29 226.14 419.00 34.30 132.92 326.89 617.46 

0.5 34.09 97.64 220.52 403.98 39.64 170.34 427.70 813.29 45.04 241.25 628.87 1209.90 

𝜑/2 0 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 

0.25 42.46 83.78 164.45 284.80 45.80 136.21 313.18 577.93 49.09 187.18 457.96 863.42 

0.5 50.33 133.08 294.06 534.54 57.25 236.76 590.06 1119.30 63.94 338.00 878.90 1689.60 

𝜑 0 47.52 47.52 47.52 47.52 47.52 47.52 47.52 47.52 47.52 47.52 47.52 47.52 

0.25 60.85 116.49 225.19 387.34 65.06 194.47 447.42 825.77 69.16 270.52 665.26 1256.30 

0.5 73.22 184.47 401.31 725.28 81.98 338.49 843.35 1599.7 90.35 489.54 1278.00 2459.70 
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