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Abstract

One of the important achievements in the field of ultracold atoms is the recent
prediction and observation of ultradilute quantum liquid droplets, a new quantum
state of matter. Quantum droplet originates due to the subtle balance between the
attractive mean-field force and the repulsive force provided by the Lee-Huang-Yang
quantum fluctuations.

This thesis aims first to study large bulk properties of self-bound quantum
droplets of Bose mixtures in weak disorder potentials, and second introduces fi-
nite size effects within a generalized disorder-dependent Gross-Pitaevskii equation.
Our investigation encompassed the examination of both uncorrelated and correlated
disorders in three dimensions at zero and finite temperatures.

We look in particular at how the intriguing interplay of the disorder, interspecies
interaction and the Lee-Huang-Yang quantum fluctuations affect the formation and
the stability of such a novel state of matter. New useful analytic expressions for the
equation of state, equilibrium density, glassy fraction, depletion, and the anoma-
lous density of the droplet are obtained in terms of the disorder parameters using
the Bogoliubov-Huang-Meng theory. Our results reveal the significant role played
by the strength and correlations of disorder in the stability and in self-evaporation
phenomenon of the droplet state. At finite temperature, we analyze the free energy
and the critical temperature above which the droplet evaporates. It is found that
the competition between the thermal fluctuations and disorder may strongly desta-
bilize the droplet and completely destroy it above a certain critical temperature. We
discuss the validity conditions of the present Bogoliubov theory. Furthermore, the
structure and dynamics of the finite size quantum droplet in a three-dimensional
random potential are explored by numerically solving the corresponding disorder-
dependent Gross-Pitaevskii equation. We also investigate the lowest-lying excita-
tions of self-bound droplets employing a variational method. Our predictions point
out that the peculiar interplay of the disorder and the repulsive Lee-Huang-Yang
corrections leads to deform the atomic density in the flat-top plateau region and to
modify the collective modes of the self-bound droplet.

Finally, our study is extended to one-dimensional geometry. We describe the
bulk properties of disordered droplets using the aforementioned Bogoliubov method.
We then conduct a numerical study in the purpose of revealing the impacts of weak
random external potentials in two physically different regimes are identified, namely:
small droplets of an approximately Gaussian shape and large droplets with a broad
flat-top plateau.
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General introduction

New opportunities have arisen following the successful achievement of Bose-Einstein

condensation (BEC) [1, 2] and Fermi degeneracy [3] in ultracold atomic vapors.

These advancements have led to the emergence of novel experimental platforms,

enabling the investigation of quantum phenomena and unique states of matter pre-

viously unexplored. Weakly-interacting single-component Bose gases received sig-

nificant attention after first experiments [4].

The high tunability of interactions in ultracold Bose gases using Feshbach reso-

nances open promising avenues for the exploration of novel regimes and phases of

matter not encountered in other condensed-matter systems. Thanks to these tech-

niques, both experimental and theoretical efforts have shifted towards more sophis-

ticated systems such as quantum Bose mixtures [5, 6]. Experimentally, Bose–Bose

mixtures can be realized using atoms in two different spin states [7, 8, 9, 10, 11, 12],

different isotopes of the same species [13, 14], and of two different atom species

[15, 16, 17, 18, 19, 20, 21]. In particular, the observation of binary BECs with

atoms of the same element in different hyperfine states [7, 8, 9, 10, 11, 12] has re-

ceived much attention because of its simplicity, yet, reveals essential kinetics related

to the transition [22, 23]. Recently, such multi-component quantum gases have be-

come one of several focuses of current interest in the ongoing exploration of the

ultralow temperature physics due to their rich phase diagram non-present in their

one-component counterparts. One of the most striking feature of Bose mixtures is

their miscibility-immiscibility transition which depends on the ratio of the intra-

1
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and interspecies interactions [13, 24, 25], on the condensate numbers [26], and on

thermal fluctuations [27, 28, 29, 30]. The dynamics of Bose mixtures sparks a va-

riety of physical effects, including quantum phase transitions, topological defects

[31, 32], spin drag [33, 34], spin-orbit coupling [35], temperature effects [28, 29, 30],

superfluidity [36, 37, 38, 39, 40, 41, 42], localization in disordered two-component

BECs [43, 44, 45], and mixture droplet states (see e.g [46, 47, 48, 49, 50, 51] and

references therein).

More recently, the addition of quantum fluctuations to the mean-field approxi-

mation was found to explain the stabilization of binary BECs and single-component

dipolar BEC against collapse [46, 52, 53, 54], sparking new research concerning the

liquefaction of Bose gases into self-bound droplets [46, 47, 48, 49, 50, 55, 56, 57].

D.S. Petrov, a researcher from Paris-Saclay University in his seminal work in Oc-

tober 2015, made a noteworthy prediction stating that, contrary to collapsing, an

attractive Bose-Bose mixture can undergo phase transitions into a liquid-like droplet

state due to the stabilizing effects of quantum fluctuations stemming from the Lee-

Huang-Yang (LHY) corrections [58]. Soon after Petrov’s prediction, the existence

of quantum droplets was discovered in entirely different systems [59]. Specifically,

these droplets were observed in ultracold Dysprosium (164Dy) atoms, which possess

the highest dipolar magnetic moment among all atomic species [55]. Subsequent

experiments followed [56, 60], and before long, droplets consisting of 166Er atoms,

where dipole-dipole interactions play a crucial role, were successfully generated [57].

Observation of droplets emerged in both homonuclear Bose mixtures of 39K and

heteronuclear mixtures of 41K-87Rb have been reported in [47, 50]. These two cat-

egories of self-bound quantum droplets exhibit notable distinctions. While attrac-

tive mixtures give rise to spherical droplets, dipolar gases form elongated droplets

aligned along the dipole direction [49]. The differing geometric properties and the

distinct interactions responsible for their stabilization contribute to significant dis-

parities in their characteristics, thereby expanding the range of phenomena that

2
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can be explored. Despite their dissimilarities, both quantum liquids rely on the

same mechanism for stabilization: quantum fluctuations. Dipolar droplets consist

of a single-component dipolar BEC, where the interplay between dipole-dipole in-

teractions and contact interactions reduces the mean-field energy. Furthermore,

Bose-Bose mixture droplets solely rely on contact interactions, and the mean-field

energy reduction arises from the competition between inter- and intra-component

interactions.

From the theoretical side, quantum liquid droplets in weakly-interacting

Bose–Bose mixtures have been intensively studied in the past few years with a

variety of approaches. The Bogoliubov theory and the generalized Gross-Pitaevskii

equation (GPE) can give a good description of self-bound droplets at zero temper-

ature [46, 61]. Nonperturbative calculations including higher-order quantum cor-

rections for both zero- and finite-temperature mixture liquid droplets have been

provided by means of the time-dependent (independent) Hartree-Fock-Bogoluibov

theory [62, 63, 64, 65, 66]. Other employed approaches include Beliaev theory [67],

perturbative approach [68], pairing theory [69], and quantum Monte Carlo simula-

tions [70, 71, 72].

On the other hand, disorder plays a crucial role in both the microscopic and

macroscopic realms, as it is inherent in realistic physical systems due to environmen-

tal factors or randomly distributed imperfections. Even a minor degree of disorder

can give rise to intriguing phenomena that lack a straightforward counterpart, such

as the Anderson localization [73]. Over the past decade, there has been a substantial

theoretical and experimental endeavor to unveil the impact of disorder on samples

of cold atoms (see e.g.[74, 75, 76, 77, 78, 79]). In the realm of quantum physics,

disorder pertains to the presence of randomness or irregularity in the characteristics

of a physical system. It manifests as a form of potential energy that exhibits ran-

dom spatial variation, resulting in a disordered arrangement of interacting particles.

The sources of disorder in a quantum mechanical system can encompass impurities,
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defects, thermal fluctuations, or external disturbances.

The creation of disorder using speckle lasers [80, 81] or incommensurate laser

beams [82, 83] opens promising new avenues in ultracold quantum gases. Inves-

tigating the impact of disorder effects on a BEC holds immense significance in

the domains of quantum physics and condensed matter physics. The competition

between disorder and interactions plays a nontrivial role in developing a funda-

mental understanding of many aspects of ultracold gases namely: the Bose glass

(a gapless compressible insulating state) [84, 85, 86, 87, 88] or Griffiths-McCoy

phases [86], characterized by the presence of localized particles, Anderson local-

ization [74, 75, 80, 81, 82, 83, 89, 90, 91, 92], disordered BEC in optical lattices

[93, 94, 95, 96], Bose-Fermi mixtures [97, 98], and dipolar BEC in random poten-

tials [54, 76, 77, 78, 99, 100, 101, 102].

However, until now, there has been little work dealing with equilibrium states

and non-equilibrium dynamics of ultracold Bose-Bose mixtures subjected to weak

disorder potentials. Disordered binay BECs present rich physics not encountered in

a single component condensate due the intriguing interplay of quantum fluctuations

induced by intra- and interspecies interactions and disorder effects (see e.g [103, 104,

105, 106]). Such disordered Bose mixtures could be regarded as a feasible simulator

to analyze a plethora of novel quantum phenomena. Furthermore, less is known

on the behavior of the quantum droplet in the presence of disordered potentials

[107]. Untradilute quantum droplets subjected to an external disorder potential

can exhibit quantum phase transitions due to quantum fluctuations. Exploring

such disordered droplets is crucial for advancing our understanding of many-body

quantum systems and for practical applications in quantum computing, quantum

sensing, and materials science.
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This thesis

The aim of this thesis is twofold: (i) To investigate the impacts of a weak disorder po-

tential on equilibrium and non-equilibrium properties of dilute Bose-Bose mixtures

using a perturbative theory. Therefore, a number of questions arise naturally: How

does the interplay of the disorder and interactions alter the miscibility-immiscibility

condition and the localization process? Do such Bose mixtures in the presence of

Gaussian disorder potentials with time-periodic driving support a steady state that

periodically changes during its time propagation? Can the dynamical corrections in-

duced by disorder drive the system into a stationary out-of-equilibrium state? This

study not only bridges the gap between superfluidity, interactions and disorder but

it also is important from the viewpoint of elucidating the localization phenomenon

of two bosonic species. Non-equilibrium evolution of binary BEC offers the unique

opportunity to explore strongly correlated systems and transport in realistic phys-

ical systems. Understanding the time evolution of Bose mixtures is pivotal for the

realization of Floquet condensates.

(ii) To present a comprehensive understanding of the properties of self-bound

liquid droplets with weak correlated and uncorrelated disorder potentials for various

geometries ranging from spherically symmetric three-dimensional configuration (3D)

to 1D case. We look in particular at how the peculiar competition between the

interspecies interactions, the LHY quantum fluctuations, and the disorder potential

affect the formation and the stability of the self-bound droplet. Herein, the focus is

laid on a microscopic description based on the Bogoliubov theory of the disordered

self-bound droplet and on the role played by the correlations of the external random

potential.

Throughout our study we neglect the surface effects.
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Outline of the thesis

This thesis is organized as follows.

Chapter 1 offers a succinct introduction of the ground-state properties of BEC

mixtures including the GPE and the Bogoliubov theory which serve as funda-

mental theoretical frameworks for understanding these mixtures. We present the

Bogoliubov-de Gennes (BdG) equations that enable us to calculate the elementary

excitations and the noncondensate and anomalous densities. Quantum and thermal

fluctuation corrections to the equation of state are accurately calculated. Addition-

ally, we provide a comprehensive overview for the theory of quantum droplets of

bosonic mixtures, emphasizing the essential conditions required for their formation

and elucidating their equilibrium properties.

Chapter 2 is devoted to an introductory presentation of the fundamental princi-

ples and basic concepts of disordered systems. We delve into an in-depth examina-

tion of the statistical properties exhibited by random potentials, shedding light on

various approaches employed to generate disordered potentials for ultracold neutral

atoms. We then turn to dilute Bose gases, and point out the main ideas related to

disorder in interacting systems. Moreover, we introduce the main theoretical tools

essential for analyzing Bose gases with disorder potentials.

Chapter 3 is dedicated to the impact of weak disorder potentials on homoge-

neous binary BECs at zero temperature. Using a perturbative theory, we derive

analytical expressions for the relevant physical properties of the system, such as the

glassy fraction, the equation of state (EoS), the compressibility, and the superfluid

density. We look at how each species is influenced by the disorder and how the inter-

action between disordered bosons influences the coupling and the phase transition

between the two components. We explored on the other hand, the non-equilibrium

dynamics of binary BECs subjected to a time-dependent random potential with a

Gaussian correlation function. To this end, we employ the time-dependent pertur-

bative theory, enabling us to uncover the fascinating interplay between disorder and
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interspecies interactions in the non-equilibrium regime.

Chapter 4 discusses the main features of the self-bound droplet of symmetric

Bose mixtures in correlated and uncorrelated random potentials, focusing on 3D and

1D geometries. The present analysis encompasses various disorder models namely:

δ-correlated white noise, Gaussian-correlated disorder and speckle potentials. Our

primary focus is to unveil the fundamental properties exhibited by these disordered

droplets on a bulk scale (an infinitely large droplet). This analysis is carried out

within the framework of the Huang-Meng (HM) approach, allowing us to obtain

useful expressions for the ground-state energy, the equilibrium density, the disorder

fraction inside the droplet, the depletion and the anomalous correlation in terms

of the system parameters. Furthermore, we consider effects of thermal fluctuations

in addition to already present quantum fluctuations on the disordered droplet by

examining other quantities of much interest, such as the free energy, the thermal

equilibrium density and the critical temperature. Our study is extended to the finite

size droplet by numerically solving the disorder-dependent generalized GPE which

we derive self-consistently using the local density approximation. The collective

modes of the droplet are also analyzed through the application of a variational

Gaussian ansatz.

Chapter 5 focuses on the behavior of self-bound liquid droplets in 1D optical

speckle potentials. We apply the developed HM theory and derive useful formulas

for the equation of state, fluctuations induced by disorder, the equilibrium density,

and free energy. In particular, we show that the peculiar competition between the

disorder, the interactions and the LHY quantum fluctuations may strongly affect the

stability and the occurrence of the self-bound droplet. We address also the static

and dynamical properties of such a disordered droplet by numerically solving the

finite-temperature generalized GPE.

Finally we conclude the thesis and suggest directions for future works.
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• Karima Abbas and Abdelâali Boudjemâa, Binary Bose-Einstein condensates

in a disordered time-dependent potential, J. Phys.: Condens. Matter, 34,

125102 (2022).
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Chapter 1

Quantum self-bound droplets in

Bose-Bose mixtures

The peculiar control of parameters in ultracold quantum gases, culminated with the

observation of a single component BEC in alkali atoms, boosted a tremendous ex-

perimental effort to create multi-component BECs [7, 8]. These systems have been

broadly studied over the last years, thus many interesting effects, not achievable

in a single component BEC, have been predicted theoretically and determined ex-

perimentally. A key property of these systems is that they manifest miscible and

immiscible behavior allowing a large variety of interesting physical phenomena.

Since the spectacular prediction of self-bound droplets in ultracold quantum

gases in 2015 by Petrov [46], intensive investigations have been carried out in the

past years, both to explain the initial observations and to predict new phenomena

(see for review [108, 109, 110] and references therein). Such ultradilute quantum

liquids originate from a delicate balance between mean-field attraction (collapse)

and beyond-mean-field repulsive LHY quantum fluctuations. These new state of

matter are quite different from the well-known van der Waals liquids, since they

show unusually low densities that are eight orders of magnitude lower than that of

liquid helium droplets, and they exist at temperatures that are about nine orders
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of magnitude lower than the freezing points of classical liquids. Generally droplets

forming in Bose mixtures could be a useful tool to explore complex quantum systems

beyond the mean-field paradigm.

This chapter is devoted to the theoretical background on quantum droplets

emerging from binary BECs. In the first part, after reporting a brief overview

of degenerate 3D Bose-Bose mixtures, we discuss the mechanism leading to the for-

mation of a quantum droplet, in the case of two-component Bose gases. We report

the formalism used to describe the properties of a self-bound droplet at both zero

and finite temperatures. In the second part of this chapter we plan to summarize

recent developments in the theory of quantum droplet in the lower dimension. We

will mainly focus on analytical results related to a 1D self-bound phase.

1.1 Mean-field approach for Bose-Bose mixtures

We consider weakly interacting two-component BECs with the atomic mass mj

(j = 1, 2) confined in external traps Uj(r). The many-body Hamiltonian describing

this system can be written as:

Ĥ =
2∑
j=1

∫
drψ̂†j(r)

[
hspj +

gj
2
ψ̂†j(r)ψ̂j(r)

]
ψ̂j(r) + g12

∫
drψ̂†2(r)ψ̂2(r)ψ̂†1(r)ψ̂1(r),

(1.1)

where hspj = −(h̄2/2mj)∇2 + Uj(r) is the single particle Hamiltonian of each com-

ponent, gj = 4πh̄2aj/mj and g12 = g21 = 4πh̄2a12(m−1
1 + m−1

2 ) are the coupling

constants with aj and a12 being the intraspecies and the interspecies s-wave scat-

tering lengths, respectively, and ψ̂j and ψ̂†j are the boson annihilation and creation

field operators, respectively, satisfying the usual canonical commutation rules

[
ψ̂j(r), ψ̂†j (r′)

]
= δ (r− r′) , (1.2)[

ψ̂j(r), ψ̂j (r′)
]

=
[
ψ̂†j(r), ψ̂†j (r′)

]
= 0.
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The equations of motion for the binary BECs follow directly from the Heisenberg

equation and reads:

ih̄
dψ̂j
dt

= [ψ̂j, Ĥ]. (1.3)

At very low temperature it is convenient to decompose the field operator into a

condensate and a noncondensate component which remains small in the BEC regime:

ψ̂j(r) = Φj(r) + ˆ̄ψj(r), (1.4)

where Φj(r) = 〈ψ̂j(r)〉 stand for the condensate wavefunctions, ˆ̄ψj(r) represent the

noncondensed field operators. At zero temperature, large majority of the particles

are Bose condensed, so that the noncondensate operators can be neglected and ψ̂j(r)

can be replaced by the condensate wavefunction Φj(r). By using this prescription

one gets the following the famous coupled GPEs

ih̄
dΦj(r, t)

dt
=

(
− h̄2

2mj

∇2 + Uj(r) + gj|Φj(r, t)|2 + g12|Φj(r, t)|2
)

Φj(r, t), (1.5)

where j = 3−j. Equations (1.5) are coupled nonlinear Schrödinger equations for the

two condensate wavefunctions. For g12 = 0, equations (1.5) reduce to the standard

GPE for a single component BEC which was derived by E. P. Gross and L. P.

Pitaevskii in 1961 [111, 112]. These coupled equations are particularly important

since they describe complicated many-body problems and appropriately govern the

static and the dynamics of binary BECs at zero temperature.

The wavefunctions are normalized using the condition:

Nj =

∫
dr|Φj(r)|2. (1.6)

In order to describe the different ground states of the mixture we have to write
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the energy functional associated to equations (1.5):

E[Φj,Φ
∗
j ] =

∫
dr

(
h̄2

2mj

|∇Φj(r)|2 + Uj(r)|Φj(r)|2 +
1

2
gj|Φj(r)|4 + g12|Φj(r)|2|Φj̄(r)|2

)
.

(1.7)

Interatomic interactions between the different components (gj and g12) determine

the structure of the ground-state of the two-component Hamiltonian.

Figure 1.1: Phase diagram of a Bose-Bose mixture

In the regime where all interactions are repulsive (gj,g12 > 0), two phases are

expected with a possibility of transition between them [24] namely: the miscible

regime in which the wavefunctions of the two species are overlapped, and the im-

miscible regime where they are separated (see figure 1.1). Both regimes have been

experimentally observed (see e.g. [13, 113]). The transition between these two

regimes was largely studied theoretically and experimentally[13, 114, 115]. When

the interspecies interaction is negative enough, the system will collapse even if each

component has repulsive intraspecies interactions (see figure 1.1).

The condition that explains the appearance of these three phases in the homogeneous

case (Uj(r) = 0) is reported in [117]:

|g12| =
√
gjgj̄. (1.8)
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For g12 >
√
gjgj̄, the repulsive interspecies energy is large enough to spatialy separate

the two condensates (immiscible regime). On the other side, when g12 < −
√
gjgj̄

the attractive interspecies interactions dominate the repulsive ones and the system

collapses. In between, for −√gjgj̄ < g12 <
√
gjgj̄, the system is in the miscible

regime, and the two condensates overlap.

1.2 Beyond mean-field quantum fluctuations :

the Lee-Huang-Yang correction

In this section we calculate the mean-field energy and its beyond mean-field cor-

rections. Let us then consider a weakly interacting homogeneous binary mixture of

bosons with equal masses (m1 = m2 = m), occupying a volume V . The plane waves

expansion appropriate for describing a homogeneous system is

ψ̂j(r) =
∑
k

1

V
eikrâj,k, and ψ̂†j(r) =

∑
k

1

V
e−ik,râ†j,k, (1.9)

where single-particle creation and annihilation operators in each component are

respectively, â†j,k, and âj,k (j = 1, 2), then bring the Hamiltonian (1.1) to its second-

quantized form:

Ĥ =
∑
j,k

Ekâ
†
j,kâj,k +

1

2V

∑
j,k,k′,q

gj â
†
j,kâ

†
j,k′+qâj,k′ âj,k+q +

g12

V

∑
k,k′,q

â†1,kâ1,k+qâ
†
2,k′+qâ2,k′

(1.10)

where Ek = h̄2k2/(2m) is the energy of free particle.

The elementary excitations and the ground-state energy of the mixture are ob-

tained by applying the Bogoliubov prescription which consists in replacing the oper-

ators âj,0 and â†j,0 by a c-number, i.e., âj,0 = â†j,0 =
√
Njc , where Njc is the number

of condensed particles. In the resulting equation, we ignore higher-order fluctuations

and keep only terms in âj,k 6=0, â†j,k 6=0 up to second-order in the coupling constants.

13
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Therefore, the Hamiltonian (1.10) can be rewritten as :

Ĥ=
∑
j

gj
2V

N2
jc +

g12

V
N1cN2c +

∑
j,k

(Ek + 2gjncj + g12nc3−j) â
†
j,kâj,k (1.11)

+
gj
2V

Ncj

∑
j,k

(
â†j,kâ

†
j,−k + âj,kâj,−k

)
+
g12

V

√
N1cN2c

∑
k

(
â†1,k + â1,−k

)(
â†2,−k + â2,k

)
,

where njc = Njc/V .

Hamiltonian (4.3) can be diagonalized making the following canonical Bogoliubov

transformation [51, 118]

â1k = (u+,kb̂1k + v+,kb̂
†
1,−k) cos γ − (u−,kb̂2k + v−,kb̂

†
2,−k) sin γ, (1.12a)

â2k = (u+,kb̂1k + v+,kb̂
†
1,−k) sin γ + (u−,kb̂2k + v−,kb̂

†
2,−k) cos γ, (1.12b)

where

cos γ, sin γ =
1√
2

√
1± 1− α√

(1− α)2 + 4∆−1α
, (1.13)

and α = nc2g2/nc1g1, ∆ = g1g2/g
2
12 is the miscibility parameter of Bose mixtures,

b̂jk and b̂j
†
k are the quasi-particle annihilation and creation operators obeying the

usual Bose commutation relations:

[
b̂jk, b̂j

†
k′

]
= δk,k′ , and

[
b̂jk, b̂jk′

]
=
[
b̂j
†
k, b̂j

†
k′

]
= 0. (1.14)

The Bogoliubov quasiparticle amplitudes are given by:

u±,k =
1

2

(√
ε±,k
Ek

+

√
Ek
ε±,k

)
,

v±,k = u±,k −

√
Ek
ε±,k

,

(1.15)
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which are chosen to be real without loss of generality. They must obey the constraint

u2
±k − v2

±k = 1. (1.16)

The Bogoliubov spectra are expressed as [29, 119]

ε±,k =
√
E2
k + 2Ekµ±, (1.17)

where

µ± =
1

2

(
g1n1 + g2n2 ±

√
(g1n1 − g2n2)2 + 4g2

12n1n2

)
, (1.18)

and nj = Nj/V is the density of the j-th component. In equation (1.17) the highest

energy branch ε+,k, known as the hard mode, corresponds to the spin excitations

while the lowest energy branch ε−,k is known as the soft branch and corresponds to

the density excitations [6].

Hence, the Hamiltonian (4.3) in the diagonalized form is written as:

Ĥ = E +
∑
k 6=0

(
ε+,kb̂1

†
kb̂1k + ε−,kb̂2

†
kb̂2k

)
, (1.19)

which describes binary Bose gas of noninteracting quasi-particles.

The ground-state energy of the system reads [29, 119]

E

V
=
∑
j

gj
2
n2
j + g12n1n2 +

ELHY

V
. (1.20)

The leading term is the mean-field energy, and the subleading term, ELHY, is the

first beyond mean-field correction to the ground-state energy, the so-called LHY

energy (i.e. the zero-point energy corresponding to the Bogoliubov modes):

ELHY

V
=

1

2V

∑
k

[ε+,k + ε−,k − 2Ek − µ±] . (1.21)
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The task now is to find the LHY corrected energy. If one uses this integral directly

by summing over all states, we find that the energy (1.21) suffers from the ultraviolet

divergence from large k contributions. This difficulty comes from the use of short-

range contact potential which is valid only for small momenta. To cure this issue,

we renormalize the coupling constants and introduce the Beliaev-type second-order

corrections [46, 119, 29]

gj(k) = gj +
g2
j

V

∑
k

1

2Ek
, and g12(k) = g12 +

g2
12

V

∑
k

1

2Ek
. (1.22)

After the subtraction of the ultraviolet divergent part, the renormalized energy takes

the form:

ELHY =
1

2

∑
k

[
ε+k + ε−k −

2∑
j=1

(
Ejk + gjncj −

n2
cjg

2
j

2Ejk

)
+ nc1nc2g

2
12

2∑
j=1

2

Ejk

]
.

(1.23)

Working in the thermodynamic limit where the atoms number N → ∞ and the

volume V → ∞, the sums over k transform to integrals,
∑

k −→ V
∫
d3k/(2π)3.

With this we obtain for the LHY corrected energy

ELHY

V
=

8

15π2
m3/2(g1n1)5/2f

(
1,

g2
12

g1g2

,
g2n2

g1n1

)
, (1.24)

where the dimensionless function f is defined as:

f (1, x, y) =
∑
±

(
1 + y ±

√
(1− y)2 + 4xy

)5/2

/4
√

2. (1.25)

Its behavior is displayed in figure 1.2.
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Figure 1.2: The function f(1, x, y) from equation 1.25 as a function of y.

1.2.1 Free energy

At finite temperatures, thermal fluctuations become significant, and the condensate

coexists with a thermal cloud of non-condensed particles. Hence, to understand Bose

mixtures at constant temperature and volume, we need to calculate the Helmholtz

free energy F which is defined as [29, 62]

F = E + T

∫ ∞
0

d3k

(2π)3

[
ln

(
2√

Ik+ + 1

)
+ ln

(
2√

Ik− + 1

)]
, (1.26)

where Ik± = coth2 (εk±/2T ), with T being the temperature, the ground-state energy

E is given by equation (1.20). The Boltzmann constant set kB = 1 throughout the

manuscript.

At low temperatures, T � n1g1, where the main contribution to equation (1.26)

comes from the phonon region, the evaluation of the thermal contribution of the free
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energy yields the famous T 4-law [29]

F

V
=
E

V
− 16g1

√
a3

1/π

15
√

2
n

5/2
1

∑
±

[
1

2
√

2
f

(
1,

g2
12

g1g2

,
g2n2

g1n1

)−3/2(
πT

g1n1

)4 ]
, (1.27)

here we employed the identity
∫∞

0
dxx2 ln[2/(coth(x/2)+1)] = −π4/45. In the limit

of lower density n→ 0, the thermal corrections to the free energy (1.27) diverge as

n−3/2 and vanish at zero temperature. The free energy is important for studying the

behavior of a self-bound droplet at finite temperatures.

1.2.2 Noncondensed and anomalous densities

The microscopic origin of interaction-driven quantum depletion, ñ, of a BEC can

be explained according to the Bogoliubov theory [122]. The condensate depletion

which represents the fraction of particles that coherently expelled from the con-

densate due to interaction effects must be very small compared to the total density

[122]. Recently the experimental measure of the quantum depletion of an interacting

homogeneous single BEC has been reported in [123]. Another important quantity

that arises from the Bogoliubov theory is the anomalous density, m̃. This latter

quantifies the correlations of pairs of noncondensate atoms with pairs of condensate

atoms due to the Bogoliubov pair promotion process in which two condensate atoms

scatter each other out of the condensate which is responsible for the well-known Bo-

goliubov particle-hole structure of excitations in the system [120, 121]. Certainly,

the presence of these quantities add new features to the well-known problems and

play a key role in understanding the equilibrium properties and the dynamics of

Bose mixtures.

The noncondensed and the anomalous densities are defined, respectively as

ñ =
1

V

∑
j,k6=0

〈â†j,kâj,k〉. (1.28)
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and

m̃ = − 1

V

∑
j,k 6=0

〈âj,kâj,−k〉, (1.29)

Using the transformation (4.4), we find for the noncondensed and anomalous densi-

ties associated with the spin and density channels:

ñ± =
1

V

∑
k 6=0

{[
v2
±k +

(
u2
±k + v2

±k
)
N±k

]
cos2 γ (1.30)

+

[
v2
∓k +

(
u2
∓k + v2

∓k
)
N∓k

]
sin2 γ

}
,

m̃± = − 1

V

∑
k 6=0

{
[u±kv±k(1 + 2N±k)] cos2 γ (1.31)

+ [u∓kv∓k(1 + 2N∓k)] sin2 γ

}
,

where N±,k = 〈b̂†±,kb̂±,k〉 = [exp(εk,±/T ) − 1]−1 are occupation numbers for the

excitations.

After a straightforward calculation, we obtain for the total noncondensed, ñ, and

anomalous, m̃, densities

ñ =
∑
±

ñ± =
1

V

∑
±,k

v2
±,k +

∑
±,k

(v2
±,k + u2

±,k)N±,k, (1.32)

and

m̃ =
∑
±

m̃± = − 1

V

∑
±,k

v±,ku±,k −
2

V

∑
±,k

v±,ku±,kN±,k. (1.33)

Substituting equation (1.15) into equations (1.32) and (1.33), replacing the sum

over k by an integral
∑
k

→ V
∫∞

0
d3k/(2π)3, and using the fact that 2N(x) + 1 =

coth(x/2), one obtains

ñ =
1

2

∫
d3k

(2π)3

[
Ek + µ±
εk±

− 1

]
+

1

2

∫
d3k

(2π)3

Ek + µ±
εk±

[
coth

( εk
2T

)
− 1
]
, (1.34)
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and

m̃ = −1

2

∫
d3k

(2π)3

µ±
εk±
− 1

2

∫
d3k

(2π)3

µ±
εk±

[
coth

( εk
2T

)
− 1
]
. (1.35)

First terms in equations (1.34) and (1.35) are the zero-temperature contribution to

the noncondensed and anomalous densities, respectively. Second terms represent

the contribution of the so-called thermal fluctuations.

Remarkably, the zero temperature term of the anomalous density (1.35) is ultraviolet

divergente, this problem can be circumvented employing the same renormalization

of the coupling constants (1.22). Therefore, the renormalized anomalous density

takes the form:

m̃ = −
∫

d3k

(2π)3

[
1

εk
−
n2
jg

2
j

2Ek
− n1n2g

2
12

2Ek

]
. (1.36)

Equations (1.34) and (1.36) are appealing since they enable us to determine in a self-

consistent way the quantum fluctuations that are responsible for the stabilization of

the quantum droplet in Bose mixtures.

1.3 Quantum droplets

1.3.1 Experimental realization

Quantum droplets in the full 3D space were created in a weakly interacting binary

condensate composed of two hyperfine states of 39K [48]. The experiment utilized

a cross dipole potential generated by three red-detuned laser beams, along with an

optical levitation potential. The perpendicular beams were employed to initialize the

condensate, while the latter component aided in minimizing residual confinement in

all spatial directions. As shown in figure 1.3 (a), when the external magnetic field B

is less than a critical value, the binary condensate may be either a quantum droplet

or an LHY gas. When released from the external dipole trap in the attractive regime,

the condensate keeps a constant size (see figure 1.3 (b)), which demonstrates a well-

defined quantum droplet.
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Figure 1.3: Observation of quantum droplets. Taken from [48]

1.3.2 Stabilization mechanism

In what follows we consider a symmetric mixture where n1 = n2 = n and g1 = g2 =

g. Therefore, the ground-state energy (1.20) turns out to be given as:

E

V
= (g + g12)n2 +

8

15π2
m3/2g5/2n5/2f

(
1,
g2

12

g2
, 1

)
. (1.37)

As we have mentioned above, when the attraction energy between the two atomic

species in a Bose-Bose mixture becomes larger than the single species average re-

pulsion energy, (g2
12 > g2), the mixture is expected to collapse according to the

mean-field theory. Following the procedure outlined in [46] and consider the unsta-

ble case, where the mean-field energy is slightly negative. It is convenient then to

introduce δg+ = g + g12 < 0 and assume it small, δg+ � g. In such a situation, the

mixture is expected to collapse in the mean-field formalism, |δg+|n2 < 0, and the

LHY term is positive and depends only on the contact interaction g. Because of its
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steeper density scaling (∝ n5/2) the quantum LHY repulsion neutralizes the mean-

field attraction (∝ n2) and stabilizes the system against collapse, giving rise to a

self-bound solution: the so-called quantum liquid droplet, around a fixed equilibrium

density n(0) which depends only on s-wave contact interactions and the droplet is

therefore isotropic.

The stabilization mechanism is shown in figure 1.4, where we can see that the

ground-state energy has a minimum for a fixed density.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

nn 0)

E
/
E
0


Figure 1.4: The blue line represents the mean-field energy, the red line is LHY energy, and the green line is the
sum of the two terms for g12/g = −1.05. Here |E0|/N = 25π2h̄2|δa+/a|3/(49152ma2).

The equilibrium density of the droplet is given by the relation [46]

n(0) =
25π (δa+/a)2

16384a3
, (1.38)

where δa±/a = 1± a12/a.
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Figure 1.5: Density profile of the droplet for different values of Ñ . For large atom numbers the pick density
saturates to a fixed value, giving rise to a flat-top bulk.

1.3.3 Generalized Gross-Pitaevskii equation

Following Petrov in his famous work [46], we can describe the properties of the

mixture in a simpler manner without using the set of coupled GPE. In the miscible

phase and close to the collapse point, we can describe the system with an effective

low-energy theory [116], where we treat the mixture as an effective single component

BEC by setting

Φj(r, t) =

√
n

(0)
j φ(r, t), (1.39)

where φ(r, t) is a scalar wavefunction common to both species.

By inserting equation (1.39) into equation (1.7), the corresponding energy density

functional of a homogenous mixture reads

E(φ, φ∗) =
h̄2

2m
n(0)|∇φ|2 +

δg+

4
n(0)2|φ|4 +

64g
√

a3

π

15.25/2
n(0)5/2

∑
±

(
δa±
a

)5/2

|φ|5. (1.40)
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The generalized GPE can be derived through i∂φ/∂t = ∂E/∂φ∗. This yields

i
∂φ(r, t)

∂t
=

−h̄2∆

2m
+
δg+

2
n(0)|φ|2 +

8g
√

a3

2π

3
n(0)3/2

∑
±

(
δa±
a

)5/2

|φ|3
φ(r, t).

(1.41)

Using the dimensionless coordinates r̃ = r/ξ and t̃ = t/τ , where

τ =
3h̄

|δg+|n(0)
j

, and ξ =

√√√√ 3h̄2

m|δg+|n(0)
j

, (1.42)

we thus find the dimensionless generalized GPE

i
∂φ(r̃, t̃)

∂t̃
=

(
−1

2
∆r̃ − 3|φ|2 +

5

2
|φ|3
)
φ(r̃, t̃). (1.43)

Here we neglected the imaginary term in the LHY contribution, (δa+/a)5/2, by

assuming δa+/a� 1 and hence, δa−/a ' 2.

The scalar wavefuction of the ground-state can be obtained by solving a gener-

alized GPE using φ(r̃, t̃) = φ0(r̃)e−iµt̃ [46]

µφ0(r̃) =

(
−1

2
∆r̃ − 3|φ0|2 +

5

2
|φ0|3

)
φ0(r̃). (1.44)

The chemical potential µ is fixed by the normalization condition: Ñ =
∫
dr̃|φ0|2,

where Ñ is related to the number of particles of the j-th component byNj = n
(0)
j ξ3Ñ .

As depicted in figure 1.5, for large atom number the system exhibits a flat-top

density profile and the size of the droplet increases with N . This is the regime of a

uniform liquid (bulk). For small atom number, the droplet has a profile dominated

by surface effects.
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1.3.4 Variational method

An alternative way to derive the equilibrium properties of the droplet is to use a

Gaussian ansatz for the wavefunction of the ground state. This approach has been

recently used to evaluate the width, critical atom number, and the collective modes

of a self-bound droplet in the presence of higher-order quantum corrections [62].

The key to the approximation consists of writing the density of the system as:

n(r̃) =
Ñ

2
√

2π3/2σ3
e−r̃

2/(2σ2), (1.45)

where σ is the droplet width. Assuming that the associated wavefunction is φ(r, t) =√
n(r, t) without considering phase terms which are not relevant in the study of the

equilibrium properties of the system. Inserting the ansatz (1.45) into equation (1.40)

and integrating over r, one finds for the energy functional:

Ẽ =

∫
drẼ(φ, φ∗) =

3Ñ

4σ2
− 3Ñ2

4
√

2π3/2σ3
+

2

5

Ñ5/2

π9/4σ9/2
. (1.46)
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Figure 1.6: Total energy Ẽ as a function of the width σ for different values of atom numbers, Ñ .

Figure 1.6 shows that by decreasing the atom number, the minimum of E(σ)

25



Quantum self-bound droplets in Bose-Bose mixtures

corresponding to the self-bound droplet (green line) first becomes positive revealing

that the system is in a metastable state (red line). Below a certain critical atom

number, N < Ncr, the minimum in energy disappears (blue line) signaling the

occurrence of a liquid-to-gas phase transition (the self-bound state cannot exist).

The critical number of particles is calculated by minimizing the total energy (1.46).

This yields Ncr = 19.6204.

1.4 One-dimensional quantum droplets in Bose-

Bose mixtures

Studying 1D quantum systems is of great importance, since it provides valuable

insights and serves as a foundation for understanding more complex systems. For

instance 1D systems offer a level of simplicity that allows for more rigorous math-

ematical treatment and analytical solutions. The reduced dimensionality makes it

easier to describe and analyze the behavior of quantum particles, enabling a deeper

understanding of fundamental quantum principles. Another reason is that 1D quan-

tum systems can be solved exactly, meaning their quantum states and properties can

be determined precisely. This allows for a detailed examination of the underlying

physics without resorting to approximations or numerical methods. In addition the

interplay between quantum effects and the low dimensionality can give rise to emer-

gent phenomena, such as quantum phase transitions, and the formation of exotic

states of matter.

Since the experimental observation of the liquid-like state, 1D quantum droplet

has become the subject of intense theoretical research. In 1D geometry, the LHY

correction is attractive, in contrast to higher dimensions counterparts [61]. So, 1D

quantum droplets occur due to the competition between attractive beyond mean-

field LHY effects and repulsive mean-field term. An important feature is that in

1D configuration, the self-bound state can survive for any particle number and even
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in a strongly-interacting regime. Moreover, the beyond mean-field can be boosted

by decreasing the density without compromising the system’s lifetime [61]. Based

on the generalized GPE Astrakharchik et. al. have demonstrated that such an

exotic state of matter exists in two different regimes, namely: Gaussian-like shape

for relatively small number of particles and flat-top plateau in the case of a large

number of atoms [124, 125]. A 1D quantum droplet can be realized by confining a

dilute gas of ultracold bosonic atoms in an elongated, highly anisotropic trap (i.e.

the trap must have a stronger confinement in the elongated direction compared to

the transverse directions).

1.4.1 Energy and the equilibrium density

We consider again a symmetric homogeneous Bose mixture (n1 = n2 = n and

g1 = g2 = g) in a box of size L, where gj = −2h̄2/(maj). Despite the fact that a

true BEC does not exist in 1D configuration, the Bogoliubov theory can correctly

predict the energy of a weakly interacting Bose gas [128]. In the droplet regime

where δg+ > 0, the ground-state energy can be obtained from equations (1.20) and

(1.21) by replacing the sum over k by an integral
∑
k

→ V
∫∞

0
dk/(2π). This yields

E

L
=
δg+

4
n2 − 2

√
m

3πh̄

∑
±

µ
3/2
± , (1.47)

where δg+ = g + g12, and µ± = nδg±. In figure 1.7 we show the results for the

ground-state energy per particle from equation (1.47) valid in the limit δg+/g → 0.

We observe that in the high density regime, the energy exhibits a minimum at a

nonzero density, which is the hallmark of a liquid state. Whereas, in the limit of low

density, the energy increases monotonically indicating the formation of a gas phase

as is foreseen above. The same figure depicts also that the energy is decreasing with

the interaction parameter, δg+.

The equilibrium density of the droplet can be obtained by minimizing the ground-
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Figure 1.7: Energy per particle of a 1D droplet as a function of the density for two different value of δg+.The energy
is normalized by the binding energy of dimers composed from atoms from different components εB = −h̄2/(ma2

12).

state energy (1.47) with respect to the density. This gives [61]

n(0) =
8gm

9π2h̄2(δg+/g)2
, (1.48)

and the corresponding chemical potential equals µ0 = −δg+n0/2.

1.4.2 1D Generalized GPE

Following the same fashion as in 3D case, we derive the underlying 1D generalized

GPE [46]

ih̄
∂Φ(x, t)

∂t
=

(
− h̄2

2m

∂2

∂x2
+
δg+

2
|Φ|2 −

√
m

πh̄
g3/2|Φ|

)
Φ(x, t), (1.49)

where Φ(x, t) satisfies the condition
∫ +∞
−∞ |Φ(x, t)|2dx = N .

Let us introduce characteristic units of length x̃ = x/ξ, time t̃ = th̄/(mξ2), energy
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h̄2/mx̃ = h̄/t̃, where

ξ =
πh̄2

mg

(
δg+

2g

)1/2

, (1.50)

is the healing length. This yields for the wavefunction [124, 125]

φ =
√
πξ

(
δg+

2g

)3/4

Φ, (1.51)

and casts equation (1.49) in the following dimensionless form:

i
∂φ(x̃, t̃)

∂t̃
=

(
−1

2

∂2

∂x̃2
+ |φ|2 − |φ|

)
φ(x̃, t̃), (1.52)

with a new normalization condition
∫ +∞
−∞ |φ(x̃, t̃)|2dx̃ = Ñ , where Ñ is the rescaled

atom number. A peculiarity of the 1D geometry is that the generalized GPE (1.52)
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Figure 1.8: Density profiles of 1D droplets for different values of Ñ

admits exact solution [61, 124]

φ(x̃, t̃) = − 3µ exp (−iµt̃)
1 +

√
1 + (9µ/3) cosh(

√
−2µx̃)

, (1.53)
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where µ is the chemical potential.

The normalization condition gives a relation between the chemical potential and the

atom number [124]

Ñ =
4

3

[
ln

(√
−9µ/2 + 1√
9µ/2 + 1

−
√
−9µ/2

)]
. (1.54)

We can distinguish mainly two different regimes of the self-bound droplet. (i) A

flat-top (large) droplet corresponds to µ→ −2/9 and large N [125] (see blue curve

in figure (1.8)). (ii) A small droplet corresponds to a small N and µ. In such a

limit, the mean-field cubic nonlinearity can be ignored, thus the droplet features an

approximately Gaussian shape [124, 125] (see purple curve in figure (1.8)).

One should stress that in the case of negative δg+ and large N , equation (1.52)

becoming the integrable GPE with the cubic nonlinearity characterized by the bright

soliton [125].

1.5 Finite-temperature effects

As a self-bound object, the energy of single-particle/collective excitations is bounded

from above by the particle-emission threshold making the droplet automatically lose

its thermal energy and hence reach zero temperature (self-evaporation) [46]. The

experimental observation of this is still challenging. Indeed, the experimentally

observed binary liquid mixtures might have a low but nonzero temperature in the

realistic time-scale of experiments [47, 48, 49]. At such low temperatures, a fraction

of unbound atoms (droplet depletion) appears as a halo surrounding the droplet due

to the presence of thermal fluctuation effects [126, 127].

Let us first discuss the case of self-bound droplets in 3D Bose mixtures. The free
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energy (1.26) can be then written in terms of density as:

F

NE0

=
E

NE0

−
√
π

720
(na3)−5/2

(
T

E0

)4∑
±

(δa±/a)−3/2, (1.55)

where E0 = h̄2/ma2.

In figure 1.9. (a) we show the behavior of free energy (1.55) at different tem-

peratures. We see that the local minimum disappears at the critical temperature

Tc/|E0| ' 1.437× 10−4 at which the thermal fluctuations compensate the repulsive

quantum fluctuations. At higher temperatures TN/|E0| > 1.5×10−4, the self-bound

droplet completely evaporates due to the strong thermal fluctuations. These latter

can overcome the attractive forces, leading to the dissociation of the droplet above a

certain critical (evaporation) temperature. Figure 1.9. (b) depicts that the critical

temperature Tc is decreasing with |a12/a|.
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Figure 1.9: (a) Free energy of a 3D droplet as a function of the density calculated from equation (1.55) at different
temperatures, and for δa+/a = 0.1. (b) Critical temperature of a 3D droplet as a function of interspecies interactions
a12/a.

In a 1D liquid droplet, equation (1.26) gives for the free energy in terms of the
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Figure 1.10: (a) Free energy of a 1D droplet as a function of the density calculated from equation (1.55) at
different temperatures, and for δg+/g = 0.3. (b) Critical temperature of a 1D droplet as a function of interspecies
interactions δg+/g.

equilibrium density (1.48):

2F

N |εB|
=

2E

N |εB|
− π(g/g12)2

6

(
32(n/n(0))

9π2(δg+/g)2

)−3/2(
T

|εB|

)2∑
±

(
δg±
g

)−1/2

. (1.56)

In figure 1.10. (a) we present the 1D free energy (1.55) at different temperatures.

At very low temperature, i.e., T = 0.15 |εB|, the free energy exhibits a local minimum

at the density 0.7n(0), thus the droplet state satisfies the self-bound condition [69].

Increasing temperature (T = 0.4 |εB|), the equilibrium density becomes smaller and

the droplet starts to evaporate. At higher temperatures i.e. (T = 0.5 |εB|), the free

energy decreases monotonically as the density decays to zero. Hence, the self-bound

liquid evaporates at a critical temperature 0.4|εB| ≤ Tc < 0.5|εB|.

Figure 1.10. (b) shows the critical temperature as a function of δg+/g. We observe

that Tc decreases with increasing δg+/g since the ground-state energy is proportional

to 1/(δg+/g) in contrast to the 3D case [68, 69, 42]. Large interspecies interaction

may jeopardize the formation of a stable quantum liquid droplet [68].

Note that the experimental measurement of the predicted thermal effects of a
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self-bound droplet is a complicated task due to the lack of efficient thermometry at

low temperatures [129].
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Chapter 2

Tools for ultracold atomic gases in

disordered potentials

Disorder is an intrinsic property of all real systems. In the context of quantum

physics, disorder refers to any form of randomness or irregularity in the properties

of a physical system. Disorder can arise in a quantum mechanical system, from a

variety of sources, including impurities, defects, thermal fluctuations, or external

perturbations. Studying the effect of a disordered potential on a BEC is of sig-

nificant importance in the field of quantum physics and condensed matter physics.

Understanding the interplay between disorder and the underlying quantum mechan-

ics is crucial for advancing our understanding of many-body quantum systems and

for developing practical applications in areas such as quantum computing, quantum

sensing, and materials science.

Disorder can give rise to a range of fascinating phenomena that are not present

in ordered systems. One of the key phenomena associated with disorder in quantum

systems is Anderson localization. This latter refers to the absence of diffusion in a

disordered system, leading to the confinement of wavefunctions in localized regions.

This effect was first predicted by Philip Anderson in 1958 [73] and has since been

observed in various physical systems, including ultracold atomic gases (see for e.g.[81,
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130]). The interplay between disorder and interactions may exhibit critical behavior

and quantum phase transitions that differ from conventional ordered or disordered

phases such as Bose glasses or Griffiths-McCoy phases [86].

This chapter is devoted to introduce the fundamental concepts and review the

main features on disordered potentials, used to describe disordered ultracold atomic

systems, thus serves as an introduction to the rest of this thesis. We review the

statistical properties of random potentials, then introduce the different possibilities

that can be followed to produce disordered potentials for ultracold neutral atoms.

Finally we present the theoretical tools to be used when dealing with Bose gases in

disordered potentials.

2.1 Statistical properties of random potentials

We call random potential or disordered potential the type of potential seen by the

system studied, whose amplitude and/or spatial variations are random. In this sec-

tion, we will define the statistical features associated with disorder. One important

way to characterize the disorder is to know all the n-point correlation functions

Rn(r1, r2, · · · , rn) = 〈U(r1)U(r2) · · ·U(rn)〉 , (2.1)

where 〈· · · 〉 indicates statistical averaging over many disorder realizations. As a

consequence each quantity examined must be averaged over a large number of real-

izations of the random potential when studying the influence of disorder.

Two statistical properties, defining the kind of disorder, which we will assume

to be verified: homogeneity of space, and vanishing long-range correlations.
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2.1.1 Homogeneity of space

The random potential is homogeneous, this implies that its statistical features are

independent of the absolute position in the sample:

〈U(r1 + z)U(r2 + z) · · ·U(rn + z)〉 = 〈U(r1)U(r2) · · ·U(rn)〉 , (2.2)

where z is a vector.

This assumption of homogeneity implies the symmetries :

R2(r) = R2(−r) and R2(k) = R2(−k), (2.3)

where R2(r) = R(r) is the two-point auto-correlation function, and its Fourier trans-

form R(k) =
∫
ddrR(r)e−ik.r.

Another consequence of space homogeneity, is that the single-point properties

which are determined by the probability distribution P (U), do not depend on po-

sition. Therefore, we can assume a vanishing statistical average, 〈U〉 = 0, thus the

standard deviation reads U2
R = 〈U2〉. The two-point correlation function, or auto-

correlation function, depends only on one relative coordinate R = 〈U(r′)U(r + r′)〉.

2.1.2 Vanishing long-range correlations

The second assumption on the random potential is the disappearance of statistical

correlations between values of the potential at points with infinitely large separation

[131].

〈U(r1) · · ·U(rn)U(rn+1 + z)U(rm + z)〉 −→|z|→∞ 〈U(r1)U(rn)〉 〈U(rn+1) · · ·U(rm)〉 .

(2.4)

In particular, the two-point correlator, R, drops to zero at infinity, as a result of

the assumption 〈U(r)〉 = 0, on a typical length-scale called the correlation length,
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σ. The correlation length is the minimal length scale characterizing the spatial

variations of the potential, it can be used to define a dimensionless autocorrelation

function c2(r) by [132]

R(r) = U2
Rc2(r/σ), (2.5)

and in Fourier space with d-dimension

R(k) = U2
Rσ

dc2(kσR). (2.6)

2.2 How to produce a disordered potential

Unlike condensed matter physics, cold atom physics allows for the employment of

completely described and controlled disordered potentials. Furthermore, the char-

acteristics of the disorder that we impose on the system can be varied in a very wide

range. Disorder may be introduced in ultracold systems in several ways. Speckle

potentials, quasiperiodic lattices, and impurity disorder, are among the most com-

monly implemented models of disorder. In this section, we briefly review their main

features.

2.2.1 Speckle potentials

Optical speckle patterns can be generated by a transmission of a laser light through

a material surface with a roughness on the scale of an optical wavelength [133].

The laser speckle is the figure formed by a coherent beam after traveling through

a random medium (rough diffusive plate), which is then focused by a convergent

lens (as illustrated in figure 2.1), such that the intensity distribution in the far field

corresponds to the interference of a large number of random phase sources. At

any spatial position x, the randomly phased partial waves originating from different

scattering sites of the rough surface total up, resulting in constructive or destructive

interferences [133].
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Figure 2.1: Optical speckle potentials. a) Optical configuration. b) Two-dimensional representation of a speckle
potential. Figure extracted from [134]

Speckle patterns are an excellent approach to generate disordered potential in

a controlled way. The fact that the intensity of the speckle pattern may be imme-

diately recorded by a CCD camera allows for exact measurement of the statistical

and correlation features of the disordered potential [135]. The speckle phenomenon

is not limited to optical fields but is also used in several other applications such as

in radar [136], ultrasound medical imagery [137], and spectral analysis of random

processes [138].

Speckle potentials offer benefits from both practical and fundamental perspec-

tives. Firstly, they can be readily created using basic optical components, and their

statistical characteristics are thoroughly understood [131, 132]. Secondly, speckle

potentials are characterized by correlated random patterns, and the correlation

functions can be tailored by adjusting the optical setup’s geometry used in their

generation. Speckle potentials are also an example of non-Gaussian potentials, ap-

propriate for analytical computations [132].

2.2.2 Multichromatic lattices

The autocorrelation length is a significant indicator of speckle potentials because

it estimates the minimal length scale beyond which the potential loses its random

nature and becomes correlated. The random potential produced by speckles is

often with correlation length, σ, of the order of several microns, what makes the
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random potential too coarse-grained [135]. However, It is simple to generate optical

standing waves with spatial periodicities that can also be smaller than half a micron.

This implies that by integrating many optical standing waves with distinct non-

commensurate spacings, it is possible to create a disordered potential with very

small correlation length.

Figure 2.2: A bichromatic optical lattice, the main lattice is perturbed by the addition of a secondary lattice with
different wave length. Figure extracted from [135]

To create a multichromatic lattice, multiple laser beams with different frequencies

(colors) are employed. Each laser beam generates a distinct optical lattice potential,

resulting in a superposition of different-colored lattices. The specific arrangement

and periodicity of these lattices depend on the laser beam parameters and on the

interference between them. As an example a bichromatic lattice is formed by com-

bining two incommensurate wavelength lattices (see figure 2.2). Actually, this kind

of disorder are not exactly disordered potentials, they differ from purely random

potentials in their statistical and correlation properties. They are quasiperiodic

potentials.

2.2.3 Impurity disorder

An alternative suggestion to generate disordered potentials, which does not entail

the dipolar force, is the impurity disorder. It refers to the presence of foreign atoms
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or particles within an otherwise homogeneous atomic system. Impurity disorder is

introduced by intentionally adding a small number of atoms or particles of a different

species into the atomic system, creating a localized region of distinct properties

within the overall atomic cloud, often referred to as a disorder potential. This

potential can arise due to the difference in the energy levels, scattering lengths, or

masses of the impurity and host atoms. The main species experiences the impurity

potential created by the second species

U(r) =
∑
i

f(r− ri), (2.7)

where ri denote the random positions of the impurities, and f is the single impurity

potential. Quite often, the single-impurity potential is assumed to be proportional

to a Dirac distribution, in which case the disorder is uncorrelated [139].

2.3 Common disorder correlations

In the context of disorder in BECs or other systems, two common types of disor-

der correlations are uncorrelated disorder and correlated disorder, characterized by

different correlation functions.

2.3.1 Uncorrelated disorder

Uncorrelated disorder (or white noise disorder) is a potential where there is no spatial

coherence. In other words, there is no correlation between the disorder values at

different positions. Mathematically, the autocorrelation function is delta-correlated

[132, 140, 141]

R(r) = R0δ(r), (2.8)

where δ is the d-dimensional Dirac function, and R0 characterizes the strength of

the potential which has the dimension of (energy)2(length)d. White noise disorder
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is largely used in cold atom experiments because of its simplicity and universality,

uncorrelated disorder makes it easier to compare experimental results with theo-

retical models. Theoretical calculations and simulations often assume uncorrelated

disorder to simplify the analysis and make predictions about the behavior of the

system.

2.3.2 Gaussian correlation

Correlated disorder involves disorder potentials with a nonzero correlation between

disorder values at different positions. The correlation function describes the degree

of correlation or spatial dependence between disorder values, in the case of Gaussian

autocorrelation, it follows a Gaussian distribution. The correlation function reads

[100, 142]

R(r) = R0e
−r2/σ2

, (2.9)

which can be witten in Fourier space as:

R(k) = R0e
−σ2k2/2. (2.10)

For disorder with a Gaussian autocorrelation function, the spatial correlation length

σ is an extremely important parameter. It controls how quickly the correlation

between disorder quantities decays as the distance between locations grows larger. A

shorter correlation length suggests that disorder values are more closely correlated at

adjacent locations, whereas a longer correlation length shows weaker correlation over

greater distances. The Gaussian autocorrelation function provides a well-defined and

mathematically tractable foundation for theoretical computations and simulations.

2.3.3 Speckel with uniform apertures

Speckle patterns with uniform apertures refer to a specific type of disorder potential

used in cold atom experiments. These patterns are created by introducing uniform
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apertures into the optical setup used to generate speckle patterns, it provides a

flexible and controllable approach for generating disorder potentials in cold atom

experiments. Considering the case of isotropic apertures, the correlation function

reads [132]

R(r) = U2
Rsinc2(r/σ), (2.11)

The corresponding Fourier transform in the 3D case, has the form

R(k) = URσ
3 π

2

kσ
Θ(2− kσ), (2.12)

where Θ is the Heaviside step function.

In a 1D configuration, it reads:

R(k) = U2
Rσπ

(
1− kσ

2

)
Θ

(
1− kσ

2

)
. (2.13)

Figure 2.3: Typical set-up for an experiment with speckle potentials. The correlation functions of the speckle field
ε can be designed by choosing the shape and size of the aperture A and the intensity profile of the free laser beam
[143].

Optical potentials have demonstrated their effectiveness in the confinement and

control of ultracold atoms. When exposed to laser light that is nearly resonant

with a transition from the ground state to an excited state. The precise level of

manipulation provided by optical dipole potentials has been harnessed to confine
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ultracold atoms within low-dimensional structures and to generate lattice potentials

for these atoms.

The disordered distribution of light can be imaged onto the atoms, producing a

disordered potential V (r) proportional to the local laser intensity I(r) [135]. Typi-

cally, when the light’s wavelength significantly deviates from the atomic resonance,

there is no absorption of the light, and the resulting mechanical impact can be

characterized using a potential energy represented by the following equation:

V (r) =
3πc2

2ω3
0

(
Γ

∆

)
I(r), (2.14)

where c is the speed of light, ω0 is the frequency of the atomic resonance, Γ its

radiative linewidth, ∆ = ω − ω0 the detuning, and I(r) the intensity distribution.

The sign of this potential depends on ∆. For ∆ < 0 (red detuning), V (r) is negative,

hence maxima of light intensity correspond to potential minima: atoms will move

towards higher-intensity regions. Instead, when ∆ > 0 (blue detuning), V (r) is

positive, hence maxima of light intensity correspond to potential maxima: atoms

will move towards lower-intensity regions.

The correlation functions can be directly controlled in the experiments by chang-

ing the aperture of the optical system. A typical experimental setup is sketched in

figure 2.3. A lens is introduced in front of the diffusive plate to focus the laser power

onto the atoms. However, it is important to note that the wavefront curvature intro-

duced by the lens does not alter the correlation characteristics of the speckle pattern

in the back focal plane. On the contrary, the aperture A plays a different role by

restricting the area of the diffuser that receives illumination, and its specific design

is employed to manipulate the correlation functions [143].
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2.4 Bose-Einstein condensates in disordered po-

tentials

Weakly interacting BECs in a disorder environment have long been a challenging

topic in the field of condensed matter physics due to the intriguing interplay between

superfluidity and localization. In this section we discuss the possibility of Bose-Glass

and Anderson localization transition in a BEC in a disordered medium.

2.4.1 Localization

In contrast to condensed-matter systems, ultracold atomic gases can be realized in

the presence of controlled disorder, opening possibilities for investigations of local-

ization effects[89, 90, 91, 92]. The remarkable benefit provided by atomic systems

lies in the extraordinary opportunity to manipulate perfectly isolated samples at

nearly absolute zero temperature, with experimental control over a wide range of

Hamiltonian parameters, such as the lattice depth or the strength of atom-atom

interactions, which can be finely adjusted, even in real-time [135].

Figure 2.4: (a) Difference between extended and localized wavefunctions. (b) Andesrson localisation of ultra cold
atoms in a 1D speckle disorder. When a small BEC initially confined along z-axis, is released in the disordered
potential, its expanssion stops after about 5s,after which astationary density profile whith exponentially decaying
wings emerges, taken from[144].

Among the most intriguing phenomena observed in the wave propagation within

disordered systems is Anderson localization. This phenomenon is named after P.
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W. Anderson, who, in 1958, elucidated the pivotal significance of disorder in the

transition from metal to insulator that is observed in solid-state systems [73]. In

the subsequent years, it became evident that Anderson localization is a significantly

broader phenomenon, applying to the propagation of various types of linear waves

in disordered mediums.

In the presence of disorder, the wavefunction which characterizes a BEC can

be Anderson localized. This wavefunction (more precisely, the squared modulus of

it) can be directly observed by imaging the condensate with a CCD camera [135].

The occurrence of Anderson localization is significantly influenced by the dimension

of the system. Disorder exerts its most pronounced impact in 1D, where particles

are scattered either forward or backward, leading to individual particles becoming

exponentially localized over a specific length scale. As we see in figure 2.4, by

releasing a BEC in 1D speckle disorder, the evolution of the atomic wavefunction

shows an impressive behavior. After an initial expansion, the atomic wave packet

stops expanding and its wings decay exponentially [144].

2.4.2 Phase transitions

A highly intriguing and as-yet unresolved issue concerns the influence of interactions

on localization. Initially, Anderson developed his theory for non-interacting quan-

tum particles. Yet, when one takes into account genuinely interacting particles, the

situation may differ considerably. The interplay between disorder and interactions

in the physics of localization has been the subject of extensive theoretical explo-

ration. It quickly became apparent that repulsive interactions have the potential

to counteract disorder and ultimately disrupt localization. Nevertheless, in systems

with strong interactions, distinct regimes can emerge, leading to the attainment of

new quantum phases where interactions and disorder work together to localize the

system in glassy states.

A logical initial step in understanding the behavior of the BEC within a disor-
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Figure 2.5: Density profile of the BEC after 28 ms of expansion from the combined magnetic and speckle potential
for varying speckle potential intensities VS [80].

dered potential is to examine the configuration of the atomic density distribution

once it has been released from the confining potential. We can consider the case of

disordered potentials created with optical speckles, first investigated with 87Rb in

[80]. In figure 2.5 one can observe three different regimes, depending on the ratio be-

tween the speckle potential intensity VS and the BEC chemical potential µ. For very

small optical potentials VS = 0.1µ one does not observe any significant deviation

from the ordinary Thomas-Fermi shape of the BEC expanding from the harmonic

trap (figure 2.5. B). For higher speckle heights 0.1µ ≤ VS ≤ µ one observes that the

density distribution is strongly modified by the appearance of complex structures

in the form of elongated stripes (figure 2.5.C). By increasing the speckle height to

VS ≥ µ, the expanded density profile ceases to be characterized by stripes (figure 2.5

E) [135]. In this case, the BEC is localized in the wells of the high random potential.

In [145] a Lifshitz glass phase has been introduced to describe the system’s

ground-state when interactions are weak. Lifshitz states, a specific category of

localized states, demonstrate ”weaker” localization characteristics compared to

Anderson-localized states. This means that they exhibit exponential decay primar-

ily in their distant tails, while their shape near the peak is significantly influenced

by the local properties of the potential. In figure 2.6 we can see the phase diagram

of the interacting disordered BEC derived in [145] as a function of the BEC chem-

ical potential and of the speckle height. Starting with the Lifshitz glass phase and

escalating the level of interactions, a phase characterized by fragmented interacting

BECs has been suggested. This phase serves as a precursor to the Bose glass phase.
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Figure 2.6: Schematic quantum-state diagram of an interacting ultracold Bose gas in 1D disorder. The dashed
lines represent the boundaries. VR is the amplitude of the random potential. [145].

2.5 Theoretical tools

The interplay between interaction and disorder in a BEC is an interesting and com-

plex topic that develops when both atom interactions and disorder potentials are

present in the system. This interaction produces a wide range of physical phenom-

ena and has the potential to profoundly impact the behavior and features of the

condensate. In the last decade there was an extended theoretical and experimen-

tal efforts in understanding the influence of disorder on samples of cold atoms (see

e.g.[91, 74, 76, 77, 140]). In this section we introduce the key theoretical models by

which we might describe weakly interacting Bose gases in weak random potentials.

2.5.1 Bogoliubov-Huang-Meng theory

In order to study the properties of interacting bosons in a random potential, Huang

and Meng proposed a Bogoliubov theory, which was applied to the case of superfluid

helium in porous media [140]. Huang and Meng calculated the condensate density

nc in terms of the particle density n of a Bose gas with contact interaction at

low temperatures in a random potential within a Bogoliubov theory and found
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perturbatively two different depletions of the condensate density which are : the

known depletion due to the particle interaction, and a depletion induced by the

disorder potential. Here we present the main concepts of HM theory for a weakly-

interacting disordered Bose gas.

We consider a 3D ultracold Bose gas in a weak random potential. The Hamilto-

nian of the system can be expressed as:

Ĥ =

∫
drψ̂†(r)

[
−h̄2∇2

2m
+ U(r)

]
ψ̂(r) +

g

2

∫
drψ̂†(r)ψ̂† (r) ψ̂ (r) ψ̂(r), (2.15)

where ψ̂†(r) and ψ̂(r) are creation and annihilation field operators, obeying the usual

bosonic commutation relations, g = 4πh̄2a/m is coupling constant, with a being the

s-wave scattering length, and U(r) represents the random potential. We assume

that the average over the random potential vanishes 〈U(r)〉 = 0 and that it has

some kind of correlation 〈U(r)U(r′)〉 = R(r− r′)[99, 146].

With the help of a Fourier transformation (1.9) we can rewrite the Hamiltonian

(2.15) in momentum space according to

Ĥ =
∑
k

(
h̄2k2

2m

)
â†kâk +

1

V

∑
p,k

Up−kâ
†
pâk +

g

2V

∑
p,k,q

â†k+qâ
†
p−qâpâk, (2.16)

where Ek = h̄2k2/(2m). At very low temperature the number of the particles

in the ground-state Nc becomes macroscopically large. In this case we can use

the Bogoliubov prescription described in the previous chapter which stipulates that

â0 = â†0 =
√
Nc. As a consequence, the respective momentum summations in the

Hamiltonian (2.16) is decomposed into their ground state k = 0 and excited states

k 6= 0. Assuming a weakly interacting system, we can then ignore terms which

contain creation and annihilation operators of the excited states, which are of third

and fourth order. On the other hand, for weak enough disorder we can neglect terms

Up−kâ
†
pâk with both k 6= 0 and p 6= 0 [99].

In order to diagonalize the Hamiltonian (2.16), Huang and Meng [140] introduces
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the following Bogoliubov transformation [119]

âk = ukb̂k − vkb̂†−k − βk,

â†k = ukb̂
†
k − vkb̂−k − β

∗
k,

(2.17)

where b̂k and b̂†k are operators of elementary excitations which obey the usual Bose

commutation relations (1.14), the functions uk,vk are defined as

uk, vk =
1

2

(√
εk
Ek

±
√
Ek

εk

)
, (2.18)

and the disorder translation βk is defined as:

βk =

√
nc
V

Ek

ε2
k

Uk. (2.19)

The Bogoliubov excitations energy is given by [100, 146]

εk =
√
E2

k + 2gncEk. (2.20)

The diagonal form of the Hamiltonian (2.16) can be obtained using (2.18) and

averaging over the disorder. This yields

Ĥ = E +
∑
k 6=0

εkb̂
†
kb̂k, (2.21)

where E stands for the ground-state energy defined as:

E

V
=
g

2
n2 +

1

2V

∑
k

[εk − Ek − ncg] + ER, (2.22)

and

ER = −
∑
k

nc
〈
|Uk|2

〉 Ek

ε2
k

= −
∑
k

ncRk
Ek

ε2
k

. (2.23)

is the disorder contribution to the ground-state energy.
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The noncondensed density can be calculated through equations (1.28) and (2.17)

ñ =
1

V

∑
k

[
v2
k + (v2

k + u2
k)Nk + 〈|βk|2〉

]
. (2.24)

The anomalous density can be computed using equations (1.29) and (2.17)

m̃ = − 1

V

∑
k

[
vkuk(1 + 2Nk) + 〈|βk|2〉

]
. (2.25)

The leading term in equations (2.24) and (2.25) represents the quantum contribu-

tion to the noncondensed and anomalous densities, the subleading term accounts for

thermal contribution, and the last terme, nR = 1
V

∑
k

〈|βk|2〉, is the disorder fluctua-

tions known as glassy fraction. It originates from the accumulation of density near

the potential minima and density depletion around the maxima [100, 146].

To be concrete, we apply the above HM results to a delta-correlated random

potential (2.8), its Fourier transform is given by R(k) = R.

nR =

∫
d3k

(2π)3

E2
k

ε4
k

R(k) =
m2R

8π3/2h̄4

√
n

a
. (2.26)

We see that the density of BEC in a weak disorder potential is depleted due to

localization effects [140], this was found first by Huang and Meng in 1992. For BEC

at zero temperature, a large number of atoms occupy the lowest energy state, forming

a coherent matter wave. This condensate state is characterized by a macroscopic

occupation of a single quantum state. However, interactions between atoms or

with the surrounding environment can cause scattering events that transfer atoms

from the condensate state to other states. When disorder is introduced, it breaks

the coherence and induces the formation of localized regions or domains within the

condensate. These localized regions are characterized by different local densities and

phases. As a result the condensate depletion consists of two contributions, one due to

the quantum fluctuations (1.28) and another one due to the disorder potential, this
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latter depletion is called glassy fraction. It is obvious from equation (2.26) that

when a vanishes, nR becomes infinite (nR ∝
√

1/a). This means that the system

would collapse, and eventually destabilizes, if there were no repulsive interactions

between atoms.

2.5.2 Perturbative approach

The perturbative approach is most suitable when the disorder in the BEC is rela-

tively weak, meaning that the energy scale associated with disorder is much smaller

than the energy scale associated with particle interactions. This condition allows for

the use of perturbation theory. It is a valuable tool for studying disordered BECs.

It helps us to understand how disorder affects the properties and behavior of BECs.

The perturbative theory for disordered BECs has been used in many theoretical

works (see e.g. [74, 76, 77, 75, 78, 79]).

Let us consider weakly interacting Bose gases at zero temperature in a weak

random potential U(r), the system is described by the static GPE

µΦ(r) =

[
− h̄2

2m
∇2 + U(r) + g|Φ(r)|2+

]
Φ(r). (2.27)

If the disorder is sufficiently weak, it is possible then to solve the GPE (2.27) per-

turbatively in powers of U using the expansion [74, 76, 77, 75, 78, 79]

Φ(r) = Φ(0) + Φ(1)(r) + Φ(2)(r) + · · · , (2.28)

where the index i in the real valued functions Φ(i)(r) signals the i-th order contri-

bution with respect to the disorder potential.
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Inserting the ansatz (2.28) into equation (2.27), we get up to first-order in U

(
gΦ(0)2 − µ

)
Φ(0) +

[
ĥΦ(1)(r) + U(r)Φ(0)

]
(2.29)

+
[
ĥΦ(2)(r) + U(r)Φ(1)(r) + 3gΦ(0)Φ(1)2(r)

]
+ · · · = 0,

with the operator ĥ = −(h̄2/2m)∇2 − µ+ 3g(Φ(0))2.

Equating the coefficients leads to one equation for each order.

Zeroth-order calculation gives

Φ(0) =

√
µ

g
. (2.30)

First-order term, Φ(1)(r), can be obtained by solving

ĥΦ(1)(r) = −U(r)Φ(0). (2.31)

Performing a Fourier transformation leads to an algebraic equation which is solved

by

Φ(1)(k) =
−U(k)Φ(0)

Ek − µ+ 3gΦ(0)2
. (2.32)

Following the same fashion, second-order term, Φ(2)(r), is determined by solving

ĥΦ(2)(r) = −Φ(1)(r)[U(r) + 3gΦ(0)Φ(1)(r)]. (2.33)

Using the Fourier transformation of a product of two functions

∫
d3rΦ(1)(r)U(r)e−ikr =

∫
d3k′

(2π)3
Φ(1) (k− k′)U (k′) , (2.34)

we obtain

Φ(2)(k) = −
∫

d3k′

(2π)3 Φ(1) (k− k′)
[
U (k′) + 3gΦ(0)Φ(1) (k′)

]
Ek − µ+ 3gΦ(0)2

. (2.35)
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Now we calculate the depletion induced by disorder (glassy fraction) is given by

nR = n− nc, (2.36)

where

nc = 〈Φ(r)〉2 = Φ(0)2 + 2Φ(0)〈Φ(1)(r)〉+ 2Φ(0)〈Φ(2)(r)〉+ 〈Φ(1)(r)〉2 + · · · , (2.37)

is the condensed density, and

n = 〈Φ(r)2〉 = Φ(0)2 + 2Φ(0)〈Φ(1)(r)〉+ 2Φ(0)〈Φ(2)(r)〉+ 〈Φ(1)2(r)〉+ · · · (2.38)

is the total density.

The property 〈U(r)〉 = 0 implies that 〈Φ(1)(r)〉 = 0, then equations (2.37) and (2.38)

reduce to

nc = Φ(0)2 + 2Φ(0)〈Φ(2)(r)〉+ · · · , (2.39)

and

n = Φ(0)2 + 2Φ(0)〈Φ(2)(r)〉+ 〈Φ(1)2(r)〉+ · · · . (2.40)

Therefore, the glassy fraction takes the form

nR = 〈Φ(1)2(r)〉+ · · · (2.41)

=

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈U(k)U(k′)〉Φ(0)2

(Ek′ − µ+ 3gΦ(0)2)(Ek − µ+ 3gΦ(0)2)
ei(k+k′).r + · · · .

Making use of 〈U(k)U(k′)〉 = (2π)3δ(k + k′)R(k), and µ = gΦ(0)2 = gn, we obtain

nR = n

∫
d3k

(2π)3

R(k)

(Ek + 2gn)2
+ · · · (2.42)

Equation (2.42) shows that the disorder correlation deforms the condensate causing

the occurrence of a depletion due to localization effects.

53



Tools for ultracold atomic gases in disordered potentials

As an illustration, let us discuss the glassy fraction for a delta-correlation

function of (2.8). A straightforward calculation using (2.42), yields nR =

(m2R/8h̄4π3/2)
√
n/a which coincides with the seminal HM result (2.26) [140].

In next chapters we will use both theoretical models (HM theory and perturba-

tive approach) to study effects of weak random potentials on the equilibrium and

dynamical properties of Bose mixtures and on quantum droplets.
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Chapter 3

Binary Bose-Einstein condensates

in weak disordered potentials

In this chapter we present a comprehensive study of equilibrium and nonequilibrium

behaviors of two-component BECs with weak disorder potentials.

We start with the equilibrium case and analyze some ground-state and thermo-

dynamic aspects of disordered mixtures. To this end, we extend the perturbative

theory applicable to the single component bosonic gas, described in Chapter 2, and

present a detailed analysis of weakly interacting homogeneous two-component Bose

gases subjected to both correlated and uncorrelated disorder potentials. The effects

of the disorder on the miscibility-immiscibility condition are also deeply investi-

gated. We derive useful expressions for the glassy fraction, the equation of state

(EoS), the compressibility, and the superfluid density. We look at how each species

is influenced by the disorder and how the interaction between disordered bosons

influences the coupling and the phase transition between the two components. In

the decoupling regime where the interspecies interaction goes to zero, we find good

agreement with the analytical results obtained within the Huang-Meng model [140]

and perturbative theory for a single component BEC.

On the other hand, we analyze the dynamical properties of two BECs in a Gaus-
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sian disorder potential with time-periodic driving using the aforementioned time-

dependent perturbation theory. The complex combination of atomic interactions,

the disorder potential, and time-periodic perturbations may uncover new phenom-

ena in dirty Bose mixtures such as Floquet states (see for review [147]). In the field

of ultracold quantum gases, this concept could offer powerful techniques to reach

novel phase transitions (see [27, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156]

and references therein). Our theory predicts an oscillatory behavior of the conden-

sate deformation during the time evolution. It is found in addition that the disorder

drives the growth of the disorder fraction with time, reducing the condensed fraction

in each species. Interestingly, a long time analysis predicts the existence of station-

ary states resembling to the Floquet states due to the combination of many-body

effects, the drive frequency and disorder correlations.

3.1 Equilibrium of a disordered mixture

In this section we investigate the impacts of a weak disorder potential on the quan-

tum fluctuations and on the superfluidity of two-component BECs in the equilibrium

state.

3.1.1 Model

Consider weakly interacting binary Bose gases at zero temperature in a weak random

potential fulfilling the mean-field miscibility criterion, the system is described by the

coupled GPE:

µjΦj =

[
− h̄2

2mj

∇2 + Uj + gj|Φj|2 + g12|Φj|2
]

Φj, (3.1)

where Φj is the wavefunction of each condensate, the indice j is the species label,

j = 3 − j, µj is the chemical potential of each condensate, gj = (4πh̄2/mj)aj

and g12 = g21 = 2πh̄2(m−1
1 + m−1

2 )a12 with aj and a12 being the intraspecies and
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the interspecies scattering lengths, respectively. The gas parameter satisfies the

condition nja
3
j � 1. The disorder potential Uj(r) is described by vanishing ensemble

averages 〈U(r)〉 = 0, and a finite correlation of the form 〈U(r)U(r′)〉 = R(r − r′).

For weak disorder, equation (3.1) can be solved using straightforward perturbation

theory in powers of U using the expansion [74, 75, 78, 76, 77, 79]

Φj = Φ
(0)
j + Φ

(1)
j (r) + Φ

(2)
j (r) + · · · , j = 1, 2 (3.2)

where the index i in the real valued functions Φ(i)(r) signals the i-th order contri-

bution with respect to the disorder potential. They can be determined by inserting

the perturbation series (3.2) into equation (3.1) and by collecting the terms up to

U2. The zeroth-order gives

Φ
(0)
j =

√√√√µj − g12Φ
(0)2

j

gj
, (3.3)

which is the uniform solution in the absence of a disorder potential. Combining

equations (3.3), yields

Φ
(0)
j =

√
µj
gj

(
1− g12

gj

µj
µj

)
∆

∆− 1
, (3.4)

where ∆ = gjgj/g
2
12 is the miscibility parameter which characterizes the miscible-

immiscible transition. For ∆ > 1, the mixture is miscible while it is immiscible for

∆ < 1.

First-order equations read

− h̄2

2mj

∇2Φ
(1)
j (r) + Uj(r)Φ

(0)
j + 2gjΦ

(0)2
j Φ

(1)
j (r) + 2g12Φ

(0)
j Φ

(0)

j
Φ

(1)

j
(r) = 0, (3.5)
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Performing a Fourier transformation:

Φ(r) =

∫
dk

(2π)3
eik.rΦ(k), (3.6)

one obtains the first-order solution:

Φ
(1)
j (k) = −

[
Uj(k) + 2g12Φ

(0)

j
Φ

(1)

j
(k)
]

Φ
(0)
j

Ekj + 2gjΦ
(0)2
j

, (3.7)

where Ekj = h̄2k2/2mj.

For Ekj � 2gjΦ
(0)2
j = µj

(
1− g12µj/gjµj

)
∆/(∆−1), the kinetic energy is negligible

compared to the random potential energy then, the mixture deformation sustains

only the potential effects. Therefore, the coupled GPE (3.1) yield for the total

density nj(r) = Φ
(0)2
j + n

(1)
j (r), where

n
(1)
j =

∆

(∆− 1)

(
n0j −

g12

gj
n0j

)
, (3.8)

with n0j = (µj − Vj)/gj being the decoupled condensate density which is nothing

else than the standard Thomas-Fermi-like shape.

For Ek � µj
(
1− g12µj/gjµj

)
∆/(∆−1), the densities of the two condensates follow

the modulations of a smoothed disorder potential where the variations of U have

been smoothed out.

Second-order term is governed by the following equations

− h̄2

2mj

∇2Φ
(2)
j (r) + Uj(r)Φ

(1)
j + gj

[
2Φ

(0)2
j Φ

(2)
j (r) + 3Φ

(0)
j Φ

(1)2
j (r)

]
(3.9)

+ g12

[
2Φ

(0)

j
Φ

(1)

j
(r)Φ

(1)
j (r) + Φ

(0)
j Φ

(1)2

j
(r) + 2Φ

(0)
j Φ

(0)

j
Φ

(2)

j
(r)

]
= 0.
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The solution of these coupled equations in the momentum space reads

Φ
(2)
j (k) = −

∫
dk′

(2π)3

Φ
(1)
j (k− k′)

[
Uj(k

′) + 3gjΦ
(0)
j Φ

(1)
j (k′)

]
Ekj + 2gjΦ

(0)2
j

− g12

2Φ
(0)

j
Φ

(0)
j Φ

(2)

j
(k)

Ekj + 2gjΦ
(0)2
j

− g12

∫
dk′

(2π)3
Φ

(1)

j
(k− k′)

[
2Φ

(0)

j
Φ

(1)
j (k′) + Φ

(1)

j
(k′)Φ

(0)
j

]
Ekj + 2gjΦ

(0)2
j

.

(3.10)

Equations (3.10) enable us to selfconsistently determine the chemical potential of

the system (see below).

Finally, the validity of the present perturbation approach requires the condition:

U � gjΦ
(0)2
j ' gjnj, (3.11)

where Φ
(0)
j is given in equation (3.4), tells us that the densities do not vary much

around the homogeneous values. For g12 = 0, one recovers the well-known condi-

tion (U � gΦ(0)2) established for a disordered single BEC [79]. Indeed, this simple

assumption indicates how localization can be destroyed in the regime of weak in-

teractions. However, the perturbation approach is no longer valid in the regime of

strong disorder.

Glassy fraction

Now, we evaluate the glassy fraction inside each component. As we have shown in

Chapter 2, the disorder contribution to the condensate can be given as the variance

of the wavefunction nRj = nj − ncj [76, 77], where

nj = 〈Φ2
j(r)〉 = Φ

(0)2
j + 〈Φ(1)2

j (r)〉+ 2Φ
(0)
j 〈Φ

(2)
j (r)〉+ · · · (3.12)

and

ncj = 〈Φj(r)〉2 = Φ
(0)2
j + 2Φ

(0)
j 〈Φ

(2)
j (r)〉+ · · · (3.13)
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is the condensed density.

Subtracting equations (3.13) from (3.12), one obtains nRj = 〈Φ(1)2
j (r)〉 + · · · ,

which is in fact analog to the Edwards-Anderson order parameter of a spin glass

[77, 157, 158].

From now on, we shall consider U1 = U2 = U and m1 = m2 = m. Em-

ploying the Fourier transform of Φ
(1)
j (r) of equation (3.7), and using the fact that

〈U(k′)U(k′′)〉 = (2π)3R(k′)δ(k′ + k′′), the glassy fraction, nRj, takes the form

nRj = nj

∫
dk

(2π)3
R(k)

[
Ek + 2nj

(
gj − g12

)
Ek

]2

, (3.14)

where Ek =
(
Ek+2gjnj

)(
Ek+2gjnj

)
−4g2

12njnj, and R(k) is the disorder correlation

in Fourier space.

Equation of state

The EoS can be calculated by substituting equations (3.3)-(3.10) into equation (3.12)

and solving the equation 〈Φ2
j(µbj)〉 = n(µbj), where µbj represents the bare chemical

potential. It diverges for uncorrelated disorder [77, 78]. We then obtain

µbj(nj, nj) = gjnj + g12nj −
∫

dk

(2π)3

R(k)

(gjgj − g2
12)Ek

{
(gjgj − g2

12)[Ek − 2nj(g12 − gj)]

+ g12gj[Ek − 2nj(g12 − gj)]−
2g12gjgjnj[Ek − 2nj(g12 − gj)]2 − 2g2

j gjnj[Ek − 2nj(g12 − gj)]2

Ek

− 2g12nj(gjgj − g2
12)[Ek − 2nj(g12 − gj)]

[Ek − 2nj(g12 − gj)]
Ek

−
2g12gjgjn

3/2
j [Ek − 2nj(g12 − gj)]3

(gjgj − g2
12)E2

k

}
,

(3.15)

To overcome this unphysical ultraviolet divergence, we renormalize the chemical

potential. The renormalized chemical potential is defined as:

µj(nj, nj) = µbj(nj, nj)− µbj(0), (3.16)
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where

µbj(0) = −
∫

dk

(2π)3
R(k)

[
1

Ek
+

gjg12

(gjgj − g2
12)Ek

]
, (3.17)

Omitting higher order in g12, we obtain, in second-order of the disorder strength,

the following renormalized EoS

µj = gjnj + g12nj +

∫
dk

(2π)3

R(k)

(gjgj − g2
12)E2

kEk

{
4g2

j gjnj (Ek + gjnj) (Ek + 2gjnj)
2

+ 4gjgjg12nj

[
(Ek + gjnj)(Ek + 2gjnj)

2 + E2
k(Ek + 2gjnj)

]}
. (3.18)

3.2 Delta-correlated disorder

White-noise (or uncorrelated) disorders are widely used, mostly because at low-

energy, many continuous random potentials can be replaced by a white-noise poten-

tial. Its autocorrelation function is defined in equation (2.8). This model is valid

when the correlation length of the correlation function R(r−r′) is sufficiently shorter

than the healing length.

Substituting equation (2.8) into equation (3.14), we get useful formula for the

glassy fraction:

nRj
nj

= 4πR′j

√
nja3

j

π
fj(∆), (3.19)

where R′j = R0/g
2
jnj is a dimensionless disorder strength and,

fj(∆) =

 (2βj)
−3/2√

1 + µ̄j +
√
βj

− (2βj)
−3/2√

(1 + µ̄j)−
√
βj

 f̄1(∆) (3.20)

+

 √
2β−1

j

4
√

1 + µ̄j +
√
βj

+

√
2β−1

j

4
√

(1 + µ̄j)−
√
βj

 f̄2(∆),

where

f̄1(∆) = (1 + µ̄j)
3 + 2αj(1 + µ̄j)

2− 4(1 + µ̄j)
[
2µ̄j

(
∆− 1

∆

)
+α2

j

]
+ 8µ̄jαj

(
∆− 1

∆

)
,
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f̄2(∆) = (1 + µ̄j)
2 + 2αj(1 + µ̄j)− 6µ̄j

(
∆− 1

∆

)
− 2α2

j ,

where βj = (1+ µ̄j)
2−4µ̄j [(∆− 1)/∆] , αj = µ̄j

(
1−

√
gj/
(
gj∆

))
, µ̄j = njgj/njgj.

Equation (3.19) is appealing since it describes the glassy fraction in terms of the

miscibility parameter. The total disorder density is given by nR = nR1 + nR2. For

∆ → ∞ (or g12 → 0, equivalently), we find from equation (3.19) that f1(∞) =

f2(∞) = 1/2. Therefore, we should reproduce the famous HM result [140], nR/n =

2πR′
√
na3/π for the single component disorder fraction. The intriguing interplay

between the strong intercomponent coupling and the disorder effects in the regime

∆ − 1 � 1 would cause a sharp increase in the functions fj(∆). Near the phase

separation i.e. ∆ → 1 (or g12 →
√
g1g2, equivalently), the functions fj(∆) are

diverging. They are complex for ∆ < 1 and hence, the mixture undergoes instability.

The disorder functions fj have the following asymptotic behavior for small a12

fj(a12) =
1

2
−

nj

njaj

(
1 +

√
njaj
njaj

)2a12 + · · · ,

and for large a12

fj(a12) =

(√
aj/aj − 1

)2

2
(
njaj
njaj

+ 1
)3/2√(

ajaj/a
2
12

)
− 1

+ · · · .

It is straightforward to check that these asymptotic results perfectly agree with the

solutions shown in figure 3.1 (a) in the asymptotic regime.

As an illustration of our theoretical formalism, we consider a two-component

Bose condensate of rubidium atoms in two different internal states 87Rb-87Rb. We

have taken the intra-component scattering lengths : a1 = 100.4 a0 and a2 = 95.44 a0

(a0 is the Bohr radius) [159], and the densities: n1 = 1.5× 1021 m −3, and n2 = 1021

m−3. Thus, the parameter nja
3
j is as small as ∼ 10−4.

Figure 3.1 (a) shows that for a12/a0 ≤ 97.89, the functions fj are decreasing
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Figure 3.1: (a) Behavior of the disorder functions fj as a function of the interspecies interaction strength a12 for
87Rb-87Rb mixture. (b) Behavior of the disorder functions fj as a function of the ratio a2/a1 for a12 = 90a0. Blue
dotted lines: f1. Red dashed lines: f2. Here a12 can be adjusted via Feshbach resonance.

with the interspecies interaction giving rise to the delocalization of both species.

In the vicinity of the transition between the miscible and immiscible phases i.e.

a12/a0 = 97.89, the functions fj exhibit an anomalous behavior where they develop

a small minimum. Then they start to increase for a12/a0 > 97.89. In such a regime,

both species are strongly localized in the local wells of the random potential.

The situation is quite different for fixed a12 and varying the interaction ratio

a2/a1. The disorder functions f1 and f2 decrease/increase with the ratio a2/a1 as

is shown in figure 3.1 (b). The function f2 develops a minimum at a2 ' a1. For

a2/a1 ≥ 5, f1 is very small and thus, the first component becomes almost superfluid

due to the suppression of the localization, while the second BEC remains localized

regardless of the value of a12.

One can conclude that the localization of each species does not depend only on

the disorder strength but depends also on the interspecies interactions and the ratio

of intraspecies interactions. Importantly, the localization of one component does not

trigger the localization of the second component due to the interplay of the intra-

and interspecies interactions and the disorder potential.
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For delta-correlated disorder, the EoS (3.18) turns out to be given as:

µj = gjnj + g12nj + 16πgjnjR
′
j

√
nja3

j

π
hj(∆), (3.21)

where

hj(∆) =
1

(2βj)3/2

∆

∆− 1

[
h̄1(∆) +

njg12

njgj
h̄2(∆)

]
, (3.22)

and

h̄1(∆) =

 1√
1 + µ̄j +

√
βj

− 1√
(1 + µ̄j)−

√
βj

H1(∆)

+

 √
βj√

1 + µ̄j +
√
βj

+

√
βj√

(1 + µ̄j)−
√
βj

H2(∆),

h̄2(∆) =

 1√
1 + µ̄j +

√
βj

− 1√
(1 + µ̄j)−

√
βj

H3(∆)

+

 √
βj√

1 + µ̄j +
√
βj

+

√
βj√

(1 + µ̄j)−
√
βj

H4(∆),

hj(∆) =
1

(2βj)3/2

∆

∆− 1

[
h̄1(∆) +

njg12

njgj
h̄2(∆)

]
,

and

h̄1(∆) =

 1√
1 + µ̄j +

√
βj

− 1√
(1 + µ̄j)−

√
βj

H1(∆)

+

 √
βj√

1 + µ̄j +
√
βj

+

√
βj√

(1 + µ̄j)−
√
βj

H2(∆),

h̄2(∆) =

 1√
1 + µ̄j +

√
βj

− 1√
(1 + µ̄j)−

√
βj

H3(∆)

+

 √
βj√

1 + µ̄j +
√
βj

+

√
βj√

(1 + µ̄j)−
√
βj

H4(∆),
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where

H1(∆) = (1 + µ̄j)
3 + (1 + µ̄j)

2
[

1
2

+ 2µ̄j − 1
2
µ̄j
(

∆
∆−1

)]
− 4(1 +

µ̄j)
[
µ̄2
j + µ̄j

(
1 + 2

(
∆−1

∆

))]
+ 2µ̄j

(
∆−1

∆

)
(1 + 4µ̄j) + 6µ̄2

j ,

H2(∆) = (1 + µ̄j)
2 + 1

2
(1 + µ̄j)

[
1 + µ̄j

(
∆

∆−1

)]
− 6µ̄j

(
∆−1

∆

)
,

H3(∆) = 2(1 + µ̄j)
3 + (1 + µ̄j)

2
[
−2 + 3

2
µ̄j − 1

2

(
∆

∆−1

)]
+

2µ̄j
{

3 +
(

∆−1
∆

)
[−8(1 + µ̄j) + 3µ̄j + 4]

}
, and

H4(∆) = 2(1 + µ̄j)
2 + 1

2
(1 + µ̄j)

[
1
2

(
∆

∆−1

)
+ 3µ̄j

]
− 12µ̄j

(
∆

∆−1

)
.

The last term in equation (3.21) accounts for the disorder corrections to the EoS. For

∆ → ∞ (or g12 → 0, equivalently), one has hj(∞) = 3/4 (see also Figure 3.2) and

thus, the EoS reduces to that of a single BEC namely; µ = gn(1 + 12πR′
√
na3/π),

found in Refs.[141, 158, 160] using the HM theory.
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Figure 3.2: (a) Behavior of the disorder functions hj as a function of a12 for 87Rb-87Rb mixture. (b) Behavior of
the disorder functions hj as a function of the ratio a2/a1 for a12 = 90a0. Blue dotted lines: h1. Red dashed lines:
h2.

Figure 3.2 (a) depicts that the functions hj grow with a12 and diverge at a12 →
√
a1a2 results in an enhancement of the total chemical potential. In this case, the

quantum fluctuations arising from interactions are viewed as being predominated

by disorder effects.

Moreover, we see from figure 3.2 (b) that the disorder functions hj behave dif-

ferently with the interactions ratio a2/a1. Both functions diverge for a2/a1 → 0 and
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match at a2/a1 = 5. The chemical potential associated with the first component µ1

enhances when h1 rises, while µ2 decays for lowering h2. This reveals that the com-

petition of the intraspecies interactions and the disorder potential may perceptibly

alter the behavior of the EoS of the global mixture.

3.2.1 Miscibility conditions

We now discuss a possible energetic instability, associated with the presence of the

disorder and the occurrence of miscible-immiscible phase transition. For a homoge-

neous mixture to be stable, the following conditions should be fulfilled [161]:

∂µj
∂nj

> 0, (3.23a)(
∂µj
∂nj

)(
∂µj
∂nj

)
>

(
∂µj
∂nj

)2

. (3.23b)

These conditions are derived from the variation of the energy with respect to the

densities. For the EoS (3.21), we obtain:

∂µj
∂nj

= gj

1 + 8πR′j

√
nja3

j

π

(
hj + 2nj

∂hj(∆)

∂nj

) . (3.24)

The second term in the r.h.s of equation (3.24) constitutes the disorder corrections

to the inverse compressibility κ−1
j = n2

j∂µj/∂nj. Figure 3.3 (a) shows that the

disorder functions nj∂hj/∂nj possess identical behavior over almost the entire range

of the interspecies interactions. They vanish for a12 = 0 where the two components

are spatially separated and remain negligibly small in the domain 0 ≤ a12/a0 ≤ 65,

indicating that the disorder effect is marginally relevant in this regime. For a12/a0 ≥

65, nj∂hj/∂nj decrease and display a negative divergence at a12 →
√
a1a2, leading

to substantially reduce the compressibility of the system. We observe from figure 3.3

(b) that the disorder functions n1∂h1/∂n1 and n2∂h2/∂n2 vary in the opposite way

with the ratio a2/a1. They diverge for a2/a1 → 0, and have minimum/maximum at
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Figure 3.3: (a) Behavior of the disorder functions ∂hj/∂nj in units of nj as a function of a12 for 87Rb-87Rb mixture.
(b) Behavior of the disorder functions ∂hj/∂nj in units of nj as a function of the ratio a2/a1 for a12 = 90a0. Blue
dotted lines: n1∂h1/∂n1. Red dashed lines: n2∂h2/∂n2.

a2/a1 ' 0.2, where the second component is extremely dilute compared to the first

component, then they increase/decrease for a2/a1 > 0.2 (see the inset of Fig.3.3 (b)).

This peculiar behavior can be attributed to the competition between the repulsive

interactions, the miscibility and the disorder. The functions ∂hj/∂nj are negative

in the whole range of interactions.

The stability conditions (3.23) turn out to be given as:

gj

1 + 8πR′j

√
nja3

j

π

(
hj + 2nj

∂hj(∆)

∂nj

) > 0, (3.25a)

and

∆

1 + 8πR′j

√
nja3

j

π

(
hj + 2nj

∂hj(∆)

∂nj

)1 + 8πR′
j

√
nja

3
j

π

(
hj + 2nj

∂hj(∆)

∂nj

) >
1 + 16πR′j

√
nja3

j

π

aj
a12

nj
∂hj(∆)

∂nj

2

. (3.25b)

Expressions (3.25) clearly show that the miscibility condition for a mixture of two

interacting BECs is significantly affected by the disorder potential. This gives rise
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to a phase transition to an immiscible phase even though the cleaned mixture is

miscible. For relatively large disorder strength, the mixture may drive a transition

to an immiscible phase with complete spatial separation between the two BECs. For

R
′
j = 0, the conditions (3.25) reduce to those of the cleaned binary BECs mentioned

above.

The critical disorder strength above which a quantum miscible-immiscible phase

transition occurs can be directly determined from (3.25b) as:

R′cj =
−Aj −

√
A2
j − 4Bj(∆− 1)/∆

16π
√
nja3

j/πBj

, (3.26)

where Aj = (hj + 2nj∂hj/∂nj) +
√
gjnj/gj̄nj̄

(
hj̄ + 2nj̄∂hj̄/∂nj̄

)
−

4∆−1 (njgj/g12)
(
∂hj/∂nj̄

)
, andBj = (hj + 2nj∂hj/∂nj)

(
hj̄ + 2nj̄∂hj̄/∂nj̄

)√
gjnj/gj̄nj̄−

4∆−1 (njgj/g12)2 (∂hj/∂nj̄)2
with R′j̄ = R′j

(
g2
jnj/g

2
j̄nj̄

)
.

In the case of 87Rb − 87Rb mixture with parameters : a1 = 100.4a0, n1 =

1.5 × 1021 m−3 and a2 = 95.44a0, n2 = 1021 m−3, and a12 = 90a0, the miscible-

immiscible phase transition arises for disorder strengths R′c1 = 0.7 and R′c2 = 1.16.

3.2.2 Superfluid fraction

Let us consider a Bose mixture superfluid moving with velocity vsj = h̄ksj/m, where

ksj is a wavevector corresponding to the velocity of superfluid, subjected to a moving

weak random potential with the velocity vu = h̄ku/m, where ku is a wavevector

corresponding to the velocity of disorder. At finite temperatures, the Bose fluid is

separated into a superfluid density nsj and a normal density nnj that moves with

the disorder component nRj. Then the coupled time-dependent GPE read

ih̄
∂Φj(r, t)

∂t
=

(
− h̄2

2m
∇2 +U(r−vut)+gj|Φj(r, t)|2 +g12|Φj(r, t)|2

)
Φj(r, t). (3.27)
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We treat the solution of equation (3.27) perturbatively by introducing the function

Φj(r, t) =
[
Φ

(0)
j + Φ

(1)
j (r, t) + Φ

(2)
j (r, t) + · · ·

]
eiksj.re−

i
h̄

(
h̄2k2

sj
2m

+µj

)
t, (3.28)

which corresponds to the clean-case solution [77, 78, 141]. After inserting the ex-

pansion (3.27) into equation (3.28), and using the transformation r′ = r + vut, one

obtains

(
− h̄2

2m
∇2 − ih̄

2

m
Kj.∇+ U(r′)− µj + gj|Φj(r

′)|2 + g12|Φj(r
′)|2
)

Φj(r
′) = 0, (3.29)

where Kj = ksj − ku.

In the two-fluid model, the total momentum P(r) of the moving system is defined

as:

Pj = −ih̄〈Φj|iksj +∇|Φj〉 = h̄ksjnj − ih̄〈Φ∗j∇Φj〉. (3.30)

We neglect higher than linear terms in ksj and keeping in mind that in zeroth order

Pj does not depend on ksj. This yields

Pj = h̄ksjnj − ih̄〈Φ∗(1)
j ∇Φ

(1)
j 〉+ · · · , (3.31)

where the first-order correction to the wavefunction is given in Fourier space by

Φ
(1)
j (k) =

−U(k)Φ
(0)
j (Ek − h̄2

m
k.Kj)

[
−E2

k − 2EkΦ
(0)2

j
(gj − g12) + ( h̄

2

m
k.Kj)

2
]

4Φ
(0)2

j
Φ

(0)2
j g2

12E
2
k −

(
E2
k + 2EkgjΦ

(0)2

j
− ( h̄

2

m
k.Kj)

2
)(

E2
k + 2EkgjΦ

(0)2
j − ( h̄

2

m
k.Kj)2

) .
(3.32)

For small Kj, the normal density reads

nnj = nj −
1

h̄

∂Pj
∂Kj

∣∣∣
Kj=0

. (3.33)

In the case of delta-correlated random potential (2.8), we get for the normal
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fraction

nnj =
16π

3
R′j

√
nja3

j

π
fj(∆) =

4

3
nRj. (3.34)

We see that equation (3.34) well recovers the HM results for a single component

BEC with contact interaction [140]. The fact that nnj is larger than nRj is due to

the localization of bosons in the respective minima of the random potential which

leads to reduction of the superfluid density. Obviously, the interplay of the disor-

der potential, interspecies interaction and the ratio of intraspecies interactions may

strongly affect the superfluid fraction nsj = 1− (4/3)nRj.

3.3 Gaussian correlated disorder

We consider now the case of a correlated Gaussian disorder model, which allows for

unique control of the interplay between the disorder potential and interactions. In

this case the mixture deformation due to the disorder can be obtained by substituting

equation (2.10) into the expression (3.14):

neq
Rj = njHMfj(∆, σj), (3.35)

where njHM = 2πR′jnj
√
nja3

j/π is the HM result for equilibrium deformation of

each BEC with R′j = R0/g
2
jnj being a dimensionless disorder strength, σj = σ/ξj,

∆ = gjgj/g
2
12, and ξj = h̄/

√
mnjgj is the healing length of each component. The

disorder functions of the glassy fraction fj(∆, σj) of equation (3.35) can be written
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as:

fj(∆, σj) =

√
2/π√

βjαj(αj − βj)3

{
− 2σj

√
αjβj(αj − βj)

[
2ν2

j + α2
j + β2

j − 2νj(αj + βj)
]

+
√
πeσ

2
jβj
[
3ν2

j βj
√
αj +

√
βj(αjβj)

3/2(5− 4σ2
j νj) +

√
αj[ν

2
jαj + 2νjβjαj(−3 + σ2

j νj)

− 2νjβ
2
j (1 + σ2

j νj) + β3
j (−1 + 2σ2

j (2νj + αj))− 2σ2
jβ

4
j ]
]

+
√
πeσ

2
jβj
√
αj(βj − νj)

[
νj[αj + (3 + 2σ2

j (αj − βj))βj] + βj[−5αj + βj − 2σ2
jβj(αj − βj)]

]
×
[
1− erfc

(√
σ2
jβj

)]
+
√
πeσ

2
jαj
√
βj(αj − νj)

[
αj[αj + 2σ2

jαj(αj − βj)− 5βj] + νj[βj + αj(3− 2σ2
j (αj − βj))]

]
× erfc

(√
σ2
jαj

)}
, (3.36)

where erfc(x) is the complementary error function, αj = 1 + µ̄j +√
(1 + µ̄j)2 − 4µ̄j (∆− 1) /∆, βj = 1 + µ̄j −

√
(1 + µ̄j)2 − 4µ̄j (∆− 1) /∆, and

νj = 2µ̄j
(
1− g12/gj

)
. For σ → 0, the disorder functions fj tend to the delta-

function obtained in equation (3.20). In the regime σ → 0 and ∆→∞ (or g12 → 0,

equivalently), one has fj(∞, 0) = 1. This immediately leads to reproduce the HM

result [140] for the single component disorder fraction. If σ → 0 and ∆ → 1 (or

g12 →
√
g1g2, i.e in the vicinity of the phase separation), the functions fj(1, 0) are

diverging and become complex for ∆ < 1.

For our simulations we consider the above 87Rb-87Rb mixture in two different

internal states with the following parameters: a1 = 100.4 a0, a2 = 95.44 a0 , and

n1 = n2 = 1021 m−3.

The behavior of the disorder functions fj versus the interspecies interactions and

the disorder correlation length is displayed in figure 3.4. We see that for σ < ξj, the

effects of the disorder fluctuations are important. Whereas they vanish in the case

of σ > ξj for any value of interspecies interactions leading to arrest the localization

in both species. For fixed σ < ξj, the disorder functions fj decrease with a12 and

diverge near the vicinity of the transition between the miscible and immiscible phases
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Figure 3.4: Behavior of the disorder functions fj as a function of the interspecies interaction strength a12 and the
disorder correlation length σ for 87Rb-87Rb mixture in two different internal states. Parameters are: a1 = 100.4 a0

and a2 = 95.44 a0 [159], and the densities: n1 = n2 = 1021m−3.

(a12 ' 98a0).

The chemical potential of each component can be obtained from integral (3.18),

which gives

µj = gjnj + g12nj + gjnjHMhj(∆, σj), (3.37)

The disorder functions hj(∆, σj) associated with the EoS read:

hj(∆, σj) =

(
∆

∆− 1

)(
H1j(∆, σj) +

g12nj
njgj

H2j(∆, σj)

)
, (3.38)

72



Binary Bose-Einstein condensate in weak disordered potentials

Figure 3.5: Behavior of the disorder functions hj as a function of the interspecies interaction strength a12 and the
disorder correlation length for 87Rb-87Rb mixture. Parameters are the same as in Fig.3.4.

where:

H1j (∆, σj) =
4
√

2/π

(αj − βj)3

{
2σj (αj − βj)

αjβj

[
−αjβj

[
8µ̄2

j + α2
j + β2

j − 4µ̄j (αj + βj)
]
− 8µ̄jαjβj + (αj + βj)

(
4µ̄2

j + αjβj
)]

+

√
π

α
3/2
j

eσ
2
jαj (αj − 2µ̄j)

[
2µ̄j

[
αj
(
−5 + 2σ2

j (αj − βj)
)

+ βj
]

+ αj
[
αj − 2σ2

jαj (αj − βj) + 3βj
]

+αj
[
αj
(
αj + 2σ2

jαj (αj − βj)− 5βj
)

+ 2µ̄j
(
βj + αj

(
3− 2σ2

j (αj − βj)
))]]

erfc
(√

σ2
jαj

)
−
√
π

β
3/2
j

eσ
2
jβj (βj − 2µ̄j)

[
2µ̄jαj + βj

[
2µ̄jαj + 3αj − 2µ̄j

(
5 + 2σ2

jαj
)]

+ β2
j

[
1 + 6µ̄j + 4µ̄jσ

2
j+

αj
(
−5 + 2σ2

j (1 + 2µ̄j)
)]
− β3

j

[
−1 + 2σ2

j (1 + 2µ̄j + αj)
]

+ 2σ2
jβ

4
j

]
erfc

(√
σ2
jβj

)}
,
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and

H2j (∆, σj) =
2
√

2/π

(αjβj)
3/2 (αj − βj)3

{
− 2σj

√
αjβj (αj − βj)

[
2αjβj

[
8 + α2

j + β2
j − 4 (αj + βj)

]
−2µ̄j [−8αjβj + (αj + βj) (4 + αjβj)]] +

√
πeσ

2
jαjβ

3/2
j (αj − 2)

[
αj
[
4σ2

jα
3
j + 6βjµ̄j

−2α2
j

(
−1 + 2σ2

j (βj + µ̄j)
)

+ αj
(
2βj
(
−5 + 2σ2

j µ̄j
)

+ 2µ̄j
)]

+ 2
[
−4σ2

jα
3
j + 2βjµ̄j

+2α2
j

(
3 + 2σ2

j (βj + µ̄j)
)

+ 2αj
(
βj − 5µ̄j − 2σ2

jβjµ̄j
)]]

erfc
(√

σ2
jαj

)
+
√
πeσ

2
jβjα

3/2
j (2− βj)

[
4βj
[
αj + 2σ2

jαjβj + βj
(
3− 2σ2

jβj
)]

+ 4µ̄j
[
αj − 2σ2

jαjβj + βj
(
−5 + 2σ2

jβj
)]

+βj
[
βj
(
2βj
(
1 + 2σ2

j (βj − µ̄j)
)

+ 2µ̄j
)

+ 2αj
(
3µ̄j + βj

(
−5− 2σ2

j (βj − µ̄j)
))]]

erfc
(√

σ2
jβj

)}

+
4
√

2/π

(βj − αj)3

{
2σj (αj − βj)

[
α2
j + β2

j − 2µ̄j (αj + βj)
]

+
√
π
√
αje

σ2
jαj
[
2σ2

jα
3
j + α2

j

[
1− 2σ2

j (βj + 2µ̄j)
]

+ 6βjµ̄j + αj
[
−5βj + 2µ̄j + 4σ2

jβjµ̄j
]]

×
[
−1 + erf

(√
σ2
jαj

)]
+
√
π
√
βje

σ2
jβj
[
βj
[
βj + 2σ2

jβj (βj − 2µ̄j) + 2µ̄j
]

+αj
[
6µ̄j + βj

(
−5− 2σ2

j (βj − 2µ̄j)
)]]

erfc
(√

σ2
jβj

)}
.

Again in the limit σ → 0, the disorder corrections to the EoS hj reduces to

that obtained for the delta-correlated disorder (3.21). For σ → 0 and ∆ → ∞

(or g12 → 0, equivalently), one has hj(∞, 0) = 6 hence, the EoS (3.37) simplifies

to that of a single component BEC namely; µ = gn(1 + 12πR′
√
na3/π) found

in Refs.[141, 158, 160]. Figure 3.5 depicts that functions hj are increasing with the

interspecies interactions strength a12 results in an enhancement of the total chemical

potential.
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Figure 3.6: Behavior of the disorder functions f from Eq.(3.40) (a), h from Eq.(3.43) (b), and S from equation
(3.46) (c) as a function of σ/ξ and a12/a.
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The symmetric case

To simplify the expressions we restrict ourselves to the case of a symmetric mixture

where a1 = a2 = a and n1 = n2 = n. the glassy fraction turns out to be given:

nR
n

=
ξ+

`L
f

(
σ

ξ+

)
, (3.39)

where the disorder function reads

f

(
σ

ξ+

)
=
√

2e
σ2

ξ2+

(
2σ2

ξ2
+

+ 1

)
erfc

(
σ

ξ+

)
− 2
√

2σ√
πξ+

, (3.40)

where erfc(x) is the complementary error function, ξ+ = ξ/
√
δa+ is the extended

healing length for a symmetric mixture with short-range interactions, ξ = h̄/
√

2mng,

δa+ = 1 + a12/a, and `L = 4πh̄4/ (m2R0) accounts for the Larkin length which is

associated with the pinning energy due to the disorder [160, 162, 163]. For σ → 0,

f(0) =
√

2, thus, the results of binary BECs with a weak delta-correlated disorder

are recovered equation (3.20). For σ → 0 and a12 = 0, one can reproduce the seminal

HM findings for a dirty single BEC [140].

The behavior of the function (3.40) is shown in figure 3.6 (a). As expected, the

function f is decreasing with the disorder correlation length σ/ξ regardless of the

strength of interspecies interactions indicating that the condensate depletion due to

the disorder effects is suppressed for σ � ξ. One might explain this delocalization as

the results of a screening of disorder by interspecies interaction. The same situation

takes place in single dirty dipolar and nondipolar BECs [76, 78, 100, 164, 165]. For

fixed σ, nR is decreasing with the interspecies interactions a12/a.

The validity of the present perturbation theory requires to have the condensate

depletion due to the disorder much smaller than the total density nR � n. This

implies that to have a weak disorder potential, the following condition must be
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fulfilled

`L � ξ+f

(
σ

ξ+

)
. (3.41)

Equation (3.41) is a natural extension of the result of [162].

For the EoS in second-order of the disorder strength, we find:

µ = ng
[
δa+ +

ξ−
`L
h

(
δa±,

σ

ξ±

)]
, (3.42)

where the disorder functions read:

h

(
δa±,

σ

ξ±

)
=

√
2
π

δa−

{(
σ

ξ−

)[
(δa+ − δa−)2

2δa+δa−
− 2

]
+

√
πδa−

(δa+ − δa−)

(
A− − A+

)
(3.43)

+
1

δa+

[
2

(
σ

ξ−

)
(δa− − δa+) +

√
πδa−

(
B+ −B−

)]}
,

where ξ− = ξ/δa−, δa− = 1− a12/a, and

A± =
e(σ/ξ±)2

(δa±)3/2
erfc

(
σ

ξ±

)[
7 +

(
σ

ξ∓

)2

−
(
σ

ξ±

)2

− 9δa±

− (δa∓ − δa±)2

4

(
6 +

(
σ

ξ∓

)2

+ 5

(
σ

ξ±

)2
)]

,

B± =
√
δa±

[
3 + 2

(
σ

ξ±

)2
]
e(σ/ξ±)2

erfc

(
σ

ξ±

)
.

In the limit σ → 0, one has:

hσ→0 =
1

√
2
√
δa−

(
a12

a

) (
1−

(
a12

a

)2
)3/2

{
2
(√

δa− −
√
δa+

)
− 3

(a12

a

)2 (√
δa− − 5

√
δa+

)

−12
(a12

a

)3 (√
δa− +

√
δa+

)
+
(a12

a

)(
13
√
δa− +

√
δa+

)}

which is in agreement with the equation (3.22). Evidently, equation (3.42) shows

that the EoS increases linearly with the disorder strength R0. Figure 3.6 (b) shows
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that the disorder function h is lowering with σ/ξ and rising with a12/a. This signals

that the interplay of the disorder effects and interspecies interaction could modify

the behavior of the EoS of Bose mixtures.

Sound velocity

Corrections to the sound velocity of each component due to the disorder fluctuations

are given by [102]:

c2
sj =

nj
mj

∂µj
∂nj

. (3.44)

In the case of a balanced mixture a1 = a2 = a and n1 = n2 = n, we find after a

straightforward calculation:

c2
s

c2
s0

= 1 +
ξ−
`L
S

(
δa±,

σ

ξ±

)
, (3.45)

where cs0 =
√
gn/m is the zeroth-order sound velocity and the disorder function

S(δa±, σ/ξ±) is given as:

S(δa±,
σ

ξ±
) =

1

2

(
h+ 2n

∂h

∂n

)
, (3.46)

which has practically the same behavior as the function h as is displayed in figure

3.6(c).

3.4 Non-equilibrium evolution

The considerable interest in studying the dynamics of disordered BEC driven out-of-

equilibrium by slow (adiabatic) or sudden (quenched) changes to system parameters

such as the scattering length has been boosted by remarkable advances in the tun-

ability of ultracold atomic gases [83, 124, 134, 166, 167]. Non-equilibrium evolution

of BEC offers the unique opportunity to explore strongly correlated systems and

transport in realistic physical systems. Chen et al.[168] have shown that for a weakly
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non-equilibrium disordered Bose gas under a quantum quench in the interaction the

disorder can substantially destroy superfluidity more than the condensate leading to

the so-called dynamical Bose glass. Recent study demonstrates that the condensate

deformation is a signature of the non-equilibrium feature of steady states of a Bose

gas in a temporally controlled weak disorder [162]. Quite recently, experimental re-

alization of ultracold bosonic gases in dynamic disorder with controlled correlation

time have been reported in Ref.[169], where the microscopic origin of friction and

dissipation has been well illustrated.

In this section we study the non-equilibrium evolution of binary BECs in the

presence of a weak random potential with Gaussian correlation function using the

time-dependent perturbation theory. The theory assumes weak interactions and

weak disorder, hence it remains valid provided the depletion remains small through-

out the full subsequent dynamics. We then apply the time-dependent perturbation

theory to construct a closed set of equations that highlight the role of the spec-

tacular interplay between the disorder and the interspecies interactions in the time

evolution of the density induced by disorder in each component.

Let us consider two weakly interacting ultracold Bose gases subjected to a weak

random potential U(r, t) = u(r)F (t), such that F (0) = 0 and 0 ≤ F (t) ≤ 1. The

system evolution at t ≥ 0 is described by the coupled time-dependent GPE which

can be written as:

ih̄
∂

∂t
Φj(r, t) =

(
− h̄2

2m
∇2 + u(r)F (t)− µ0j + gj|Φj(r, t)|2 + g12|Φj̄(r, t)|2

)
Φj(r, t).

(3.47)

For sufficiently small u(r), the system can be treated perturbatively. Therefore, we

can write the wavefunctions as:

Φj(r, t) = Φ
(0)
j (r) + Φ

(1)
j (r, t) + Φ

(2)
j (r, t) + · · · , (3.48)
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where Φ
(0)
j (r) are the equilibrium solutions of equation (3.1) at t = 0, and Φ

(α)
j (r, 0) =

0 for α ≥ 1. The particle densities nj = |Φj(r)
(0)|2 determine the chemical potentials

of the system in its equilibrium ground-state:

µ0j = gjnj + g12nj̄. (3.49)

The condensate deformation due to the disorder potential, can be given by

nRj(t) = 〈|Φj(r, t)|2〉 − |〈Φj(r, t)〉|2. (3.50)

Using the perturbative expansion (3.48) up to second-order, and assume that the

disorder have a vanishing ensemble averages the deformation of each BEC becomes:

nRj(t) = 〈|Φ(1)
j (r, t)|2〉. (3.51)

The first-order coupled equations follow from equation (3.47) read:

ih̄
∂

∂t
Φ

(1)
j (r, t) =

(
− h̄2

2m
∇2 + gjnj

)
Φ

(1)
j (r, t) + gjnjΦ

(1)∗
j (r, t) +

√
nju(r)f(t)

+ g12
√
njnj̄

[
Φ

(1)

j̄
(r, t) + Φ

(1)∗
j̄

(r, t)
]
,

−ih̄ ∂
∂t

Φ
(1)∗
j (r, t) =

(
− h̄2

2m
∇2 + gjnj

)
Φ

(1)∗
j (r, t) + gjnjΦ

(1)
j (r, t) +

√
nju(r)f(t)

+ g12
√
njnj̄

[
Φ

(1)

j̄
(r, t) + Φ

(1)∗
j̄

(r, t)
]
. (3.52)

Working in Fourier space and using the Laplace transform

L[f ](s) =

∫ ∞
0

dt f(t)e−st, (3.53)
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equations (3.52) turn out to be given as:

(h̄ωk + gjnj − ih̄s) Φ
(1)
j (k, s) + gjnjΦ

(1)∗
j (k, s) + g12

√
njnj̄

[
Φ

(1)

j̄
(k, s) + Φ

(1)∗
j̄

(k, s)
]

= −√nju(k)f(s),

(h̄ωk + gjnj + ih̄s) Φ
(1)∗
j (k, s) + gjnjΦ

(1)
j (k, s) + g12

√
njnj̄

[
Φ

(1)

j̄
(k, s) + Φ

(1)∗
j̄

(k, s)
]

= −√nju(k)f(s), (3.54)

where h̄ωk = Ek is the kinetic energy. Here we have made the identification

L[F ](s) = f(s), for brevity of notation [162].

The solution of equations (3.54) reads

Φ
(1)
j (k, s) = −√nju(k)f(s)

(ωk + is)
[
2g12nj̄ωk − h̄(Ω2

kj̄ + s2)
]

4g2
12njnj̄ω

2
k − h̄

2(Ω2
kj̄

+ s2)(Ω2
kj + s2)

,

Φ
(1)∗
j (k, s) = −√nju(k)f(s)

(ωk − is)
[
2g12nj̄ωk − h̄(Ω2

kj̄ + s2)
]

4g2
12njnj̄ω

2
k − h̄

2(Ω2
kj̄

+ s2)(Ω2
kj + s2)

, (3.55)

where h̄Ωkj =
√
h̄ωk(h̄ωk + 2gjnj) is the standard dispersion relation for a single

BEC. Using the inverse Laplace transform we get:

Φ
(1)
j (k, t) = −

√
nj

h̄
u(k)

∫ t

0

dt
′Kj(k, t− t

′
)f(t

′
),

Φ
(1)∗
j (k, t) = −

√
nj

h̄
u(k)

∫ t

0

dt
′K∗j (k, t− t

′
)f(t

′
),

(3.56)

where

Kj(k, t) =
Kj−(k, t)−Kj+(k, t)

(Ω2
kj+ − Ω2

kj−)
, (3.57)

and

Kj±(k, t) =
[
i cos(Ωkj±t) +

ωkj
Ωkj±

sin(Ωkj±t)
][

Ω2
kj̄ − Ω2

kj± −
2g12nj̄ωkj̄

h̄

]
,

where the Bogoliubov spectrum of two-component BECs is given as (see e.g [29] and
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references therein):

Ωk± =
√
ω2
k + k2c2

s±, (3.58)

with

c2
s± =

(
c

(0)2
s1 /2

) [
1 + µ̄±

√
(1− µ̄)2 + 4∆−1µ̄

]
,

being the sound velocities in the density (cs−) and spin (cs+) channels, and µ̄j =

njgj/njgj.

In the limit k → 0, the total dispersion is phonon-like Ωk± = cs±k.

Using the fact that 〈Φ(1)∗
j (k, t)〉 = 0, the time-dependent disorder densities (3.50)

take the form:

nRj(t) =
nj

h̄2

∫
dk

(2π)3
R(k)

∣∣∣∣∫ t

0

dt
′Kj(k, t− t

′
)f(t

′
)

∣∣∣∣2 . (3.59)

To exemplify outrightly the form of the density (3.59), let us suppose a time-

periodic disorder potential which is abruptly switched on at time t = 0

F (t) =
1

2
[1− cos(ωt)] . (3.60)

Therefore, the system earns a new stationary state as we shall see hereafter.

For a symmetric mixture where a1 = a2 = a and n1 = n2 = n, the Boboliubov

spectrum (3.59) reduces to the following dimensionless form:

Ωk± = Ω0(kξ)
√

(kξ)2 + 2(1± a12/a), (3.61)

where Ω0 = ng/h̄ is the inverse characteristic mean-field time scale. It is clearly seen

that for a12/a > 1, the spectrum associated with the density channel Ωk− becomes

complex leading to destabilize the system. Whereas for a12/a < −1, the spectrum

Ωk+ may become imaginary and thus, the mxiture would be destabilized.

Inserting equations (3.61) and (3.57) into equation (3.59), and keeping in mind
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that terms associated with Ωk− cancel, one finds for nR(t):

nR(t) =
n

4h̄2

∫
dk

(2π)3

R(k)

Ω4
k+

(
Ω2

k+ − ω2
)2

{
ω2Ω2

k+ [Ωk+ sin(ωt)− ω sin(Ωk+t)]
2

+ ω2
k

[
ω2 − Ω2

k+ + Ω2
k+ cos(ωt)− ω2 cos(Ωk+t)

]2}
. (3.62)

This equation tells us that once the depletion due to disorder is known at t =

0, both the condensed density n − nR and nR can be calculated in a somehow

simpler way at time t > 0. For a given k and ω > 0, the density (3.62) is peaked

”resonant” at frequencies Ωk+ = ω (i.e. when the external frequency nearly matches

the eigenfrequencies). In terms of momenta this condition yields

k = kres =
mcs

√
1 + a12/a

h̄

√
−2 + 2

√
1 + h̄2ω2/m2c4

s(1 + a12/a)2

.

For k ≥ kres, the disorder depletion becomes very large, nR(t)/n � 1, indicating

that the perturbation theory is no longer valid in such an unstable regime despite

the fact that the disorder is naively weak. Therefore, the intuitive stability criterion

reads k < kres.

I II

a12 � a = 0.95

a12 � a = 0.5

a12 � a = 0

(a)

0 5 10 15 20 25 30

0.00

0.02

0.04

0.06

0.08

W0 t

n
R
Ht
L
�
n

(b)

III

0 5 10 15 20 25 30
0.000

0.002

0.004

0.006

0.008

0.010

0.012

W0 t

n
R
Ht
L
�
n

Figure 3.7: (a) Time evolution of the disorder fraction from Eq.(3.31) for different values of a12/a. Parameters
are : a/a0 = 95.44, n = 1021m−3, R′ = 0.5, ω/Ω0 = 1, (a) σ/ξ = 0.2, and (b) σ/ξ = 2. Here R′ = R0/g2n. There
are two different regimes: I and II delineated by a vertical dotted line.
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In order to substantiate the relevance of the above time-dependent perturba-

tive mean-field approach for laboratory experiments, we consider the 87Rb-87Rb

mixture in two different internal states, but our theory can be readily general-

ized to other mixtures. The scattering lengths and the densities are chosen to

a1 = a2 = a = 95.44 a0 [159] with a0 being the Bohr radius, and n1 = n2 = n = 1021

m−3, respectively, which are sufficient to ensure that the system meets the require-

ment of weakly interacting gas,
√
na3 ' 10−2 � 1.

The interspecies scattering length a12 which can be adjusted via Feshbach res-

onance is selected in such a way that the phase-separated condition is fulfilled

throughout the dynamics. The disorder strength is fixed to be R′ = 0.5 which

gives nR/n ≤ 1%, ensuring the sufficient criterion for the weak disorder regime. We

employ various disorder driving frequencies and correlation lengths.

The numerical solutions of equation (3.62) is shown in figure 3.7. One can clearly

identify two phases of evolution: In phase I, Ω0t ≤ 4, although the density nR(t)

is somehow low, the dynamics follows an exponential growth due to the consid-

erable effect of both quasiparticles and disorder onto the two BECs. In region II,

Ω0t > 4, we observe that as the disorder evolves in time, the glassy fraction increases

and exhibits sinusoidal oscillations signaling that the system being completely de-

pleted at a long time. This can be attributed to the motion of the Gaussian disor-

der which may create elementary excitations (i.e. the Bogoliubov phonons at low

momenta/free particle in the high-energy regime) leading to enhance the disorder

depletion. Therefore, whatever the strength and the frequency of the disordered po-

tential, the condensates are localized since nR(t) extends to infinity at long times. In

this region, the dynamics slightly slows down without any saturation and it presum-

ably follows another growth law. It is worth noticing that a very similar change in

behavior has been observed in the dynamics of periodically-driven BEC in a shaken

1D lattice [170].

Besides, it is clearly visible that in the case of σ < ξ, the time-dependent glassy
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fraction is increasing with decreasing the interspecies interactions (see figure 3.7.(a)).

Whereas for σ > ξ, nR(t) varies with small oscillations and remains almost insensi-

tive to a12/a which means that the disorder density is protected against interspecies

interactions effects during its time evolution (see figure 3.7. (b)). Furthermore, as

the healing length ξ decreases, the chemical potential rises and the density of two

BECs n grows. In this situation the low-lying excitations are poorly affected by the

disorder time evolution, gives rise to lower the glassy fraction.

In figure 3.8 we present the time evolution of the disorder fraction as a function

of the relevant parameters. We see that at short times Ω0t ≤ 4 the atoms are almost

delocalized i.e. nR(t) is vanishingly small. Whereas, nR(t) is increasing as the time

goes on which implies a possibility for reducing the condensed fraction whatever the

values of σ/ξ, ω/Ω0, and a12/a. The dynamics slows down significantly for small

external frequencies ω < Ω0, relatively strong interspecies interactions a12 ≥ 0.5a

and for large disorder correlation σ > ξ as is displayed in figures 3.8.(a), (b) and (c).

Figures 3.8. (a) and (c) depict also that the oscillation strength of the condensate

deformation strongly depends on σ/ξ and ω/Ω0.

Most noteworthy, for fixed σ > ξ and varying the ratio ω/Ω0, the density nR(t)

remains practically constant in time for Ω0t ≥ 10, apart from tenuous wigglings (see

figure 3.8. (c)) which could be an indicator of the existence of stationary Floquet

condensates [171, 172]. Frankly speaking, a qualitative analysis of these Floquet

states in the presence of such periodic perturbations requires further thoughts.

One can expect that in the regime of a strong disorder, each component frag-

ments into a number of low-energy, localized single-particle states with no gauge

symmetry breaking forming the so-called Bose glass phase. The exploration of such

a regime would need either a non-perturbative approach or Quantum Monte Carlo

simulations. We believe that our study not only bridges the gap between super-

fluidity, interactions and disorder but also it is important from the viewpoint of

elucidating the localization phenomenon and transport of two bosonic species.
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Figure 3.8: (a) Disorder fraction nR(t)/n from Eq.(3.62) as a function of Ω0t and σ/ξ for a12/a = 0.5 and
ω/Ω0 = 0.3. (b) nR(t)/n as a function of Ω0t and a12/a for σ/ξ = 0.5 and ω/Ω0 = 0.3. (c) nR(t)/n as a function
of Ω0t and ω/Ω0 for σ/ξ = 1.8 and a12/a = 0.5. Parameters are the same as in Fig.3.7.
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Chapter 4

Self-bound droplets in weak

three-dimensional random

potentials

Studying quantum droplets in disordered potentials is an important area of re-

search in the field of quantum physics. Investigating the behavior of disordered self-

bound liquids contributes to fundamental research, offering a deeper understanding

of many-body quantum systems, phase transitions, and the emergence of complex

phenomena in strongly correlated systems.

Common wisdom is that the presence of an external random potential always

enhance the escape of atoms from the condensate yielding a fragmentation of the

condensate due to the formation of mini BECs in the minima of the random land-

scape. For sufficiently strong disorder the condensate turns out to be completely

destroyed as all bosons are localized in the minima of the random potential. A

critical issue of great importance is: how do disorder potentials affect the formation,

the stability and the dynamics of a self-bound quantum droplet? Answering this

question is crucial for determining the experimental observability and practical ap-

plications of such quantum droplets. It provides insights into the conditions under
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which these droplets can maintain their coherence and structural integrity. A second

interesting feature is the interplay between many-body effects and disorder which

may give rise to intriguing quantum phase transitions such as Anderson localization,

Bose glass, superglass and so on. Furthermore, the additional complexity introduced

by the disorder may significantly alter the critical behavior and universality classes

of quantum droplets.

In this chapter, we extend the Bogoliubov theory of Huang and Meng [140]

presented in Chapter 1 for a single BEC to quantum droplets. Such an extension

permits us to provide a comprehensive understanding of the characteristics of self-

bound liquid droplets with weak 3D random potentials. Our focus lies in examining

the role of the interplay of interspecies interactions, the LHY quantum fluctuations,

and the disorder potential on the formation and stability of such self-bound droplets.

The competition between these ingredients may dramatically change the quantum

behavior of this exotic state of matter.

Initially, we investigate the drastic effects of an external random δ-correlated po-

tential on the bulk properties of self-bound droplets at both zero and finite temper-

atures. The ground-state energy and the quantum fluctuations induced by disorder

are computed utilizing the HM theory. We construct a useful stability phase-diagram

for the resulting dirty droplets. At finite temperature, we calculate the free energy,

and the thermal equilibrium density in terms of the disorder parameters.

Secondly, we study the bulk properties of self-bound liquid droplets in the pres-

ence of both speckle and Gaussian random potentials. To proceed, we derive useful

formulas for the ground-state energy, the equilibrium density, the depletion, the

anomalous density, and the glassy fraction inside the droplet by means of the devel-

oped HM theory. At finite temperature, we calculate the free energy, the thermal

equilibrium density, and the critical temperature.

Finally, we deal with the static and dynamical properties of disordered self-bound

droplets. We calculate in particular the density profiles by numerically solving the
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underlying generalized disorder GPE which we derive selfconsistently. The width

and the breathing modes of the droplet are also computed using a variational scheme

based on a Gaussian ansatz.

4.1 Ground-state energy and quantum fluctua-

tions

We consider a weakly interacting Bose mixture with equal masses m1 = m2 = m,

subjected to a weak disorder potential U(r). The disorder potential is assumed to

have vanishing ensemble averages 〈U(r)〉 = 0 and a finite correlation of the form

〈U(r)U(r′)〉 = R(r− r′). The second quantized Hamiltonian of the system reads

Ĥ=
∑
j,k

Ekâ
†
j,kâj,k+

1

V

∑
j,k,p

Uk−pâ
†
j,kâj,p +

gj
2V

∑
j,k,p,q

â†j,kâ
†
j,pâj,p−qâj,k+q (4.1)

+
g12

V

∑
k,p,q

â†1,kâ
†
2,pâ2,p−qâ1,k+q.

Under the Bogoliubov prescription, described in previous chapters, the ground-state

of ultradilute Bose mixtures is assumed to contain most of the atoms, we replace

the operators âj,0 and â†j,0 by a c-number, i.e., âj,0 = â†j,0 =
√
Nj, where Nj is the

number of particles.

Using the normalization relation:

Nj = â†j,0âj,0 +
∑
k 6=0

â†j,kâj,k, (4.2)

89



Self-bound droplets in weak three-dimensional random potentials

the Hamiltonian (4.1), takes the form:

Ĥ =
∑
j

(
U0

V
Nj +

gj
2V

N2
j

)
+
g12

V
N1N2 +

1

V

∑
j,k6=0

√
Nj Uk

(
â†j,k + âj,−k

)
(4.3)

+
∑
j,k 6=0

(Ek + 2gjnj + g12n3−j) â
†
j,kâj,k+

∑
j,k 6=0

gj
2V

Nj

(
â†j,kâ

†
j,−k + âj,kâj,−k

)
+
g12

V

√
N1N2

∑
k 6=0

(
â†1,k + â1,−k

)(
â†2,−k + â2,k

)
,

where nj = Nj/V is the density of each component. In equation (4.3) we kept only

quadratic terms in â†j,k 6=0, âj,k 6=0 up to the second-order in the coupling constants.

We also assumed that for weak enough disorder, disorder fluctuations decouple in

the lowest order [140]. As a result we ignored the terms Uk−pâ
†
j,kâj,p with both k = 0

and p = 0.

Hamiltonian (4.3) can be diagonalized making the extended Bogoliubov-Huang-

Meng transformation

â1k = (u+,kb̂1k − v+,kb̂
†
1,−k − β1,k) cos γ − (u−,kb̂2k − v−,kb̂†2,−k − β2,k) sin γ, (4.4a)

â†1k = (u+,kb̂
†
1k − v+,kb̂1,−k − β∗1,k) cos γ − (u−,kb̂

†
2k − v−,kb̂2,−k − β∗2,k) sin γ, (4.4b)

â2k = (u+,kb̂1k − v+,kb̂
†
1,−k − β1,k) sin γ + (u−,kb̂2k − v−,kb̂†2,−k − β2,k) cos γ, (4.4c)

â†2k = (u+,kb̂
†
1k − v+,kb̂1,−k − β∗1,k) sin γ + (u−,kb̂

†
2k − v−,kb̂2,−k − β∗2,k) cos γ, (4.4d)

where

cos γ, sin γ =
1√
2

√
1± 1− α√

(1− α)2 + 4∆−1α
,

α = n2g2/n1g1, ∆ = g1g2/g
2
12. The transformation (4.4) is canonical and the

quasi-particle annihilation, b̂j,k, and creation, b̂†j,k, operators must obey the usual

Bose commutation relations:
[
b̂j,k, b̂

†
j,k′

]
= δk,k′ ,

[
b̂j,k, b̂j,k′

]
=
[
b̂†j,k, b̂

†
j,k′

]
= 0. It

allows us to decouple the quantum and random variables and get the bilinear form

of the Hamiltonian.
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The Bogoliubov quasiparticle amplitudes, u±,k, v±,k, and disorder translations,

βj,k, are calculated in order to make the coefficients of the non-diagonal terms

b̂j,kb̂j,−k and b̂†j,kb̂
†
j,−k in the Hamiltonian (4.3) vanish. With this we immediately

obtain

u±,k =
1

2

(√
ε±,k
Ek

+

√
Ek
ε±,k

)
,

v±,k = u±,k −

√
Ek
ε±,k

,

(4.5)

and

β1,k =

√
n1

V

|u+,k − v+,k|2

ε+,k

Uk, (4.6)

β2,k =

√
n2

V

|u−,k − v−,k|2

ε−,k
Uk,

where the excitation spectrum energies ε±,k are defined below.

After a lengthy but straightforward algebra, the Hamiltonian (4.3) can be ex-

pressed as: Ĥ = ĤBB + Ĥdis, where

ĤBB =
∑
j

gj
2V

N2
j +

g12

V
N1N2 −

1

2

∑
j,k

(Ek + gjnj) +
1

2

∑
j,k

{[
(Ek + gjnj) cos2 γ

+ (Ek + g3−jn3−j) sin2 γ

] (
u2
±k + v2

±k
)
− 2u±kv±k

(
gjnj cos2 γ + g3−jn3−j sin2 γ

)
+ 2

g12

V

√
N1N2(u±k − v±k)2 cos γ sin γ

}

+
∑
j,k

{[
(Ek + gjnj) cos2 γ + (Ek + g3−jn3−j) sin2 γ

]
(u2
±k + v2

±k)

− 2u±kv±k
(
gjnj cos2 γ + g3−jn3−j sin2 γ

)
+ 2

g12

V

√
N1N2(u±k − v±k)2 cos γ sin γ

}
b̂†j,kb̂j,k,

(4.7)
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and

Ĥdis =
∑
j

U0

V
Nj −

√
Nj

V

∑
j,k

Uj,k(βjk + β∗jk) (4.8)

+
∑
j,k

[
(Ek + 2gjnj) cos2 γ + (Ek + 2g3−jn3−j) sin2 γ + 4

g12

V

√
N1N2 cos γ sin γ

]
|βjk|2.

The resulting disorder Hamiltonian, Ĥdis, varies with each realization of the random

potential. Thus, the final bilinear Hamiltonian of disordered binary BECs can be

obtained by performing the disorder ensemble average, 〈Ĥdis〉 [140]. This yields

Ĥ = E +
∑
k 6=0

(
ε+,kb̂

†
1,kb̂1,k + ε−,kb̂

†
2,kb̂2,k

)
, (4.9)

where the Bogoliubov spectra are given by

ε+,k =
[
(Ek + g1n1) cos2 γ + (Ek + g2n2) sin2 γ

]
(u2

+k + v2
+k) (4.10)

− 2u+kv+k(g1n1 cos2 γ + g2n2 sin2 γ) + 2
g12

V

√
N1N2(u+k − v+k)2 cos γ sin γ,

and

ε−,k =
[
(Ek + g2n2) cos2 γ + (Ek + g1n1) sin2 γ

]
(u2
−k + v2

−k) (4.11)

− 2u−kv−k(g2n2 cos2 γ + g1n1 sin2 γ) + 2
g12

V

√
N1N2(u−k − v−k)2 cos γ sin γ.

The ground-state energy reads

E =
∑
j

gj
2V

N2
j +

g12

V
N1N2 +

∑
±,k

ε±,kv
2
±,k + ER, (4.12)
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where

ER = 〈Hdis〉 =
∑
j,k

[
(Ek + 2gjnj) cos2 γ + (Ek + 2g3−jnj) sin2 γ (4.13)

+ 4
g12

V

√
N1N2 cos γ sin γ

]
〈|βjk|2〉 −

√
Nj

V

∑
j,k

〈Uj,k(βjk + β∗jk)〉,

is the disorder contribution to ground-state energy.

From now on we consider a symmetric mixture with, equal densities n1 = n2 =

n/2, equal intraspecies g1 = g2 = g and interspecies g12 = g21 coupling constants,

where cos γ sin γ = 1/2. Therefore, the Bogoliubov excitation energies take the form

εk± =
√
E2
k + 2Eknδg±,

where we recall that δg± = g(1± g12/g).

Using the definitions (4.5) and (4.6), the ground-state energy including the disorder

corrections turns out to be given in d-dimensions as:

E

V
=
∑
±

[
1

2
n2δg± − n

∫
ddk

(2π)d
Rk

Ek
ε2
k±

+
1

2

∫
ddk

(2π)d
(εk± − 2Ek − nδg±)

]
. (4.14)

The leading term is the mean-field energy. The subleading term gives the correction

to the ground-state energy due to the external random potential. The last term

accounts for the LHY quantum corrections to the ground-state energy.

The noncondensed and anomalous densities can be computed by introducing the

transformation (4.4) into the definitions (1.28) and (1.29). This gives

ñ± =
1

V

∑
k 6=0

{[
v2
±k +

(
u2
±k + v2

±k
)
N±k

]
cos2 γ (4.15)

+

[
v2
∓k +

(
u2
∓k + v2

∓k
)
N∓k

]
sin2 γ

}
+ nR±,
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and

m̃± = − 1

V

∑
k 6=0

{
[u±kv±k(1 + 2N±k)] cos2 γ (4.16)

+ [u∓kv∓k(1 + 2N∓k)] sin2 γ

}
+ nR±,

where N±,k = 〈b̂†±,kb̂±,k〉 = [exp(εk,±/T ) − 1]−1 are occupation numbers for the

excitations.

The last term in Eqs.(4.15) and (4.16) can be evaluated by performing the disorder

ensemble average through equation (4.6):

nR± =
1

V

∑
k

〈|βk±|2〉 = n

∫
ddk

(2π)d
E2
k

ε4
k±
Rk, (4.17)

The total noncondensed, ñ, and anomalous, m̃ can readily be obtained

ñ =
∑
±

ñ± =
∑
±

[
1

2

∫
ddk

(2π)d

[
Ek + nδg±

εk±

√
Ik± − 1

]
+ nR±

]
, (4.18)

and

m̃ =
∑
±

m̃± =
∑
±

[
−1

2

∫
ddk

(2π)d
nδg±
εk±

√
Ik± + nR±

]
, (4.19)

where Ik± = coth2 (εk±/2T ) with T being the temperature.

Calculating the depletion is indeed essential for investigating the stability, dy-

namics, and coherence properties of the droplet state .

4.2 Validity condition of the model

The Bogoliubov approximation is valid when the interactions between the particles

in the condensate are weak compared to their kinetic energy. In an alternative

scenario, the quantum fluctuation density is significantly smaller compared to the

total density ñ � n. In the presence of disorder the validity condition of the
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Bogoliubov theory depends on the strength of disorder and the interaction strength

between the particles, thus an additional condition must be fulfilled.

Therefore, the validity of the present approach requires the condition:

nR =
∑
±

nR± � n, (4.20)

which means that the disorder fluctuations must be small.

4.3 Quantum droplets in a white-noise disorder

In this section we study the influence of a 3D uncorrelated (white-noise) weak dis-

order on the bulk properties of self-bound droplets in Bose-Bose mixtures. Uncorre-

lated disorder is considered a universal model for disorder in many physical systems

( see e.g. [131, 132, 140, 175]). A standard model of uncorrelated disorder is the

random impurity potential, in which the random potential arises from the contribu-

tion of identical and randomly placed impurities [160, 175, 176]. We recall that at

very low temperatures, one may consider the limit of a δ-correlated type of disorder

(2.8) in which the external potential is described by a single parameter as:

R(r− r′) = R0δ(r− r′), (4.21)

where R0 denotes the disorder strength which has dimension (energy) 2 × (length)3.

It depends on the concentration of the impurities and to the s-wave scattering length

of the random scatterers [140, 141, 160].

4.3.1 Energy and stability analysis

The regime of interest corresponds to a > 0 and a12 < 0. In such a situation the

ground-state energy becomes complex in the droplet phase. This issue can be cured

either by taking into account higher-order quantum fluctuations [29, 41, 68, 69] or
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by simply setting δa+/a� 1 [46].

The integration with respect to k of equation (4.14) gives for the ground-state

energy:

E

NE0

= 2π(na3)
δa+

a
+
∑
±

{
128
√
π

15
(na3)3/2

(
δa±
a

)5/2

+R(na3/π)1/2

(
δa±
a

)1/2
}
,

(4.22)

where δa±/a = 1 ± (a12/a), E0 = h̄2/ma2 and R = R0/(E
2
0a

3). For R = 0,

equation (4.22) reduces to that found for a clean Bose mixture [41, 46, 68, 69]. When

(δa+/a) < 0, the mean-field theory energy provides a term ∝ n2 becomes complex

results in a collapse of a homogeneous state towards bright soliton formation. The

beyond-mean-field LHY quantum corrections provide an extra repulsive terms ∝

n5/2 + n3/2 halting the attractive mean-field term, leading to the formation of a

stable mixture self-bound droplet.
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Figure 4.1: Ground-state energy from equation (4.22) as a function of the density n for different values of R, and
a12/a = −1.05. (b) Ground-state energy from equation (4.22) as a function of the density n for different values of
a12/a and R = 2.10−4.

Figure 4.1 (a) shows that as the disorder strength R gets larger, the local min-

imum becomes shallow and the strength of the bond in the droplet is lowered. For

R ≥ 3.3 × 10−4, the energy becomes positive. This indicates the existence of a
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critical value of R above which the self-bound droplet is completely destroyed. We

see from figure 4.1 (b) that the droplet becomes less stable when a12/a is increasing.

For instance, if a12/a > −1.05, the droplet evaporates.

Unstable droplet

M
etastable droplet

Stable droplet
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Figure 4.2: Phase diagram of self-bound solutions as a function of a12/a and R calculated from equation (4.22).
The colors show the energy of the solutions. The thick black line corresponds to E = 0.

The local minima corresponding to the energy (4.22) are captured in figure 4.2 in

terms of the disorder strength R and the interspecies interactions a12/a as a phase

diagram. We delineate the phase boundary (E = 0) with a thick line, below which

the droplet is stable. We see that localized solutions persist slightly beyond this

region as metastable states notably for R. The self-bound state is unstable for large

disorder strength and small interspecies interactions |a12/a|. For any given value

of |a12/a|, there will be a critical value of R above which the localized solutions

are unstable (see below). A stable and robust self-bound droplet survives for large

|a12/a| and very weak disorder R� 1.
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Equilibrium density

Minimizing the ground-state (4.22) with respect to the density in such a way that

the condition (δa−/a) ' 2 [46] must be fulfilled, we obtain the equilibrium density

of the droplet in terms of disorder strength:

neq = n(0)

(
1

2
(1 +

√
1− γ)− 1

4
γ

)
, (4.23)

where n(0)a3 = 25π(δa+/a)2/32768 is the equilibrium density of a clean droplet [46],

and γ = 256R/[5π2(δa+/a)2]. For R = 0, one recovers the equilibrium density

of a clean droplet [46, 62]. Equation (4.23) shows that the equilibrium density is

decreasing with increasing disorder strength. In such a case for a fixed total number

of particles, the volume of the droplet enlarges when the disorder strength reaches

its critical value, results in the system undergoes a transition to a gas phase.
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Figure 4.3: Equilibrium density from equation (4.23) as a function of the disorder strength for different values of
a12/a.

In figure 4.3 we plot the equilibrium density neq of the dirty droplet in units

of 10−5a3 as a function of the disorder strength for different values of interspecies
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interactions. We observe that the equilibrium density is very sensitive to the inter-

species interactions, and it decreases by increasing the disorder strength indicating

that the liquid droplet becomes unstable.

Critical disorder strength

The critical disorder strength beyond which the droplet transforms into a gas phase

(i.e. corresponds to disappearance of the local minimum of the energy) is given by:

Rc =
5π2(δa+/a)2

32(δa−/a)3
. (4.24)

Following the Petrov’s prescription, (δa−/a) ' 2 [46], equation (4.24) reduces

to Rc = 5π2(δa+/a)2/256 which strongly depends on the interspecies interac-

tions, δa+/a . For 39K mixture droplets [47], with intraspecies scattering length

a12/a = −1.09, one has Rc = 0.00137.

Glassy fraction

As we have shown in section (4.2), the validity criterion of the HM model requires

the condition (4.20) which implies:

nR−
n(0)

=

√
512
√
n/n(0)R

5π2|δa+/a|
√
δa−/a

. (4.25)

Here we neglected the imaginary part nR+, in the droplet regime.

The glassy fraction (4.25) is appealing since it explains the interplay between the

disorder potential, the LHY quantum corrections and the attractive interspecies

interaction. The behavior of nR− from equation (4.25) as a function of a12/a and R in

the equilibrium regime is depicted in figure 4.4. We observe that for a12/a < −1.05,

the depletion due to the disorder, nR−, increases linearly with the disorder strength,

R, (see left panel). For fixed R, nR− grows slightly with the interspecies interaction

a12/a (see right panel). Due to the restrictions of the Bogoliubov theory, this latter
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is valid under the condition nR− � n.
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Figure 4.4: Top panel: Glassy fraction inside the droplet nR as a function of a12/a and R. Bottom panel: Glassy
fraction inside the droplet nR as a function of a12/a for R = 2× 10−4.

In next sections we investigate the behavior of quantum droplets in the presence

of correlated disorders which allow for the exploration of non-universal phenomena.

By studying droplets in correlated disorders, we gain a unique perspective compared

to scenarios involving uncorrelated disorders. This perspective enables us to examine

distinct spatial patterns, heightened localization effects, non-universal behavior, and

practical applications. Furthermore, it provides opportunities to understand the role

of correlations in disorder and how they impact quantum systems, thereby expanding

our knowledge of complex environments and their influence on quantum phenomena.
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4.4 Speckle disorder with uniform apertures

Let us consider a self-bound droplet subjected to a 3D weak speckle disorder which

is often used with ultracold atoms experiments [80, 81, 83, 177, 133]. The speckle

disorder is characterized by the autocorrelation function given in equation (2.11).

Its Fourier transform reads [119, 178]:

R(k) = U2
Rσ

3 π
2

kσ
Θ(2− kσ), (4.26)

where Θ denotes the Heaviside function.

Stability of the droplet

Substituting equation (4.26) into (4.14) and integrating over k, we obtain the ground

state energy. Normalizing the resulting energy and the density, to their equilibrium

values obtained within the theory of Petrov for a clean droplet namley: n(0) =

25π(δa+/a)2/(16384a3) and |E0|/N = 25π2h̄2|δa+/a|3/(49152ma2) [46, 68], we then

find

E

|E0|
= −3

( n

n(0)

)
+

1

2
√

2

( n

n(0)

)3/2∑
±

(
δa±
a

)5/2

− Rσ2

48ξ2

∣∣∣∣δa+

a

∣∣∣∣ (4.27)

×
∑
±

ln

(
1∓ 2ξ2

σ2|δa±/a| (n/n(0))

)
,

where R = U2
R/(|E0|/N)2 is the dimensionless disorder strength, and ξ =

h̄/
√
mgn(0) is the droplet healing length.

In figure 4.5 we show the ground-state energy for different values of the disorder

parameters and interspecies interactions. One can clearly identify two regions: In

the low density regime where n ≤ neq, we see that for fixed values of R and σ/ξ

and as |a12/a| gets larger, the energy decreases with the interspecies interactions

|a12/a| and hence the local minimum of the energy starts to disappear revealing the

evaporation of the self-bound droplet (see figure 4.5.(a)). This can be attributed to
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Figure 4.5: (a) Ground-state energy from Eq.(4.27) as a function of the density n for various values of the
interspecies interactions, a12/a, and for R = 200 and σ/ξ = 0.6. (b) Ground-state energy as a function of the
density n for various values of the disorder strength R and for a12/a = −1.1 and σ/ξ = 0.6. (c) Ground-state
energy as a function of the density n for various values of the disorder correlation length σ/ξ and for a12/a = −1.1
and R = 200. 102
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peculiar competition between the disorder, interaction and quantum fluctuations.

The situation is inverted for n ≥ neq where the energy increases with |a12/a| in

agreement with the case of a clean droplet [68]. Figures 4.5.(b) and (c) show that

for large σ/ξ and R, the self-bound state solutions become unstable. In such a

situation, the atoms leave the droplet and localize in the respective minima of the

speckle For R > Rc ' 500 and σ > σc ' 1.2, the energy decreases and thus, the

droplet becomes unstable and destroys ultimately.

Glassy fraction

Introducing the function (4.26) into equation (4.17) and performing the integration

over the momentum form 0 to 2/σ, we obtain for the glassy fraction inside the

droplet

nR±
n

=
Rσ2

288ξ2

(
δa+

a

)2 [
|δa±/a|

n

n(0)

(
(σ2/ξ2)|δa±/a|

n

n(0)
∓ 2
)]−1

, (4.28)

its behavior is displayed in figure 4.6. We see that nR increases with the disorder

parameters (the strength and the correlation length) indicating that the atoms are

strongly localized in such a regime. Surprisingly, the glassy fraction nR increases as

the correlation length gets larger even for σ > ξ which is in stark contrast to ordinary

disordered BECs where the glassy fraction lowers with the correlation length [54, 76].

This can be interpreted as the fact that the disorder potential dominates both the

LHY quantum corrections and the interactions.

4.5 Gaussian-correlated disorder

We now consider a disorder potential with Gaussian auto-correlation function which

is very popular in ultracold atom experiments. This simple model is useful in three

respects. Firstly, it can be realized either with speckle potentials or with Gaussian

impurity disorders [90]. Secondly, it is analytically tractable, and therefore provides
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Figure 4.6: Disorder fraction in the droplet nR/neq as a function of the disorder strength R for two values of σ/ξ
and a12/a = −1.1.

a test for the numerical simulation. Thirdly, the energy shift due to the Gaussian-

correlated disorder does not require any regularization (i.e. safe from ultraviolet

divergence), unlike the δ-correlated random potential made of a random series of δ

peaks.

We recall that the Fourier transform of its autocorrelation function has the form

[100, 179]:

Rk = R0 e
−σ2k2/2, (4.29)

where R0 with dimension (energy) 2 × (length)3 and σ characterize respectively, the

strength and the correlation length of the disorder.

Energy and stability

Substituting equation (4.29) into equation (4.14) and integrating over k we obtain

the ground state energy. Normalizing the resulting energy and the density to their

equilibrium values n(0) and E0 we then find:

E

|E0|
= −3

( n

n(0)

)
+

1

2
√

2

( n

n(0)

)3/2∑
±

(
δa±
a

)5/2

(4.30)

−
∑
±

R|(δa+/a)|
24
√

2π(σ/ξ)

[
1√
π
− σ

ξ±
eσ

2/ξ2
±erfc

(
σ

ξ±

)]
,
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where erfc(x) is the complementary error function, R = R0N
2/(ξ3E2

0), and ξ± =

ξ/
√

(n/n(0))(δa±/a). For σ/ξ → 0, the energy correction due to the disorder con-

tribution reduces to the result of δ-correlated disorder potential namely:

R
(
|(δa+/a)|/24

√
2π
)√

(δa±/a)n/n(0).

In order to prove the relevance of our model for current experiments, we consider

the 39K mixture droplets [47]. The intraspecies scattering length is chosen to a =

71a0 with a0 being the Bohr radius. Note that a12 which can be adjusted via the

Feshbach resonances is selected in such a way that the droplet phase is reached.

The disorder strength R0 used in the experiment ranges from ∼ 1.26.10−82 J2.m3

to ∼ 1.52.10−80J2.m3 (or equivalently R from 75.34 to 9116.77), and the correlation

length is σ ' 0.13µm [180].

In figure 4.7 we show the ground-state energy using different values for the disor-

der parameters and interspecies interactions. Similarly to the speckle disorder case,

one can distinct two regions: In the low density regime where n ≤ n(0), we see that

for fixed values of R and σ/ξ, the energy decreases with the interspecies interactions

|a12/a| and then the local minimum of the energy starts to disappear revealing the

evaporation of the self-bound droplet (see figure 4.7.(a)). This can be attributed

to the peculiar competition between the disorder, interaction and quantum fluctua-

tions. The situation is inverted for n ≥ n(0) where the energy increases with |a12/a|

in agreement with the case of a clean droplet [64, 68].

Figures 4.7.(b) and (c) show that for small correlation length σ/ξ and large

disorder strength R, the energy decreases without any special structure giving rise to

unstable self-bound state solutions. In such a situation, the droplet could segregate

into multiple mini droplets similarly to the two-dimensional case [107]. For σ > ξ,

the energy simplifies to that of clean droplets indicating that the disorder effects

are not important in this regime (see figure.4.7.(b)). Once the disorder parameters

exceed their critical values (i.e. R > Rc ' 2.5 × 103 and σ/ξ > σc/ξ ' 1.2),

the atoms leave the droplet and accumulate in the depleted region. Therefore, the
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Figure 4.7: (a) Ground-state energy from equation (4.30) as a function of the density n for various values of the
interction strength a12/a, and for R = 103 and σ/ξ = 0.63. (b) Ground-state energy as a function of the density
n for various values the disorder strength R, and for a12/a = −1.1 and σ/ξ = 0.63. (c) Ground-state energy
as a function of the density n for various values the disorder correlation length σ/ξ, and for a12/a = −1.1 and
R = 2.5× 103.
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self-bound state loses its intriguing self-evaporation phenomenon and completely

destroys eventually.
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Figure 4.8: Critical disorder strength as a function of a12/a for two different values of σ/ξ.
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Figure 4.9: Equilibrium density of a dirty droplet neq with respect to n(0) as a function of the disorder strength
for various values of a12/a and σ/ξ.

The critical disorder strength Rc corresponds to the local minimum of the energy

in terms of the interspecies interactions a12/a for two different values of σ/ξ is

captured in figure 4.8. We see that Rc increases with a12/a and decays with σ/ξ.

The equilibrium density of the dirty droplet neq is obtained numerically by mini-
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mizing the ground-state (4.30) with respect to the density. Its behavior as a function

of the disorder strength for various values of a12/a and σ/ξ is depicted in figure 4.9.

Remarkably, the equilibrium density decreases with increasing the disorder strength

regardless of the values a12/a and σ/ξ leading to destabilize the droplet and even-

tually destroy it.

Glassy fraction

Introducing the function (4.29) into equation (4.17) and performing the integration

over the momentum, we obtain for the disorder fraction inside the droplet

nR
n

=

√
2R(δa+/a)2

144π

√(
n
n(0)

) (
δa−
a

)
[
− σ√

πξ−
+

(
1

2
+

(
σ

ξ−

)2
)
eσ

2/ξ2
−erfc

(
σ

ξ−

)]
. (4.31)

For σ → 0, equation (4.31) reduces to nR/n =

(δa+/a)2R/
[
144π

√
2n/n(0)

√
(δa−/a)

]
which corresponds to the results of the

white-noise disorder potential. For σ → 0 and a12 = 0, one recovers the seminal

HM results for a single dirty Bose gas [140]. We see from figure 4.10.(a) that in

the region σ → 0 and for small a12/a, the total glassy fraction nR/n is significant.

By increasing the disorder strength or reducing the interspecies interaction, the

macroscopic occupation of the ground-state decreases more and more, hence the

fragmented droplets in the small wells of the random potential increase even at

zero temperature due to the randomness. Lifting further the disorder strength one

can expect that the droplet becomes completely depleted giving rise to completely

destroy the coherence. For relatively large a12/a and σ � ξ, nR becomes negligibly

small indicating that the atoms are less localized in such a regime leading to the

formation of an extended droplet. This delocalization can be interpreted as the fact

that the disorder potential is screened by both the LHY quantum corrections and

the interactions. This behavior holds true also in the case of a dirty ordinary BEC

(see e.g.[76, 100, 180]). For 39K atoms we have a = 71a0 [47] and for a12/a = −1.05,
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R0 ∼ 1.52.10−80J2.m3 and σ = 0.13µm [180], the disorder fraction inside the

droplet is about nR/neq = 6 × 10−4 ensuring the sufficient criterion for the weak

disorder regime.

Quantum depletion and anomalous density of the droplet

The noncondensed ñ± and anomalous m̃± densities at zero temperature, in the

presence of a disordered potential can be calculated through expressions (4.18) and

(4.19). Performing the integration over the momentum and adding the formula of

nR (4.31), we obtain

ñ±
n

=
5

96
√

2

√
n

n(0)

∣∣∣∣δa+

a

∣∣∣∣ (δa±a
)3/2

+

√
2R(δa+/a)2

144π

√(
n
n(0)

) (
δa−
a

) (4.32)

×

[
− σ√

πξ−
+

(
1

2
+

(
σ

ξ−

)2
)
eσ

2/ξ2
−erfc

(
σ

ξ−

)]
,

and

m̃±
n

=
15

96
√

2

√
n

n(0)

∣∣∣∣δa+

a

∣∣∣∣ (δa±a
)3/2

+

√
2R(δa+/a)2

144π

√(
n
n(0)

) (
δa−
a

) (4.33)

×

[
− σ√

πξ−
+

(
1

2
+

(
σ

ξ−

)2
)
eσ

2/ξ2
−erfc

(
σ

ξ−

)]
.

The profiles of the total depletion ñ =
∑
±
ñ± and anomalous density m̃ =

∑
±
m̃± are

shown in figures 4.10 (b) and (c). We observe that the depletion and the anomalous

correlation of the droplet decrease with a12/a and σ/ξ. The anomalous density is

somehow insensitive to the disorder correlation length (slightly decays with σ/ξ, see

figure.4.10.(c)).
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Figure 4.10: (a) Glassy fraction nR, (b) the total depletion ñ, (c) the anomalous density of the droplet m̃ as a
function of a12/a and σ/ξ for R = 1000.

110



Self-bound droplets in weak three-dimensional random potentials

Finite temperature effects

At finite temperature the properties of the droplet can be analyzed by minimizing

the free energy (1.55). In terms of the equilibrium density it turns out to be given

by

F

|E0|
=

E

|E0|
−
∑
±

√
2π4(δa+/a)4(n/n(0))−5/2

124416(δa±/a)3/2

(
T

|E0|/N

)4

, (4.34)

which is divergent when the density tends to zero. Its behavior is depicted in figure

4.11.
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Figure 4.11: Free energy F from equation (4.34) as a function of the density n for a12/a = −1.1 and σ/ξ = 0.63,
and R = 1000.

Figure 4.11 shows that at temperatures T = Tc ≥ 25E0 and for R = 103, the

local minimum of the free energy start to disappear signaling the destabilization of

the self-bound droplet. Rising further the temperature T > Tc, the droplet is fully

evaporated due to the thermal fluctuations. For larger R, the droplet evaporates

even at very low temperatures. This tendency can be interpreted as natural that

as temperature increases, effect of the interplay between disorder and thermal fluc-

tuations becomes prominent making the atomic motion increasingly significant. In

such a situation, the droplet may fail to maintain its zero-pressure state and thus,
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evaporates [69].

The temperature dependence of the equilibrium density and the critical tem-

perature of the droplet can be determined by setting ∂F/∂n = 0, and δa+/a � 1

[46, 62]. Figure 4.12 shows that the thermal equilibrium density nTeq exhibits very

weak temperature dependence at T ≤ 13|E0|/N , while it reduces for higher temper-

atures. We see also that it sorely diminishes with the disorder strength, indicating

that the droplet becomes strongly depleted.

Effects of the disorder strength on the critical temperature is displayed in figure

4.13. We see that Tc decreases with increasing R and with decaying |a12/a|.

4.6 Generalized Gross-Pitaevskii equation

To better understand effects of disorder on the droplet state, we will derive in this

section the generalized disorder GPE and solve it numerically. By solving such

an equation, various observables and properties of the self-bound droplet, includ-

ing density profiles, excitation spectrum, and collective modes, can be calculated.

Moreover, theoretical solutions of the developed generalized GPE serve as a guide

for designing and optimizing experiments for quantum droplets.

In the miscible phase and close to the collapse point, we can describe the system

with an effective low-energy theory, an effective single component GPE, where we

neglect the internal dynamics between the respective components, and we consider

identical spatial modes for the two components:

ψj(r, t) =
√
njφ(r, t), (4.35)

where φ(r, t) is a scalar wave-function common to both species, which implies that

the density ratio is locked to the condition [46]

n1

n2

=

√
g2

g1

. (4.36)
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We then will introduce two assumptions: (i) The condensate, the thermal cloud

and the anomalous correlation must vary slowly at the scale of the extended healing

length [62, 64]. (ii) The disorder potential changes smoothly in space on a length

scale comparable to the healing length [181]. For the sake of simplicity, we neglect

the fluctuations induced by the disorder potential. The functional energy associated

to the equation of state (4.30) which describes a self-bound droplet subjected to an

external disorder can be written in the following dimensionless form:

E(φ, φ∗) =
1

2
|∇φ|2 − 3

2
|φ|4 +

√
neq

n(0)
|φ|5 + Ũ |φ|2, (4.37)

where Ũ = Uτ/h̄, and τ = 6h̄/neqg|(δa/a)+|. The corresponding GPE can be

derived using i∂φ/∂t̃ = ∂E/∂φ∗. This yields

i
∂φ(r̃, t̃)

∂t̃
=

(
−1

2
∇2

r̃ + Ũ(r̃)− 3|φ|2 +
5

2

√
neq

n(0)
|φ|3
)
φ(r̃, t̃), (4.38)

where we introduced the rescaled coordinate r̃ = r
√
m/h̄τ and the rescaled time

t̃ = t/τ . Equation (4.38) can be thought of as describing self-consistently the LHY

and disorder effects.

Stationary solutions of the generalized GPE (4.38) are looked for as φ(r̃, t̃) =

φ(r̃) exp(−iµ̃t̃), where φ(r̃) obeys the static generalized GPE

µ̃φ(r̃) =

(
−1

2
∇2

r̃ + Ũ(r̃)− 3|φ|2 +
5

2

√
neq

n(0)
|φ|3
)
φ(r̃), (4.39)

which enables us to analyze the droplet density profiles for different regimes.

We consider now a Gaussian correlated disorder potential defined as [182]:

Ũ(r) = Ũ0

M∑
j=1

f(r̃− rj), (4.40)

whereM is the number of impurities, U0 is the amplitude, and rj are the uncorrelated

114



Self-bound droplets in weak three-dimensional random potentials

random positions, and f is a real-valued function of width σ and has Gaussian-

shaped impurities f(r̃) = e−r̃
2/σ̃2

, such that 0 ≤ f(r) ≤ 1, with σ̃ = σ
√
m/h̄τ being

the dimensionless the characteristic length of the disorder.

4.6.1 Density profiles

Now we address different aspects that can be emerged in a disordered stationary

droplet by numerically solving equation (4.39) using the split-step method which

bases on the fast Fourier transforms [49]. To generate the Gaussian potential we use

a set of random numbers which are then mapped into the interval [0, L] by a linear

transformation. We choose M = 300, L = 30, and a small width [182].

In figure 4.14 we plot the density profiles as a function of the radial distance.

Two fascinating properties are observed here. First, the density in the plateau

region increases and varies fastly with the disorder strength and the correlation

length. Second, the situation is completely different near the edge of the droplet,

the atomic density varies slowly even for large disorder parameters since the LHY

and interaction energies dominate over the disorder effects.
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Figure 4.14: (a) Density profiles of the droplet for different values of the disorder strength for Ñ = 3000, σ̃ = 0.1,
and a12/a = −1.05. (b) Density profiles of the droplet for different values of the disorder correlation length for
Ñ = 3000, Ũ = 30, and a12/a = −1.05.
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4.6.2 Collective modes

A useful way to qualitatively or even quantitatively analyze the collective modes

of disordered droplets is to use a variational method. The Gaussian variational

approach gives a useful and important approximate description of the quantum

droplet. We then consider a simplified Gaussian variational ansatz:

φ(r̃, t̃) =

√
Ñ

π3/2q(t̃)3
exp

[
−r̃2

2q(t̃)2
+ iγ(t̃)r̃2

]
, (4.41)

where the variational parameters are the droplet width q, and the phase γ. The

normalization factor ensures the conservation of the condition:
∫
dr̃φ(r̃, t̃) = Ñ ,

where Ñ = (m/h̄τ)3/2N/neq with N being the total number of particles in the

droplet. We replace the ansatz (4.41) in the density Lagrangian

L =
i

2

∫ ∞
0

dr

[
φ
dφ∗

dt
− φ∗dφ

dt

]
+ E , (4.42)

obtain the Lagrangian

L =

∫
drL. (4.43)

Performing integration over r-space, we get

L

Ñ
=

3

2
γ̇q2 + 3γ2q2 +

3

4q2
− 3Ñ

25/2π3/2q3
+

√
neq

n(0)

23/2Ñ3/2

π9/453/2q9/2

+
M∑
j=1

Ũ0
σ̃3

(q2 + σ̃2)3/2
exp

[−r̃2
j

σ̃2

(
1− q2

q2 + σ̃2

)]
. (4.44)

The corresponding Euler-Lagrange equations of motion read:

γ =
1

2q

dq

dt
, (4.45)

and

d2q

dt2
= −dUeff(q)

dq
, (4.46)
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where we have introduced the effective potential for oscillations of the droplet width

Ueff(q) =
1

2q2
− Ñ

23/2π3/2q3
+

√
neq
n(0)

25/2Ñ3/2

3π9/453/2q9/2
(4.47)

+
2

3

M∑
j=1

Ũ0
σ̃3

(q2 + σ̃2)3/2
exp

[−r̃2
j

σ̃2

(
1− q2

q2 + σ̃2

)]
.

The droplet width can be obtained by numerically solving the variational differential

equation (4.46). In figure (4.15) we plot the results of the simulation for system

parameters used above. Figure 4.15. (a) shows that the droplet width q increases

with the particle number while it decreases with the disorder strength notably for

large Ñ . It exhibits periodic oscillations during its time evolution as shown in

figure 4.15 (b). We see also that the temporal width is periodically broadening for

relatively strong strength.

The low-lying excitations around the equilibrium solutions q0 (droplet minimum)

can be computed by using the linearization q(t) = q0 + δq(t), where δq(t)� q0, and

δq(t) = δqeiωt. Therefore, this gives for the frequencies of the breathing modes:

ω2 =
d2Ueff(q)

dq2

∣∣∣
q=q0

. (4.48)

In figure 4.16 we plot the resulting oscillation frequencies as predicted by equation

(4.48). It is interesting to observe that the frequencies of the breathing modes of

the droplet are increasing with the disorder strength in the whole range of atoms

number.

This chapter has focused on how weak 3D random potentials (with correlated and

uncorrelated functions) influence the properties of self-bound droplets. All in all we

found that the interplay of interspecies interactions, the repulsive LHY corrections

and the disorder plays a pivotal role in the formation, the stability, the structure,

and the breathing modes of the quantum liquid droplet. We showed in particular

that when the disorder parameters (the strength and the correlation length) and the
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Figure 4.15: (a) Droplet width as a function of the particle number for several values of Ũ0. (b) Time evolution
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temperature exceed a certain critical value, the droplet evaporates and eventually

entirely destroys.

In the next chapter we are going to examine the role of a 1D random speckle

potential on the equilibrium and dynamical properties of self-bound droplets in

binary BECs.
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Chapter 5

Self-bound liquid droplets in

one-dimensional speckle potentials

As we have seen in previous chapters, the self-bound droplet stabilizes due to the

delicate balance between mean-field attraction and beyond mean-field repulsion pro-

vided by the LHY corrections. This exquisite stabilization relies critically on the

dimensionality of the system; the LHY fluctuations are repulsive in higher dimen-

sions while being attractive in 1D. A major advantage of 1D problem which reflected

in a suppression of three-body losses [8], is that a stable droplet can survive even

in a strongly-interacting regime due to the boosted role played by quantum fluc-

tuations [29, 71]. In addition, 1D quantum droplets typically exhibit intriguing

properties, such as solitonic behavior and robust stability against collapse [125]. In

1D configuration, such self-bound droplets can exist in two different regimes namely:

Gaussian-like shape for small number of particles and flat-top shape in the case of

large number of atoms [61, 183].

Early studies in 1D quantum droplets focused on stability, structure and on the

dynamics [61, 183]. More recently, several aspects of 1D quantum liquids have been

explored including collective excitations [184], quantum Monte-Carlo simulations

[71], the impact of discreteness in the form of discrete droplets [185, 186], thermal
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effects and evaporation [20, 188, 187], effects of higher-order corrections [44, 68, 69,

189, 190], phase diagram in 1D optical lattices [191], universality classes [192], and

droplet molecules [193].

However, to the best of our knowledge, the physics of 1D disordered ultradilute

quantum liquids has never been explored before. The aim of this chapter is then to

investigate the impacts of 1D weakly random potential created by optical speckles

on a self-bound droplet of Bose mixtures. Major features of such optical speck-

les are: i) long-ranged, ii) non-Gaussian potentials, iii) their amplitude, geometry

and correlation length can be readily adjusted. These features allow us to explore

quantum droplets with a high degree of control.

We shed light in particular on how quantum and speckle disorder fluctuations

affect the stability and equilibrium properties of the self-bound droplets. Using the

HM [140] theory developed in Chapter 4, we derive useful analytical expressions for

the equation of state, the equilibrium density, and the glassy fraction in terms of

the disorder parameters (strength and correlation length) at both zero and finite

temperatures. We investigate in addition the equilibrium and the dynamics of such

a disordered droplet in both Gaussian-like and flat-top regimes. To this end, we

solve numerically the generalized disorder-dependent GPE.

5.1 Bulk properties

Throughout this chapter we consider a weakly interacting symmetric Bose mix-

ture with equal masses m1 = m2 = m, equal densities n1 = n2 = n/2, equal

intraspecies and interspecies coupling constants g1 = g2 = g, g12 = g21, subjected

to a weak disorder potential U . We recall that the disorder potential is assumed to

have vanishing ensemble averages 〈U(r)〉 = 0 and a finite correlation of the form

〈U(r)U(r′)〉 = R(r− r′).

Assuming the weak-coupling regime where the correlation length is much larger
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than the mean interparticle separation [194]. The Bogoliubov theory can be then

safely used in low-dimensional systems at both zero and finite temperatures. Let us

then consider a self-bound droplet subjected to a 1D weak speckle disorder which is

often used with ultracold atoms experiments [80, 81, 83, 177, 133]. Experimentally,

effective 1D speckle disorder can be created when coherent light is diffracted by

a ground glass diffuser with a quasi-1D slit and focused by a convergent lens [80,

81, 83, 177, 133]. The speckle disorder is characterized by the following real-space

correlation function : R(x) = U2
Rsinc2(x/σ), where UR is the disorder strength and

σ is the disorder correlation length. In Fourier space, it can be written as [178, 145]:

R(k) = πσU2
R

(
1− kσ

2

)
Θ

(
1− kσ

2

)
, (5.1)

where Θ denotes the Heaviside function. Indeed the function R(k) has a sharp

high-momentum cutoff at k = 2/σ.

5.1.1 Energy and stability

Inserting equation (5.1) into equation (4.14), one obtains for the ground-state energy:

2E

N |εB|
=

32(g/g12)2

9π2(δg+/g)

( n

n(0)

)
− 16

√
2(g/g12)2

9π2(δg+/g)

√
n

n(0)

∑
±

(
δg±
g

)3/2

− 9π2(g12/g)2(δg+/g)2R2σ2

256ξ2

(5.2)

×
∑
±

2
√

2 cot−1
[

σ√
2ξ

√
(n/n(0))(δg±/g)

]
(σ2/ξ2)(n/n(0))(δg±/g)

+ ln

[
(n/n(0))(δg±/g)

2ξ2/σ2 + (n/n(0))(δg±/g)

] ,

where n(0) = 16gm/
(
9π2h̄2(δg+/g)2

)
is the 1D equilibrium density [61], R =

UR/|εB|, and |εB| = h̄2/ma2
12 is the binding energy of dimers composed from atoms

from different component. For R = 0, the energy (5.2) reduces to the result of a

clean droplet [61, 189].

Figure 5.1 shows that by increasing R and decreasing σ/ξ, the minimum and
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Figure 5.1: (a) Ground-state energy of a 1D liquid from equation (5.2) as a function of the density n for various
values of the disorder strength for g12/g = −0.7 and σ/ξ = 0.6. (b) Ground-state energy of a 1D liquid as a function
of the density n for various values of the correlation length for g12/g = −0.7 and R = 0.6.

maximum start to disappear, indicating that the liquid phase becomes unstable.

Note that the liquid droplet evaporates even for very small R. This can be un-

derstood from the intrinsic strong correlation between particles arising from the

geometric confinement in 1D. Remarkably, the 1D droplet remains robust even for

relatively small correlation length, σ/ξ, on contrary to the 3D droplet which evapo-

rates for small σ/ξ (disappearance of the local minimum in the ground-state energy)

[195]. Our results suggest also that the disorder correlation length has a minor effect

at higher densities (n/n(0) ≥ 1) as shown in figure 5.1. (b), which is not the case in

3D disordered droplets.

The glassy fraction nR/n =
∑
± nR±/n can be computed via equation (4.17)

nR
n

=
9π2(g12/g)2(δg+/g)2R2σ

256
√

2ξ

∑
±

cot−1
[

σ
ξ
√

2

√
(n/n(0))(δg±/g)

]
(n/n(0))3/2(δg±/g)3/2

, (5.3)

its behavior in terms of the disorder strength R is depicted in figure 5.2. We see that

nR increases monotonically with R signaling that the atoms occupy the localized

state giving rise to the transition to a new quantum phase. Consequently, the

presence of a small amount of disorder may significantly alter the stability and the
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formation of the droplet.
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Figure 5.2: Glassy fraction nR =
∑
±
nR± inside the droplet as a function of the disorder srength R for σ/ξ = 0.6

and g12/g = −0.7.

The validity criterion of the present approach requires the condition nR/n� 1.

For instance, in the case of g12/g = −0.7 and σ/ξ = 0.6, one has neq/n
(0) = 0.7,

and hence the critical disorder strength below which the droplet is stable must be

R� 3.183.

In figure 5.3 we present the equilibrium density neq/n
0 of a 1D dirty quantum

liquid, found from the minimum of the ground-state energy (5.2). As expected, the

equilibrium density decreases in the limit of small disorder correlation length. In

such a regime the disorder effects dominate both the LHY and the mean-field forces.

5.1.2 Thermal effects

It is well known that ignoring entirely thermal fluctuation effects is a difficult task

in current experiments. Therefore, it is instructive to analyze the role of low but

finite temperatures on the equation of state and on the stability of the quantum
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Figure 5.3: Equilibrium density neq/n(0) of a of a 1D dirty quantum liquid as a function of the disorder strength
R for various values of σ/ξ.

droplet. At finite temperature the free energy is given by [62, 63]:

F = E + T

∫
dk

2π

∑
±

ln

(
2

coth (εk±/2T ) + 1

)
. (5.4)

By integrating this expression over momentum we arrive

F

L
=
E

L
− π
√
mT 2

12h̄

[(
n
δg+

g

)−1/2

+

(
n
δg−
g

)−1/2
]
, (5.5)

which takes the following dimensionless form:

2F

N |εB|
=

2E

N |εB|
− π(g/g12)2

6

(
32(n/n(0))

9π2(δg+/g)2

)−3/2

×
(

T

|εB|

)2∑
±

(
δg±
g

)−1/2

,

(5.6)

where E is given in equation (5.2) and the subleading term accounts for thermal

fluctuation corrections.

Figure 5.4 shows that the free energy exhibits first a maximum in the limit of

small densities. After this maximum is exceeded, the droplet spreads spontaneously
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Figure 5.4: Free energy from Eq.(5.6) for different values of temperatures T/|εB |. Parameters are: σ = 0.6,
R = 0.4, and δg+/g = −0.7.
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Figure 5.5: Critical temperature Tc of a 1D droplet as a function of the disorder strength R for different values of
the disorder correlation length σ. Parameters are: σ = 0.6, and δg+/g = −0.7.
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until it reaches the minimum free energy value. The state corresponding to this

minimum is a stable quantum droplet phase, while the maximum corresponds to

an unstable state. The two solutions start to disappear at a critical temperature

T ' 0.35|εB|. For T > 0.35|εB|, the quantum droplet becomes unstable and

eventually evaporates.

In Figure 5.5 we plot the critical temperature Tc associated with the free energy

minimum as a function of the disorder strength for different values of the disorder

correlation length. We see that Tc decreases with R while it increases with σ notably

for large R due to the interply of the disorder and LHY effects.

5.2 Static and dynamical properties

To gain a deeper understanding of the formation, profiles, and characteristics of 1D

quantum droplets, the generalized GPE must be solved.

Following the same procedure provided in Chapter 4 and assume that the conden-

sate φ varies smoothly at the scale of the extended healing length. As a consequence,

we can include corrections due to quantum, thermal and disorder fluctuations locally

as nonlinear terms in the GPE and treat them classically. The functional energy

reads:

E(φ, φ∗) =
h̄2

2m
|∇φ|2 +

δg+

4g
|φ|4 + U |φ|2 −

√
m

3
√

2πh̄
g3/2|φ|3

∑
±

(
δg±
g

)3/2

. (5.7)

It is convenient to introduce characteristic units of length x̃ = x/ξ, time t̃ =

h̄t/(mξ2), and energy E0 = h̄2/(mξ2), where ξ = (πh̄2/
√

2mg)
√
δg+/g is the ex-

tended healing length. This gives for the wavefunction

φ̃ =

√
πξ

2

(
δg+

g

)3/4

φ. (5.8)

The regime of interest consists of setting δg+/g ∼ 0 and δg−/g ≈ 2 [61], thus the
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dimensionless functional energy turns out to be given

Ẽ(φ̃, φ̃∗) =
1

2
|∇ψ̃|2 +

1

2
|φ̃|4 + Ũ |φ̃|2 − 1

3
√

2
|φ̃|3

∑
±

(
δg±
g

)3/2

, (5.9)

where Ũ = U/E0.

The droplet wavefunction is then given by the solution of the 1D disorder-dependent

GPE which can be derived using i∂φ̃/∂t = ∂Ẽ/∂φ̃∗:

i
∂φ̃(x̃, t̃)

∂t̃
=

[
− 1

2

∂2

∂x̃2
+ Ũ(x̃) + |φ̃|2 − 1

23/2

∑
±

(
δg±
g

)3/2

|φ̃|
]
φ̃(x̃, t̃). (5.10)

In the absence of the disorder potential, equation (5.10) reduces to that derived in

the literature [61].

We choose for the disorder potential a Gaussian spikes defined as [182]:

Ũ(x̃) = Ũ0

M∑
i=1

e−(x̃−x̃i)2/σ2

, (5.11)

where M is the number of impurities, Ũ0 is the strength of the spike, and σ is

a dimensionless width. This speckle potential is generated using a set of random

numbers which are then mapped into the interval [−L,L] by a linear transformation.

For M = 300, L = 30, and a small width [182, 195], the behavior of the potential

(5.11) is displyaed in figure 5.6.

5.2.1 Flat-top droplet

In order to obtain the stationary localized states, we perform the numerical in-

tegration of the static generalized GPE by adopting the split-step Fourier spec-

tral method. Stationary states with chemical potential, µ, can be computed using

φ(x̃, t̃) = φ(x̃) exp(−iµt̃), where φ(x̃) is an equilibrium solution. The results are

shown in figure 5.7.
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Figure 5.6: Typical disordered speckle potential from equation (5.11) for M = 300, L = 30, Ũ0 = 1, and σ = 0.1.

We see from figure 5.7. (a) and (b) that in the absence of disorder, the droplet

reaches its flat top shape without any special structure. However, modulations

in the density of the self-bound droplet are observed at finite disorder (even as

small as Ũ0 = 0.02) in the plateau region. These modulations manifest themselves

as a deformation of the quantum liquid droplet. As the strength, Ũ0, and the

correlation length, σ, of the disorder are increased, the density fluctuations become

larger leading to the emergence of a localized fraction. The same behavior holds

true in the 3D case. When Ũ0 becomes sufficiently strong one can expect that the

droplet fragments into multiple mini droplets.

An important remark is that the disorder effects are practically suppressed near

the edge of the droplet whatever the values of the disorder strength and the temper-

ature, most likely due to the surface effects which are striking enough to eliminate

the influence of the disorder potential in this region. Similar behavior holds true in

the 3D case as we have shown in Chapter 4.

Having obtained the stationary solution, we evolve it in time by solving the full

time-dependent generalized GPE (5.10). In figure 5.8 we plot the spatiotemporal
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Figure 5.7: (a) Density profiles of a 1D droplet for different values of the disorder strength, Ũ0, and σ = 0.1. (b)
The same but for different values of the disorder correlation length, σ, and Ũ0 = 0.06. Parameters are: Ñ = 20,
and δg+/g = 0.1.

density of the evolution of a disordered droplet for several values of the disorder

strength. It is clearly visible that the droplet is significantly sensitive to disorder

and fragments into several localized modes (mini droplets) even for small disorder

strength (see figure 5.8.(a)). Note that the number of the droplets depends on the

disorder parameters. Increasing further the disorder strength, the long-range order

is destroyed and thus, the droplet completely evaporates (see Fig. 5.8.b).

To better understand the time evolution of the droplet, we investigate its mean

width, q. It can be calculated from the disorder-dependent GPE (5.10) using q =√∫ +∞
−∞ dx̃ x̃2|φ(x̃, t̃)|2/2Ñ . We present the numerical results in figure 5.9. For weak

disorder strength, the droplet width increases and then saturates. It exhibits slight

oscillations in the long time limit. We also see that the presence of a weak disorder

leads to shift the width from its clean counterpart at larger times, t ≥ 100 (see red

and orange curves).

5.2.2 Small droplet

In the case of a small droplet (Ñ � 1), our simulations depict smooth density

profiles (see figures 5.10. (a) and (b)) indicating that the disorder slightly deforms
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Figure 5.8: Spatiotemporal density plot of the evolution of a disordered 1D droplet for Ũ0 = 0.06 (a) and Ũ0 = 0.1
(b).
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Figure 5.9: Time evolution of the 1D droplet width for several values of disorder strength. Blue line: Ũ0 = 0. Red
line: Ũ0 = 0.02. Orange line: Ũ0 = 0.06. Parameters are: σ = 0.1, Ñ = 20, and δg+/g = 0.1.
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Figure 5.10: (a) Density profiles of a 1D droplet for different values of the disorder strength, Ũ0, and σ = 0.1. (b)
The same but for different values of the disorder correlation length, σ, and Ũ0 = 0.06. Parameters are: Ñ = 0.2,
and δg+/g = 0.1.

Figure 5.11: Spatiotemporal density plot of the evolution of a disordered 1D droplet for Ũ0 = 0.06 (a) and Ũ0 = 0.1
(b). Parameters are: σ = 0.1, Ñ = 0.2, and δg+/g = 0.1.
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the small droplet compared to the flat top case. Notably, we observe that the droplet

size shrinks as the disorder strength is increased and the amplitude reduces as the

disorder correlation length gets larger. This can be attributed to the fact that the

disorder is not strong enough to balance the LHY forces.
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Figure 5.12: Time evolution of the 1D droplet width for several values of disorder strength. Blue line: Ũ0 = 0.
Red line: Ũ0 = 0.02. Orange line: Ũ0 = 0.06. Parameters are: σ = 0.1, Ñ = 0.2, and δg+/g = 0.1.

Let us now discuss the time evolution of a small droplet. Figure 5.11. (a)

shows that for a very weak disorder, the small droplet remains almost stable during

its time evolution. The disordered droplet becomes narrower and develops small

density modulations near the center as the disorder strength increases signaling

that the action of the disorder is effective as shown in figure 5.11. (b). In such a

situation many atoms, spewing more energy due to the disorder, leave the droplet

and spread out thus dispersing over time.

Figure 5.12 shows that in the presence of a weak disorder, the width increases

with time revealing that the droplet expands rapidly.

We infer that the ground-state properties of 1D droplets strongly depend on

the speckle disorder parameters. It is revealed that stability of the droplet requires

small disorder strength and large disorder correlation length (i.e. exceeds the healing
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length of the condensate). Practically the same behavior persists for delta- and

Gaussian-correlated disorder potentials (see Appendix A). The numerical simulation

of the generalized GPE points out that the disorder tends to significantly affect the

droplet profiles and its width. Noteworthy, the frequency of the breathing modes

can be computed following the same variational method discussed in Chapter 4.
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General conclusion

This chapter is intended to give a concluding overview of the achievements of this

thesis, and to present an outlook for further studies.

Summary

The main theme of this thesis has been the study of the impact of weak disorder

potentials on the properties of self-bound quantum droplets of a Bose-Bose mixture

at both zero and finite temperatures.

The first part of this thesis was dedicated to the investigation of the equilibrium

and nonequilibrium behaviors of homogeneous 3D binary BECs at zero temperature

using the perturbative theory. We derived analytical expressions for the physical

quantities of interest such as the glassy fraction, the EoS, the compressibility, and

the superfluid density. Our results revealed that the intriguing interplay of the dis-

order and intra- and interspecies coupling may strongly influence both the quantum

fluctuations and the superfluidity yielding a variety of interesting situations for rel-

evant experimental parameters. We showed in addition that the localization of one

component does not necessarily trigger the localization of the other species. Inter-

estingly, we found that the disorder potential leads to a dramatic phase separation

between the two species, changing the miscibility criterion of the mixture.

Additionally, we explored the non-equilibrium dynamics of binary BECs sub-

jected to a Gaussian disorder potentials with time-periodic driving employing the

time-dependent perturbative theory. We showed that the disorder fluctuations grow
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with time and exhibit an oscillating character, its magnitude strongly depends on

the system parameters. Among the main results emerging from our study is that

even though the disorder is naively weak, it could have spectacular effects on the

localization of atoms during the time evolution of the system. To date, there is no

experimental work confirming this oscillating character of the condensate deforma-

tion.

Our predictions open up new perspectives for an experimental demonstration

of the peculiar interplay between the disorder and interspecies interaction in the

equilibrium and non-equilibrium regimes. They provide also deep insights for un-

derstanding phase separation of Bose-Bose mixtures.

In the second part of this thesis, we theoretically studied the properties of self-

bound droplets in symmetric Bose mixtures, examining both 3D and 1D configura-

tions. Our main objective is to understand the peculiar interplay among interspecies

interactions, the LHY quantum fluctuations, and the disorder potential, and how

these ingredients collectively affect the formation and the stability of these quan-

tum objects. Initially, we conducted an analysis of disordered droplets, considering

uncorrelated disorder (white-noise). We delve further into the impacts of corre-

lated disorders on the droplet state, employing the two common models namely:

Gaussian-correlated disorder and speckle potential, at both zero and finite tempera-

tures. Throughout our investigation, we place particular emphasis on the fundamen-

tal properties exhibited by these droplets on a bulk level. By means of the extended

HM theory that we developed in this thesis, we calculated the ground-state energy,

the equilibrium density, the glassy fraction, the depletion, the anomalous density,

the free energy, and the critical temperature of the droplet in terms of the disorder

parameters.

At zero temperature, our analysis has uncovered the crucial role of disorder

correlation in the stability of the droplet state. Specifically, we observed that the

presence of white-noise disorder contributes positively to the ground-state energy.
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Consequently, as the strength of the disorder increases, the ground-state energy rises

and thus the mixture can be brought to a metastable state. Conversely, correlated

disorders exhibit a negative effect on the ground-state energy. In this scenario, in-

creasing the disorder strength tends to a decrease in the energy, causing the complete

disappearance of the local minimum, resulting in the destruction of the liquid state

once the disorder strength reaches its critical value. This latter strongly depends

on the inherent system characteristics such as the interspecies interaction and the

disorder correlation length. The stability of the droplet is influenced also by the type

of disorder. For instance, in the case of a Gaussian disorder potential, a large corre-

lation length may enhance the stability of the droplet, while the opposite situation

holds for speckle potentials (i.e the droplet becomes less robust for large correlation

length). Furthermore, we showed that the disorder may enhance the depletion and

the anomalous density of the droplet. This can be explained by the fact that as

the disorder strength gets larger, the atoms gradually leave the droplet and localize

in the depleted region. As a result, the equilibrium density decays and thus, the

self-bound state loses its fascinating self-evaporation phenomenon and eventually

undergoes complete destruction. At finite temperatures, we computed the thermal

density equilibrium and accurately determined the critical temperature above which

the BEC-droplet phase transition emerges. Our findings indicate that the interplay

of the disorder and thermal fluctuations may destabilize the self-bound droplet and

eventually dissolve it.

To study the finite-size quantum liquid droplets in detailed and refined manner,

we have carried out the simulation of the density profiles in the framework of the

generalized disorder-dependent GPE which we derived self-consistently. It was fur-

ther demonstrated that the density follows the modulations of the disorder in bulk.

Such modulations become important for large disorder strength. We also examined

the influence of the disorder on the width and on the breathing modes of the droplet

utilizing a Gaussian variational ansatz.
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On the other hand, we constructed the Bogoliubov-HM theory for disordered

droplets in a 1D configuration and successfully described several observables of in-

terest, such as the equilibrium density, the glassy fraction, and the density profiles

at both zero and finite temperatures. Our results reveal that even small amounts

of disorder may substantially deform the atomic density and modify the ground-

state properties of the droplet. We also found that the equilibrium density and the

glassy fraction are less sensitive to the disorder correlation in contrast to the 3D

case. Moreover, we showed that the droplet fragments into many small droplets

during its spatiotemporal evolution for relatively large disorder strength even at low

temperatures.

It is clear that the results we predict in this work are achievable in current exper-

imental setups and provide deep insights for understanding the profound properties

of quantum droplets in weak disorder potentials. Our study not only bridges the

gap between ultradilute droplets and disorder but also elucidates the localization

phenomenon of droplets in binary BECs. We believe that the findings of this work

add extra richness to the diversity of disordered ultracold atoms.

Outlook

Let us now discuss some possible directions for future work.

First our study is based on the Bogoliubov approach and the generalized GPE

with the local density approximation and are therefore not valid to describe droplets

with very strong disorder, where the system most likely undergoes a phase transition

to new quantum states. The exploration of such a regime would need either a non-

perturbative approach or Quantum Monte Carlo simulations.

Also of interest is the question concerning the existence of Anderson localization

in ultradilute quantum droplets. Understanding the interplay between disorder,

quantum fluctuations and interactions is key to elucidating such a peculiar phe-
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nomenon on the expansion of a quantum droplet, released from a harmonic trap,

in a random potential. In principle this can be achieved in a systematic way by

numerically solving the underlying generalized Gross-Pitaevskii equation.

Other open questions concern the structure and the dynamics of a mixed-bubble

state [196] in the presence of random potentials. This new mixed-bubble phase where

bubbles of the mixed phase coexist with a pure phase of one of the components (i.e

has a finite mixing ratio), occurs for unequal intraspecies interactions or unequal

masses due to the beyond-mean-field effect [196].

Finally, an important extension of this work would be to analyze effects of a

disordered potential in a mixture droplet state with strong dipole-dipole interactions.

The competition between dipolar interaction , the LHY quantum corrections and the

disorder potential would provide unique opportunities for quantitatively exploring

phase diagrams that feature a variety of exotic supersolid and superglass states.
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Appendix A

Quantum droplets in 1D delta-

and Gaussian-correlated disorder

potentials

In this Appendix we shed some light on the bulk properties of self-bound droplet in

the presence of 1D delta-correlated and Gaussian-correlated disorder potentials.

Let us then first consider a symmetric self-bound droplet subjected to a 1D

weak 1D delta-correlated (point-like) and Gaussian-correlated disorder potentials.

Its correlations function is defined in equation (2.8). Unlike the 3D case, the disorder

contribution to the ground-state energy does not require any regularization scheme.

Using equation (4.14), we thus obtain for the total ground-state energy

2E

NE0

= n|a|
(
δg+

g

)
− 4

3π

√
n|a|

∑
±

(
δg±
g

)3/2

− R

2
√
n|a|

∑
±

(
δg±
g

)−1/2

, (A.1)

where E0 = h̄2/ (ma2); and R = R0/ (E2
0 |a|). Its behavior is displayed in figure A.1.

As expected, we see that by increasing R, the local minimum starts to disappear

indicating that the liquid phase becomes unstable.

Now we focus ourselves to analyze the effects of a 1D disorder potential with
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Figure A.1: Ground-state energy of a self-bound droplet with 1D δ-correlated disorder as a function of the density
for g12/g = −0.7.
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Figure A.2: Ground-state energy of a self-bound droplet with 1D Gaussian-correlated disorder as a function of
the density for g12/g = −0.7, and σ/ξ = 0.63.
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Gaussian autocorrelation function on a quntum droplet. Its autocorrelation function

is given by equation (2.10). The ground-state energy can be obtained from equation

(4.14):

2E

NE0

= n|a|
(
δg+

g

)
− 4

3π

√
n|a|

∑
±

(
δg±
g

)3/2

− R

2
√
n|a|

∑
±

eb±erfc[
√
b±](

δg±
g

)1/2
, (A.2)

where

b± =
9π2

32

(
δg+

g

)2(
δg±
g

)(
σ

ξ

)2

n|a|.

As shown in figure A.2, the behavior of the ground-state energy (A.2) is almost

similar to that found for a 1D δ-correlated disorder.

The equilibrium and dynamical properties of self-bound droplets with delta

and Gaussian disorder potentials can be examined within the generalized disorder-

dependent GPE (5.10).
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Carretero-González, Families of matter-waves in two-component Bose-Einstein
condensates, Eur. Phys. J. D 28, 181 (2004).

[32] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman,
and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett.
83, 2498 (1999).

[33] A. F. Andreev and E. P. Bashkin, Three-velocity hydrodynamics of superfluid
solutions, Sov. Phys.-JETP 42, 164 (1976).

[34] D.V. Fil and S.I. Shevchenko, Nondissipative drag of superflow in a two-
component Bose gas, Phys. Rev. A 72, 013616 (2005).

[35] L. Chen, C. Zhu, Y. Zhang, H. Pu, Spin-exchange-induced spin-orbit coupling
in a superfluid mixture, Phys. Rev. A 97, 031601 (2018).

[36] I. M. Khalatnikov, Hydrodynamics of solutions of 2 superfluid liquids, Sov.
Phys. JETP 5, 542 (1957).

[37] W. H. Bassichis, Generalization of the Boguliubov Method Applied to Mix-
tures of Bose-Einstein Particles, Phys. Rev. A 134, 543 (1964).

[38] Y. A. Nepomnyashchii, Zh. Eksp. Teor. Fiz. 70, 1070 (1976), [Sov. Phys. -
JETP 43, 559 (1976)]; Teor. Mat. Fiz. 20, 399 (1974).

[39] W. B. Colson and A. L. Fetter, Mixtures of Bose liquids at finite temperature,
J. Low. Temp. Phys. 33, 231 (1978).
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[120] A. Boudjemâa, Degenerate Bose Gas at Finite Temperatures, LAP LAM-
BERT Academic Publishing (2017).
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[192] I. Morera, B. Juliá-Dı́az, and M. Valiente, Universality of quantum liquids
and droplets in one dimension, Phys. Rev. Research 4, L042024 (2022).

[193] Quantum droplet molecules in Bose-Bose mixtures, K. Mohammed Elhadj, L.
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