
		÷		
	("ORSIM	II		
:	·	_	:	
			. -	
2008/2007:				

1 1

' ' : :

· :

· :

(Fourier)' :

1.

.1

211 "Shutler" "Littlechid"

"Heizer " "Render"

3.

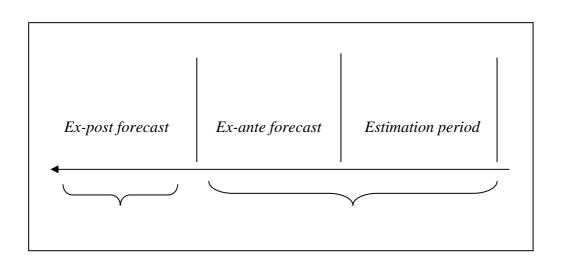
 1 Laurent Delaloye, Emmanuel Franiere, Matin Hoesli
<u>- Modélisation des décision</u>- Economica- France-2001- p
 :67

2 18: -2004 -3

91: -2007 -

- 2 -

.2 1: .1.2 .1.1.2 2010 20 .2.1.2 18 22 %99 %95 .2.2 .1.2.2


1999 1990-1975

1999-1990

-2000 583:

: .2**.2.2**

:(1-1)

584: - - :

: .3.2

:

: .1.3.2

2020

.2.3.2) .(.4.2 .1.4.2 .2.4.2 () $Y_i = C_i + I_i + G_i + E_i - M_i$: **Y** : **C** : *I* : *G* : *E* : *M* .(

: .**3**

: .1.3

: .**2.3**

· : .3.3

2.

78: - 2006- - - - - -

326: -1990

1: .1

:2 .2

%100

32: -2006-

www.dr-al-adakee.com:

2007/06/09

:1 .3 .2.3 .2.3 2: :(Mean Absolute Deviation(MAD)) .1.4

92: -1999-

² Régis Bourbonnais, Jean-Claude Usunier-<u>prévision des ventes (théorie et pratique)</u>-4eme édition-Economica- France-2007-p : 242

$$MAD = \frac{\sum_{i=1}^{n} |y_{t} - \hat{y}_{t}|}{n}$$

 y_t

 $\vdots \, \hat{\mathbf{y}}_{t}$

:(Mean Squned Error(MSE)) .2.4

.

 $MSE = \frac{\sum_{i=1}^{n} (y_t - \hat{y}_t)^2}{n}$

:(Standard Error (SE)) .3.4

 $SE = \sqrt{\frac{\sum_{i=1}^{n} (y_t - \hat{y}_t)^2}{n}}$

:(Theil)' .4.4

:

 $T^{2} = \frac{\sum (S_{i} - d_{i})^{2} \div n}{\sum d_{i}^{2} \div n}$

 $T = \sqrt{\frac{\sum (S_i - d_i)^2}{\sum d_i^2}}$

. :*T*

 $:S_{i}$

 $\vdots d_i$

T

 $.\%\,100$

 $T \succ 1$ -

 $T \prec 1$ -

•

1

:

: .1

() ()

2

 $(X_i) \qquad (Y_i)$

.

 $Y_i = b_0 + b_1 X_i + u_i$

¹ Guy Mélard-<u>Méthodes de prévision à court terme</u>- Edition Ellipses- bruxelles, Belgique-1990-p :38

2007/04/11

-2000- - -

www.arab-api.org/course4/c4_2_2.htm

2

(i = 1, 2, 3, ..., n): (i) $: Y_i$ X_i $: \mathcal{U}_i$ b_0, b_1 (X_i) (Y_i) (Y)(X)(X) 1 .(Y)(X)2: (X_i) (Y_i) .(19 (Sir Francis) 105: -2000--2006-.90:

- 11 -

```
(X_i, Y_i)
          )
                                           .(
              : (b_1)
                                       Y = b_0 - b_1 X:
                                       Y = b_0 + b_1 X:
                                           1:
                                                                                  .2
"Moindres Carrés Ordinaire" (MCO)
                                                                                 X (
                                                                            Y
                               E(u_i) = 0
                                 (Y_i)
                                 : (Homoxedaxite
                                                                                    (
                           Var(u_i) = \sigma_u^2
                                                  (u_i)
                                                                     (u_i)
                              u \approx N(0, \sigma_u^2)
                                                                                    (
```

146: -1982-

$$Cov(u_i, u_j) = 0$$

 u_j, u_i

 $Cov(X_i, u_i) = 0$

 $Cov(X_i, u_i) = 0$ (u_i)

: .3 (Y)

(Y) (X) (Y) (X)

 $_{\cdot}ig(Yig)$ (X) (

(Y) (X)

· : (

: $\hat{Y_i} = \hat{b_0} + \hat{b_1} X_i$

 $Y_i = D_0 + D_1 X_i$

 $egin{array}{ccc} Y & & :\hat{Y_i} \ b_0 & & :\hat{b_0} \end{array}$

 b_1 : $\hat{b_1}$

107: - - -

(BLUE)

.¹" Best Liniar Unbiased Estimator"

>

:
$$Y_i$$

 $E(\hat{b}_0) = b_0$ $b_0 = F(Y)$
 $E(\hat{b}_1) = b_1$ $b_1 = F(Y)$

:

$$Var(\hat{b}_0) = \frac{\sigma_u^2}{n} = \frac{1}{n}\sigma_u^2$$

$$Var(\hat{b}_1) = \frac{\sigma_u^2}{\sum X_i^2} = \frac{1}{\sum X_i^2} \cdot \sigma_u^2$$

$$\hat{b}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

:

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} - \frac{\overline{Y} \sum_{i=1}^{n} (X_{i} - \overline{X})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

86: -2003-

$$\overline{Y} \qquad \sum_{i=1}^{n} (X_{i} - \overline{X}) = 0 :$$

$$\hat{b}_{1} = \sum \left[\frac{(X_{i} - \overline{X})}{\sum (X_{i} - \overline{X})^{2}} Y_{i} \right]$$

$$\frac{(X_{i} - \overline{X})}{\sum (X_{i} - \overline{X})^{2}} \qquad (X_{i} - \overline{X})$$

$$\vdots \qquad (K)$$

$$\frac{(X_{i} - \overline{X})}{\sum (X_{i} - \overline{X})^{2}} = K$$

$$\vdots$$

$$\hat{b}_{1} = \sum K_{i} Y_{i}$$

$$\frac{(X_{i} - \overline{X})}{\sum (X_{i} - \overline{X})^{2}} \qquad (K)$$

$$\vdots$$

$$\hat{b}_{1} = f(Y)$$

$$\vdots \qquad \hat{b}_{0}$$

$$\hat{b}_{0} = \overline{Y} - \hat{b}_{1} \overline{X}$$

$$\vdots$$

$$\overline{Y} = \frac{\sum Y_{i}}{n} \qquad \hat{b}_{1} = \sum K_{i} Y_{i}$$

$$\vdots$$

$$\hat{b}_{0} = \sum Y_{i} - \overline{X} \sum K_{i} Y_{i}$$

$$\vdots$$

$$\hat{b}_{0} = \sum \left[\frac{1}{n} - \overline{X} K \right] Y_{i}$$

$$egin{pmatrix} ig(K_iig) & ig(\overline{X}ig) \ egin{pmatrix} \hat{b}_0 \ \end{pmatrix}$$

$$(b_1,b_0) \qquad (\hat{b}_1,\hat{b}_0)$$

$$E(\hat{b}_0) = b_0 \qquad E(\hat{b}_1) = b_1$$

$$Bias \hat{b}_0 = E(\hat{b}_0) - b_0$$

$$Bias \hat{b}_1 = E(\hat{b}_1) - b_1$$

 $Bias\hat{b}_0 = E(\hat{b}_0) - b_0 = 0$ $Bias\hat{b}_1 = E(\hat{b}_1) - b_1 = 0$

 $: \qquad b_1$

 $Y_i = b_0 + b_1 X_i + u_i \dots (1)$

 $\overline{Y} = b_0 + b_1 \overline{X} + \overline{u} \dots (2)$

 $Y_i - \overline{Y} = b_1 (X_i - \overline{X}) + (u_i - \overline{u})$ \vdots $Y_i - \overline{Y}$

$$\hat{b}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) [b_{1}(X_{i} - \overline{X})(Y_{i} - \overline{Y})]}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$\frac{\left(X_{i} - \overline{X}\right)}{\sum \left(X_{i} - \overline{X}\right)^{2}} = K$$

$$\hat{b}_1 = b_1 + \sum K u_i$$

$$\hat{b}_1 = b_1 + K \sum u_i$$

$$E(\hat{b}_1) = b_1 + KE(\sum u_i)$$

$$E(\sum u_i) = 0$$

$$E(\hat{b}_1) = b_1$$

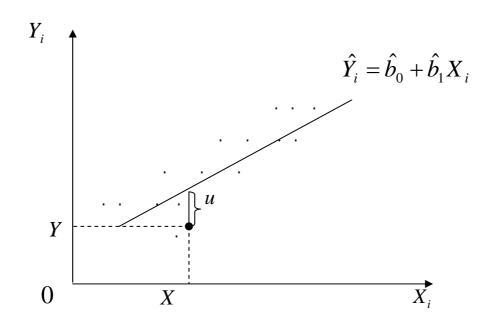
 b_0

$$\hat{b}_{0} = \overline{Y} - \hat{b}_{1} \overline{X} \Rightarrow \overline{Y} = \hat{b}_{0} + \hat{b}_{1} \overline{X} \dots (3)$$

$$\vdots \qquad (2) \qquad (3)$$

$$\overline{X} (b_{1} - \hat{b}_{1}) + (b_{0} - \hat{b}_{0}) = u_{i}$$

$$\overline{X} E(b_{1} - \hat{b}_{1}) + E(b_{0} - \hat{b}_{0}) = \frac{1}{n} \sum E(u_{i})$$


$$E(\hat{b}_0) = b_0$$

•

 $Min\sum_{i=1}^{n}u_{i}^{2} = \sum_{i=1}^{n}(Y_{i} - \hat{Y}_{i}) = Min\sum_{i=1}^{n}(Y_{i} - \hat{b}_{0} - \hat{b}_{1}X_{i})^{2}$

 $u_i = [Y_i - \hat{Y}_i]$

: :(2-1)

-

60: - -"

$$\frac{\delta \sum_{i=1}^{n} u_{i}^{2}}{\delta \hat{b}_{0}} = -2 \sum_{i=1}^{n} \left[Y_{i} - \hat{b}_{0} - \hat{b}_{1} X_{i} \right] = 0$$

$$\frac{\delta \sum_{i=1}^{n} u_{i}^{2}}{\delta \hat{b}_{0}} = -2 \sum_{i=1}^{n} \left[Y_{i} - \hat{b}_{0} - \hat{b}_{1} X_{i} \right] = 0$$

$$\frac{\delta \sum_{i=1}^{n} u_{i}^{2}}{\delta \hat{b}_{1}} = -2 \sum_{i=1}^{n} x_{i} \left[Y_{i} - \hat{b}_{0} - \hat{b}_{1} X_{i} \right] = 0$$

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}}$$

$$\hat{b}_0 = \overline{Y} - \hat{b}_1 \overline{X}$$

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \quad \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$y = a.b^{x}.u$$

209: -1997

116: -1998- -(_____)

:b,a

: *u*

$$\hat{y} = \hat{a}.\hat{b}^x$$

 $\log y = \log(a.b^x) = \log a + x \log b$

 $\log y = z$

 $\log a = A$

 $\log b = B$

$$Z = A + Bx$$

 $\hat{B} = \frac{\sum_{t=1}^{n} (Z_{t} - \overline{Z})(x - \overline{x})}{\sum_{t=1}^{n} (x - \overline{x})^{2}}$ $\hat{A} = \overline{Z} - \hat{B}\overline{x}$

$$\overline{Z} = \frac{\sum_{i=1}^{n} Z_i}{n}, \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

:¹ .1

$$\sum_{i=1}^{n} \left(Y_i - \overline{Y} \right)^2 = \sum_{i=1}^{n} \left(\hat{Y} - \overline{Y} \right)^2 + \sum_{i=1}^{n} \left(Y_i - \hat{Y} \right)^2$$

$$\sum_{i=1}^{n} \left(Y_i - \overline{Y} \right)^2 = \sum_{i=1}^{n} \left(Y - \overline{Y} \right)^2 + \sum_{i=1}^{n} u_i^2$$

$$SCT = SCE + SCR$$

$$\vdots \qquad \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$1 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2}{\sum_{i=1}^{n} (Y_i - \overline{Y})^2} + \frac{\sum_{i=1}^{n} u_i^2}{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}$$

$$1 = \frac{SCE}{SCT} + \frac{SCR}{SCT}$$

$$1 = R^2 + \frac{SCR}{SCT}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} u_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

142: - - -

)1 (Y)0
$$R^2$$
 R^2 (.2

$$r_{X,Y} = \sqrt{R^2} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}} - 1 \quad 1 \quad r$$

student .3

$$b_i$$
 .2

$$H_0$$
 : $b_i = 0$ H_1 : $b_i \neq 0$

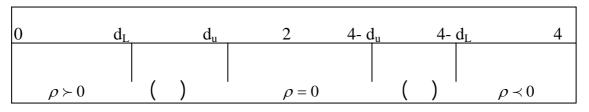
 $t_{\hat{b}} = \left| \frac{\hat{b}_i - b_i}{\delta_{\hat{b}_i}} \right| \approx t(n - k)$

$$\dot{\hat{b}}_i$$
 : $\delta_{\hat{a}}$ b_i $\dot{\hat{b}}_i$

143: - -

² Regis Bourbonnais, <u>Econométrie</u>, 3eme édition, Dunod, Paris, France, 2000, P: 59.

 H_0 $t_{\hat{b}_i} = \left| \frac{\hat{b}_i}{\delta_{\hat{b}_i}} \right|$ H_0 t_{tab} $k \qquad)\alpha \qquad (n-k)$ $: t_c \rangle t_t$ H_0 $: t_c \langle t_t \rangle$ H_0 ¹:*Ficher* (Y) H_0 : $b_0 = b_1 = \cdots = b_k = 0$ $\mathbf{H}_1: b_i \neq 0 \quad \forall i = 1, \dots, k$ Ficher F_C $F_C = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}$ (n-k) (k-1) F_t F_C . α $F_{\scriptscriptstyle C}
angle F_{\scriptscriptstyle t}$ H_0 H_1 $H_0 F_C \langle F_t -$ (Derbin-Watson) 2: H_0 : $\rho = 0$ $H_1: \rho > 0$ 236: -317: -


- 23 -

 $d = \frac{\sum_{i=1}^{n} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{i=1}^{n} u_{t}^{2}}$ $(d_{L}) (d_{U}) \qquad (d)$ \vdots $(4-d_{U}) \qquad (d_{U}) \qquad (d) \qquad (d)$

 $\begin{array}{cccc} (d_U) & & (d_L) & & (d) \\ \hline (d) & & & \end{array}$

 $(4-d_L) \qquad (4-d_U)$

(Derbin-Watson)' :(3-1)

_____- :

237: - _____

: (Y) . (X)

: .**1**

¹. ()

.

 $Y_i = B_0 + B_1 X_{1i} + B_2 X_{2i} + ... B_k X_{ki} + e_i$

•

(i = 1,2,3,...,n) : (i)

 $X_{1i}, X_{2i}, ..., X_{ki}$

 $B_0, B_1, B_2, ...B_k$

 e_i

²: .2

 $Y X_i >$

 $^1 \textit{Maddala.G.S-} \underline{\textit{Introduction to econometrics}} \cdot \textit{Mac Millan publishing company-Newyork, USA-1988-P:} 128$

51: -1993- - - -

.3

 $Y_i = B_0 + B_1 X_{1i} + B_2 X_{2i} + ... B_k X_{ki} + e_i$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{21} & \dots & X_{k1} \\ 1 & X_{12} & X_{22} & \dots & X_{K2} \\ \vdots & & & & & \\ 1 & X_{1n} & X_{2n} & \dots & X_{kn} \end{bmatrix} \begin{bmatrix} B_0 \\ B_1 \\ \vdots \\ B_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

Y = XB + e

129: -

$$\hat{Y}_{i} = \hat{B}_{0} + \hat{B}_{1}X_{1i} + \hat{B}_{2}X_{2i} + ...\hat{B}_{k}X_{ki}$$

$$\vdots$$

$$\hat{Y} = X\hat{B}$$

$$\sum_{i=1}^{n} e_i^2 = e^t e = (Y - \hat{Y})(Y - \hat{Y}) = (Y - X\hat{B})(Y - X\hat{B})$$

$$= Y^t Y - Y^t X\hat{B} - B^t X^t Y + \hat{B}^t X^t X B$$

$$= Y^t Y - 2\hat{B}^t X^t Y + \hat{B}^t (X^t X)\hat{B}$$

$$\vdots \qquad \hat{B}$$

$$\hat{B} = (X^t X)^{-1} X^t Y$$

k

n

$$X = \begin{bmatrix} 1 & X_{11} & X_{21} & \dots & X_{k1} \\ 1 & X_{12} & X_{22} & \dots & X_{k2} \\ \vdots & & & & \\ 1 & X_{1n} & X_{2n} & \dots & X_{kn} \end{bmatrix}, Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

$$\hat{B} = \begin{bmatrix} \hat{B}_0 \\ \hat{B}_1 \\ \vdots \\ \hat{B}_k \end{bmatrix} , \quad X^t X = \begin{bmatrix} n & \sum X_1 & \dots & \sum X_k \\ \sum X_1 & \sum X_1^2 & \dots & \sum X_1 X_k \\ \vdots & & & \\ \sum X_k & \sum X_1 X_k & \dots & \sum X_k^2 \end{bmatrix}$$

$$X^t Y = \begin{bmatrix} \sum Y \\ \sum X_1 Y \\ \vdots \\ \sum X_k Y \end{bmatrix}$$

$$y = b_0 + b_1 x + b_2 x^2 + u$$

:

$$x = X_1$$
 $x^2 = X_2$

$$y = b_0 + b_1 X_1 + b_2 X_2$$

()

 b_2, b_1, b_0 :

$$\begin{bmatrix}
b_0 \\
b_1 \\
b_2
\end{bmatrix} = \begin{bmatrix}
n & \sum X_1 & \sum X_2 \\
\sum X_1 & \sum X_1^2 & \sum X_1 X_2 \\
\sum X_2 & \sum X_1 X_2 & \sum X_2^2
\end{bmatrix}^{-1} \begin{bmatrix}
\sum y \\
\sum X_1 y \\
\sum X_2 y
\end{bmatrix}$$

$$b_2, b_1, b_0$$

$$Y_i = y_i - \overline{y}$$

 b_{1}, b_{0}

$$\begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} \sum X_1^2 & \sum X_1 X_2 \\ \sum X_1 X_2 & \sum X_2^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum X_1 y \\ \sum X_2 y \end{bmatrix}$$

(

.1

$$R^{2} = \frac{\hat{B}^{t} X^{t} Y}{Y^{t} Y}$$

.2

 R^2

.3

 $r_{YX_1.X_2}$: (

 X_1 Y X_2 $X_1 Y$ $r_{YX_1.X_2} = \frac{r_{YX_1} - r_{YX_2} r_{X_1X_2}}{\sqrt{1 - r_{X_1X_2}^2 \sqrt{1 - r_{YX_2}^2}}}$

+1 1-

:student .4

 B_{i}

.1

$$H_0 : B_i = 0$$
 $H_1: B_i \neq 0$

$$H_1$$
: $B_i \neq 0$

$$t = \left| \frac{\hat{B}_i - B_i}{\delta_{\hat{B}_i}} \right|$$

$$\hat{B}{}_{i}$$

 $\delta_{\stackrel{\wedge}{B}_i}$ B_i

$$t = \left| \frac{\stackrel{\wedge}{B}_{i}}{\delta_{B_{i}}} \right|$$

 H_0

 t_{tab}

 t_c H_0

(n-k)

 H_0

.α

: $t_C \rangle t_t$

 H_0

: $t_C \langle t_t \rangle$

²:Ficher

.5

$$R^2$$

(y)

 H_0 : $B_1 = B_2 = \cdots = B_k = 0$

 $H_1: B_i \neq 0 \forall i=1,....k,$

2

¹ Regis Bourbonnais –Idem- P: 59.

: Ficher F_{C} $F_{C} = \frac{R^{2}/(k-1)}{(1-R^{2})/(n-k)}$. α (n-k) (k-1) F_{t} F_{C} H_{1} H_{0} $F_{C} \rangle F_{t}$ - H_{0} $F_{C} \langle F_{t}$ -

1: (Derbin-Watson)' .6

: -

H₀:
$$\rho = 0$$

H₁: $\rho > 0$
(d)

 $d = \frac{\sum_{i=1}^{n} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{t=1}^{n} u_{t}^{2}}$ $(d_{L}) (d_{U}) \qquad (d)$

317: - -

(Fourier)' :

((Heaviside) ' ')

•

(Fourier)' :

1 1

f(t)

 $f(t) = \frac{a_0}{2} + \sum_{k=1}^{n} \left[a_k \cos \frac{2\pi}{k.T} . t + b_k \sin \frac{2\pi}{k.T} . t \right]$

 $2 + \sum_{k=1}^{\infty} \left[a_k \cos k.T + b_k \sin k.T \right]$

. :T

 a_k, b_k

482: -1991- -

:
$$a_0$$

$$a_0 = \frac{\sum f(t)}{T}$$
2 1 k $n = 2$

$$f(t) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{T}t + b_1 \sin \frac{2\pi}{T}t + a_2 \cos \frac{\pi}{T}t + b_2 \sin \frac{\pi}{T}t$$

$$a_1, b_1, a_2, b_2$$
:

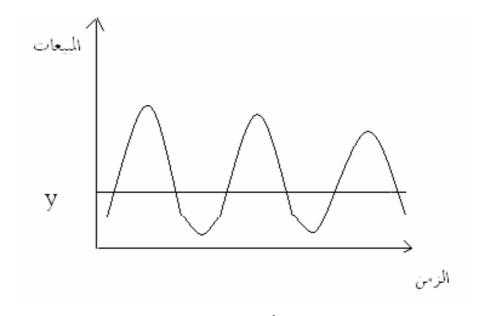
:

$$f(t_0) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{T} t_0 + b_1 \sin \frac{2\pi}{T} t_0 + a_2 \cos \frac{\pi}{T} t_0 + b_2 \sin \frac{\pi}{T} t_0$$

$$f(t_1) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{T} t_1 + b_1 \sin \frac{2\pi}{T} t_1 + a_2 \cos \frac{\pi}{T} t_1 + b_2 \sin \frac{\pi}{T} t_1$$

$$f(t_2) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{T} t_2 + b_1 \sin \frac{2\pi}{T} t_2 + a_2 \cos \frac{\pi}{T} t_2 + b_2 \sin \frac{\pi}{T} t_2$$

$$f(t_3) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{T} t_3 + b_1 \sin \frac{2\pi}{T} t_3 + a_2 \cos \frac{\pi}{T} t_3 + b_2 \sin \frac{\pi}{T} t_3$$


$$f(t)$$
 t a_1,b_1,a_2,b_2

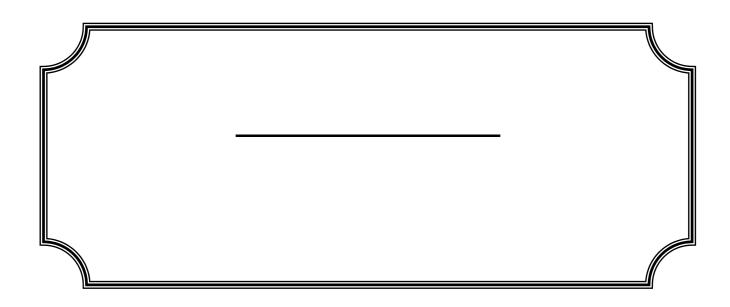
(Fourier) :

1 1

:

(Fourier)' :(4 -1)

; ;


$$\int_{1}^{T} f(t)dt = \int_{1}^{T} \left[\frac{a_0}{2} + a_1 \cos \frac{2\pi}{T} t + b_1 \sin \frac{2\pi}{T} t + a_2 \cos \frac{\pi}{T} t + b_2 \sin \frac{\pi}{T} t \right] dt$$

$$\int_{1}^{T} (f(t) - y)dt$$

$$\vdots \qquad G$$

$$G = \frac{A}{B}.100$$

- 36 -

.1 1. 2".(311 4. $y_1, y_2, ..., y_n$ 295: -1995-² Hocine Hamdani - <u>statistique descriptive</u>-1^{er} ed- Alger - 1999 - p230. www.tutorialsandhelp.com/Using%20Excel%20for%20forecasting.html: 2007/09/10 -(SPSS .408: -2004-

 $(t_1, y_1), (t_2, y_2), ... (t_n, y_n)$

1.

2: .

.

. :

: .2

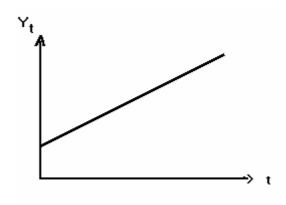
(Pics)

4.

223: -1986- - - -

201: -1989

38: -2004- - -(2006-2002-)


1.

: .**1**

, (...

•••

:(1-2)

- USA-A WILEY ARABOOK-______ - _____ - _____ - _____ : 276: - 1983

.

.() :Y_t

.() :t

¹Usunier Régis Bourbonnais, Jean-Claude Usunier - Idem - p :40

- 40 -

: **.2**

:(2-2)
Y_t

t

276: - - :

.() : $\mathbf{Y_t}$.() : \mathbf{t}

: **.3**

:(3-2)

276: - - :

.() $:Y_t$

.() :t

: .4

•

276: - - :

.() :Y_t

.() :t

·

:

¹: .**1**

.1.2

:

 $y_{t} = T_{t} + C_{t} + S_{t} + E_{t}$ $\vdots \qquad .2.2$

 $y_{t} = T_{t}.C_{t}.S_{t}.E_{t}$

: .3.2

:

 $y_{t} = T_{t}.C_{t} + S_{t}.E_{t}$ $y_{t} = T_{t}.S_{t} + C_{t}.E_{t}$ $y_{t} = T_{t}.E_{t} + C_{t}.S_{t}$

:

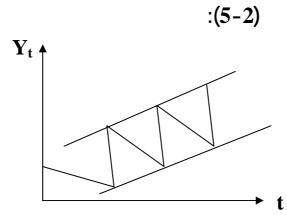
t : y_t

t: T_t

t: S_t

t: C_t

t: E_t

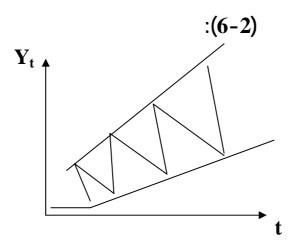

- 43 -

¹ Régis Bourbonnais, Jean-Claude Usunier - Idem – p : 39

: .2

¹: : .**1.2**

· (5 2)



Régis Bourbonnais, Jean-Claude Usunier - Idem --p :39:

.() $:\mathbf{Y_t}$

.() :t

:

Régis Bourbonnais, Jean-Claude Usunier - Idem - p : 39:

36: -1998 - - - -

: .2.2

: .1.2.2

 \overline{x} s_t

 $\hat{s} = \hat{a}\overline{x}_t + \hat{b}$

 $t = t \cdot t$

t = 1, 2, ..., n

(MCO) a

 $|\hat{a}| < 0.05$

 $|\hat{a}| \succ 0.1$

 $0.05 \le |\hat{a}| \le 0.1$

: .2.2.2

(

 $Min\sum (y_t - \hat{y}_t)^2$

:

:

(Holt) ' - (Holt-Winters)' -

.

(Brown)'

: .1

1_. 2_.

 $s_{t} = \alpha x_{t} + (1 - \alpha) s_{t-1}$

t : S_t

 $(0 \prec \alpha \leq 1)$ () $\alpha \leq 1$

71: - ______

36: -2004- - _____-

1.

$$\hat{x}_{t} = s_{t} = \alpha x_{t} + s_{t-1} - \alpha s_{t-1}$$

$$\hat{x}_{t} = s_{t} = s_{t-1} + \alpha (x_{t} - s_{t-1})$$

2

3

$$s_{t} = \alpha x_{t} + (1 - \alpha) s_{t-1}$$

$$s_{t-1} = \alpha x_{t-1} + (1 - \alpha) s_{t-2}$$

$$s_{t-2} = \alpha x_{t-2} + (1 - \alpha) s_{t-3}$$

$$s_{t} = \alpha x_{t} + (1 - \alpha) [\alpha x_{t-1} + (1 - \alpha) s_{t-2}]$$

$$s_{t} = \alpha x_{t} + (1 - \alpha) \alpha x_{t-1} + (1 - \alpha)^{2} s_{t-2}$$

$$s_{t} = \alpha x_{t} + (1 - \alpha) \alpha x_{t-1} + (1 - \alpha)^{2} [\alpha x_{t-2} + (1 - \alpha) s_{t-3}]$$

$$s_{t} = \alpha x_{t} + (1 - \alpha) \alpha x_{t-1} + (1 - \alpha) \alpha^{2} x_{t-1} + (1 - \alpha)^{3} s_{t-3}$$

()

3

(t-1) α (t)

64: - - -

300: - - - ()

² Claude Olivier-<u>Chapitre 2: Prévisions des ventes</u> - École de technologie supérieure Université du Québec-2002- page: 1

 $Min\sum_{t=1}^{T} (1-\alpha)^{T-t} [x_t - (a+b(t-T))]^2$

 $)\alpha$

¹ Dufour, Jean-Marie-<u>Lissage exponentiel</u>- Université de Montréal - Dernière révision : 17 février 2003-

Régis Bourbonnais, Jean-Claude Usunier-Idem-p:69

³ Michel Vaté- <u>Statistique Chronologique et Prévision</u>- Economica- Paris, France-1993- p :218

1: .2

 $\vdots \\ r - a + bt + c$

 $x_{t} = a + bt + \varepsilon_{t}$

: : a+bt

 $: \mathcal{E}_t$

 $s_{t} = \alpha x_{t} + (1 - \alpha) s_{t-1}$

 $ss_{t} = \alpha s_{t} + (1 - \alpha) ss_{t-1}$

 $\begin{cases} a = 2s_t - ss_t \\ b = \frac{\alpha}{1 - \alpha} (s_t - ss_t) \end{cases}$

_____**:**_____

:' ' .1

1:
$$\left(B \in [0.1]/B\right)$$
 $\left(\alpha \in [0.1]/\alpha\right)$

$$a_{t} = \alpha x_{t} + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_{t} = B(a_{t} - a_{t-1}) + (1 - B)b_{t-1}$$

 $\vdots \quad h \qquad t \\ \hat{x}_{t+h} = a_t + hb_t$

:

t: x_t

$$a_1 = x_1$$
 ($t = 1$)

75: - - -

 $b_1 = 0$

² Régis Bourbonnais, Jean-Claude Usunier-Idem-p:66

;

```
.2
        (\alpha \in [0.1]/\alpha)
                                  ^{1}\left(\gamma\in\left[0.1\right]/\gamma\right)
                                                                                           (B \in [0.1]/B)
                                                                                 2.
                      a_{t} = \alpha (x_{t} / s_{t-p}) + (1 - \alpha) (a_{t-1} + b_{t-1})
                      b_{t} = B(a_{t} - a_{t-1}) + (1 - B)b_{t-1}
                      S_t = \gamma (x_t / a_t) + (1 - \gamma) S_{t-p}
                                                                                                   h
                                                    \hat{x}_{t+h} = (a_t + hb_t)s_{t-p+h}
     1 \le h \le p
                                                   \hat{x}_{t+h} = (a_t + hb_t)s_{t-p+2h}
p+1 \le h \le 2p
                                                                t
                                                                                                              : a_t
                                                                t
                                                                                                              : \mathcal{X}_{t}
                                                                                                              : S_t
                                                                               p = 12)
                                                    p = 4
                                                                                                               : p
                                                                                                              :b_{t}
                                                                ((t=1, p)
      (x_t) t
                                                                                                      \overline{x}
                                                                                           p
                          t = 1, p
                                                 S_t = X_t / \overline{X}
                                          a_p = \overline{x}
                                          b_p = 0
```

¹ Guy Ansion- <u>Les méthodes de prévision en économie</u>- Armand Colin- Paris, France- 1990- p :192

² Steven Nahmias <u>- Production and Operations Analysis</u>- 4 ed- McGraw-Hill Irwin- 2001-P :120.

(Box-Jenkinz)

.1 :(Bruit Blanc) \mathcal{E}_{t}

 $\begin{cases} E(\varepsilon_t) = 0 \\ E(\varepsilon_t^2) = \sigma_{\varepsilon}^2 \\ E(\varepsilon_t, \varepsilon_{t-k}) = 0; \forall k \neq 0 \end{cases}$

:(FAC).2

2. (x_t) h

 $\rho(h) = \frac{\operatorname{cov}(x_{t}, x_{t+h})}{\left(\sqrt{v(x_{t})}\right)\left(\sqrt{v(x_{t+h})}\right)} / -1 \le \rho(h) \le 1$

 $: cov(x_t, x_{t+h})$ X_{t+h} X_t

correlogramme

 ¹ Michel Tenenhaus-<u>Méthodes statistiques en gestion</u>- Dunod- Paris, France-1996-p :286
 ² J.C.Usunier-<u>Pratique de la prévision à court terme</u>-édition Dunod- Paris-1982-p : 45

____:

:(FACP) .3

1.

$$r(h) = \frac{\text{cov}(x_{t} - \hat{x}_{t})(x_{t+h} - \hat{x}_{t+h})}{(\sqrt{v(x_{t} - \hat{x}_{t})})(\sqrt{v(x_{t+h} - \hat{x}_{t+h})})}$$

•

. \mathcal{X}_{t+h} \mathcal{X}_{t} $\hat{\mathcal{X}}_{t+h}$ $\hat{\mathcal{X}}_{t}$

Partiel Correlogramme

:' ' .4

:

 2 : AR(p) .1.4

: AR(p) $x_{t} = \alpha_{1}x_{t-1} + \alpha_{2}x_{t-2} + \dots + \alpha_{p}x_{t-p} + \varepsilon_{t}$

•

. : *p*

.(Bruit Blanc) \mathcal{E}_t

:

¹ J.C.Usunier- Idem-p: 45

$$L^{i}x_{t} = x_{t-i}$$

$$x_{t} = \alpha_{1}Lx_{t} + \alpha_{2}L^{2}x_{t} + \dots + \alpha_{p}L^{p}x_{t} + \varepsilon_{t}$$

$$x_{t}(1 - \alpha_{1}L - \alpha_{2}L^{2} - \dots - \alpha_{p}L^{p}) = \varepsilon_{t}$$

$$x_{t}\phi(L) = \varepsilon_{T}$$

$$\phi(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \dots - \alpha_P L^P$$

AR(p) >

AR(p)

 $\phi(L)$

$$h \succ p$$
 $AR(p)$ $r(h)$

1
: $MA(q)$.2.4

:

$$x_{t} = \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-2} - \dots - \theta_{q} \varepsilon_{t-q}$$

:

. : *q*

(Bruit Blanc) : \mathcal{E}_t

$$\begin{aligned} x_t &= \varepsilon_t - \theta_1 L \varepsilon_t - \theta_2 L^2 \varepsilon_t - \dots - \theta_q L^q \varepsilon_t \\ x_t &= \left(1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_q L^q \right) \varepsilon_t \\ x_t &= \Theta(L) \end{aligned}$$

:

$$\Theta(L) = 1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_q L^q$$

. MA(q) > MA(q)

 $\Theta(L)$

$$h \succ q$$
 $MA(q)$ $\rho(h)$

.3.4

p ARMA

q

 1 : ARMA(p,q)

 $\begin{aligned} x_{t} &= \alpha_{1} x_{t-1} - \alpha_{2} x_{t-2} - \dots - \alpha_{p} x_{t-p} = \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-2} - \dots - \theta_{q} \varepsilon_{t-q} \\ &\quad : \quad \Theta(L), \phi(L) \end{aligned}$

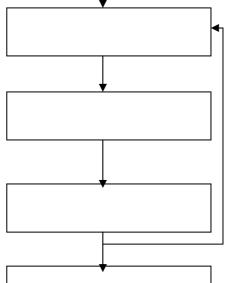
 $\phi(L)x_{\scriptscriptstyle t} = \Theta(L)\varepsilon_{\scriptscriptstyle t}$

:

$$AR(p)$$
 $ARMA(p,q)$ $ARMA(p,q)$ $ARMA(p,q)$

P(p,q)

```
<sup>1</sup>: ARIMA(p,d,q)
                                                                                 .4.4
(Integrated)
                                                                d
                 ARIMA(p,d,q)
                                                                     ARMA(p,q)
                              : d=1
                                   x_t - x_{t-1} = w_t
                    ARIMA(p,1,q)
                                                                     W_t
                                      W_{t} - W_{t-1} = Z_{t}:
                                                 ARIMA(p,2,q)
                            <sup>2</sup> SARIMA (p,d,q)(P,D,Q)s
                                                                                .5.4
      S
               \nabla_{\!\scriptscriptstyle S}
                                                           S \qquad \nabla_s = 1 - L^s:
                           \nabla_{s} x_{t} = x_{t} - x_{t-s} = (1 - L^{s}) x_{t}
       (ARMA(p,q),MA(q),AR(p))
         SARMA(p,q)(P,Q)s, SMA(q)(Q)s, SAR(p)(P)s
                                                                                  : S
```


²Amarache.R, Meziani.A- Ibid-p:31

: P, Q

¹ Amarache.R ,Meziani.A-<u>Prevision à court terme</u>-Alger-1997-p :31

1.

:(7-2)

M. David , J.C. Michaud - <u>La prévision Approche empirique d'une méthode statistique</u>- Ed. Masson, Paris 1989-p :81

122: - -

.1

(Dickey-Fuller) '

(Racines unitaires – Unit root) (DF et ADF)

 $X_{t} = \Phi X_{t-1} + \varepsilon_{t}$:

 $X_{t} = \Phi X_{t-1} + c + \varepsilon_{t} :$

 $X_{t} = \Phi X_{t-1} + bt + c + \varepsilon_{t} :$

: *t* b

 $H_0:\Phi=1$

 $H_1:\Phi\neq 1$

t t_{Φ} t_{Φ}

 $^{^1}$ G.Ansion -Idem- p :273 2 R.Borbonais,M.terraza- L'analyse des séries temporelles en économies- $1^{\rm ere}$ edition- paris-1998-p :150

: .**2**

:

$$(x_t) \qquad \forall h \succ p / r(h) = 0 \qquad \triangleright$$

. *p*

$$(x_t) \qquad \forall h \succ q / \rho(h) = 0 \qquad \triangleright$$

.q

.

: **.3**

(p,d,q)1.

: .**1.3**

p : $\alpha_p,....,\alpha_2,\alpha_1$

2:" - "

AR(2)

 $\rho(1) = \alpha_1 + \alpha_2 \rho(1).....(1)$ $\rho(2) = \alpha_1 \rho(1) + \alpha_2.....(2)$

: (1)

151: - -

 $^{^2}$ Gourieroux C , A.Monfort- <u>Séries temporelles et modèles dynamiques</u>- Economica-2éme édition-Paris-1995-p : 148

$$\alpha_1 = \rho(1) - \alpha_2 \rho(1)$$

$$\alpha_1 = \rho(1)[1 - \alpha_2].....(3)$$

$$(2) = \rho(1)^{2}(1 - \alpha_{2}) + \alpha_{2}$$

$$\rho(2) = \rho(1)^{2} + \alpha_{2}[1 - \rho(1)^{2}]$$

$$\Rightarrow \alpha_{2} = \frac{\rho(2) - \rho(1)^{2}}{1 - \rho(1)^{2}}$$

$$\therefore (3)$$

$$\alpha_{1} = \rho(1) \left[1 - \frac{\rho(2) - \rho(1)^{2}}{1 - \rho(1)^{2}} \right]$$

 $\alpha_{1} = \rho(1) \left[1 - \frac{\rho(2) - \rho(1)^{2}}{1 - \rho(1)^{2}} \right]$ $\alpha_{2} = \frac{\rho(2) - \rho(1)^{2}}{1 - \rho(1)^{2}}$

:
$$AR(3)$$

$$\begin{bmatrix} \rho(1) \\ \rho(2) \\ \rho(3) \end{bmatrix} = \begin{bmatrix} 1\rho(1)\rho(2) \\ \rho(1)I\rho(1) \\ \rho(2)\rho(1)I \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}
: AR(P)$$

$$\begin{bmatrix} \rho(1) \\ \vdots \\ \rho(p) \end{bmatrix} = \begin{bmatrix} 1\rho(1)\cdots\rho(p-1) \\ \rho(1)I\cdots\rho(p-2) \\ \vdots \\ \rho(p-1)\cdots 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

¹: .2.3

$$ARMA(p,q)$$
 $MA(q)$

•

ARMA(p,q)

.MA(q)

:

$$\phi(L)x_{t} = \Theta(L)\varepsilon_{t}$$

 $\Theta(L)$

$$\varepsilon_{t} = \Theta^{-1}(L)\phi(L)x_{t}$$

:

$$Min\sum_{t} \varepsilon_{t}^{2} = S(\alpha, \theta)$$

:

$$Min\sum_{t}e_{t}^{2}=s(\hat{\alpha},\hat{\theta})$$

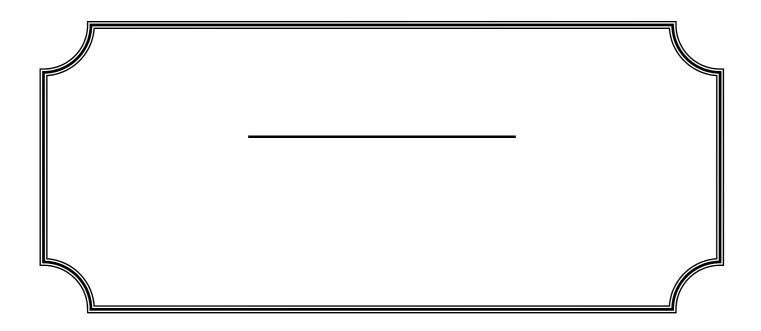
:

$$e_t = \hat{\Theta}^{-1}(L)\phi(L)y_t$$

: .4

1 1 1 1 •

Schwarz Akaike:


:

q , d , p ARIMA:

•

_____:

- 63 -

____:

. :

:

: .1

· : -

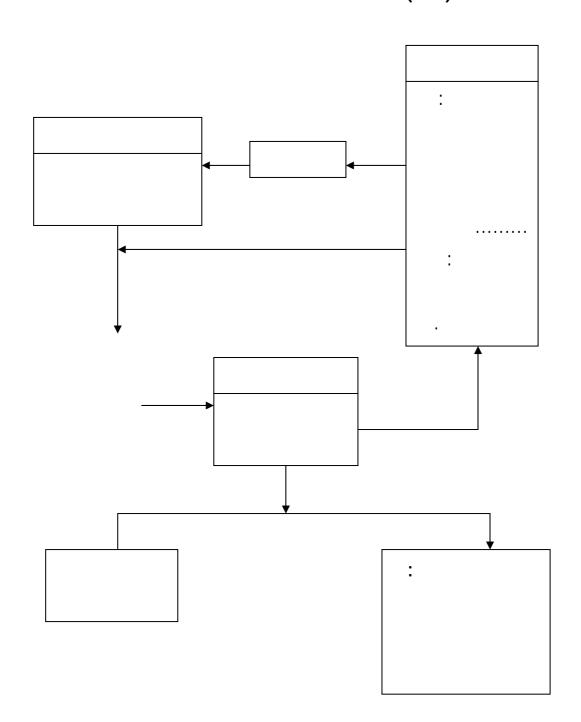
1 ...

; — "

2 " . -

•

3.


•

2.

71: -2002- - - () 105: -2003

:(1-3)

73: - - :

.3 1: 2: " Kotler " .1 .2 .3

•

236: - -(21) - 1 122: -2000- -() - _____:

: .5

: .6

:() .7

: .**4**

: .**1.4**

:() .2.4

: .**3.4**

159: - - -

.1 1:

- 70 -

-2003 -

93 :

. •
. •
. •

.2 1:

.

.

19: - - 1

:

1

. 2

:

³: : .**1.1**

:

. . .

.()

.

•

http://bbekhti.online.fr/articles/Modele%20de%20prevision.doc

2007/03/4

143: - -() - 2 243: - -(21) - 3

: .**2.1**

: .3.1

.5.1

. : .6.1

: .**8.1**

:

.

>

...

· .9.1

1:

.

•

 :

1." .1 .1.1 .2.1 .3.1 .4.1 .() 32: -1994 -

- 75 -

: .5.1

:

: .**2**

:

: .**1.2**

.3.2

(%100)

1: .1

.2

23: -

:

... :

: .3

•

:

1.

:

²: .1

88: - -

35: - -

_____:

1. .2

2:

-2003-245

53: -

:

:

¹: .1

:

)

.

•

151: - -() -

- 81 -

:

¹: .2

²: .**1**

: . (...) > . (...)

.

:

88: - -

75: - - 2

. (10-5) >

· >

: .() >

. ()

•

.285 1997 - - _ _

- 83 -

:

. . . .

- 84 -

"ORSIM" :

:

ORSIM

"Box-Jenkinz"
(Fourier)

:

ORSIM "Box-Jenkinz":

ORSIM :

:"*BCR*" .1)"SONACOME" 08-83 1967 1983 01 (BVR)(OERLIKON-BUHRLE) .1974 08 1978 1975 **BCR** ."IPO-OERLIKON" 1991

- 86 -

.

2001

.BCR

ORFEE:

SANIAK:

ORSIM:

	•	
	:(Boulonnerie Visserie)	>
:	BCR	
Les Vis à métaux		
Les Vis métrique		
► Les écrous		
Les Vis à bois		
> Les Vis à tôle		
Les rondelles et plaquettes obliq	ue	
Les rivets	P	
 Les goujons, les tiges filtrées et d Les Boulons SNTF 	i ancrage	
Les Boutons SN11		
	·(n · · · ·)	
	:(Robinetterie)	
	:	
I - D-Linestania Considerina	·	
La Robinetterie SanitaireLa Robinetterie Jaune		
La Robinetterie Jaune		
	:(Coutellerie)	
		_
		:
Couverts de table		
Articles de service		
Platerie, poterie, terrines		
Ustensiles de cuisine		
	:(Eviers de cuisine)	
		•
Eviers à un bac		
Eviers à deux bacs		
> Eviers encastrables		
Eviers posables		

```
:"ORSIM"
                                                                             .2
                                                               2001
                     BCR
                                          ORFEE
                        .2002
                                   (SIMA
                                                              .(ORSIM)"
                                                       ORSIM
                                                            OUED\ RHIOU\ :OR
                                                                 SOCIETE
                                                                             : S
                                                            INDUSTRUEL
                                                                             : I
                                                            MECANIQUE
                                                                            : M
600.000.000
                                                                      ((1)
               500
                                                                        04
                                                              ^{2} 124800
                                                 <sup>2</sup> 3360:
                                                 1008:
                                                97441
                                             <sup>2</sup> 12480:
                                                           <sup>2</sup> 2700:
                                                    <sup>2</sup> 1300:
```

² 9600: 269 2006 277 30 34 133 (AFAQ)ISO.2001 Les Vis à métaux Les Vis métrique ► Les écrous > Les Vis à bois > Les Vis à tôle Les rondelles, plaquettes, rivets, goujons, tiges et produitsSNTF

.ORSIM .3

				0.	RSIM
ORSIM	:(1-4))			
			-		
		_			
ORSIM	•	J			
	•				
	•				
			:		-
	•				
•			:		-
			:		-
	•				
				_	

- 92 -

: .1
:
:
(2007/07/31 2003/01/01) : T
: v

VIS A BOIS :V2

RONDELLE

VIS A TOLE :V3

ECROU :V4

:V1

RIVET :V5

PRODUITS SNTF :V6

TIGE :V7

VIS A METAUX :V8

VIS METRIQUE :V9

:Vt

v = f(t):

```
.2
           (
           k
             t
                                       ..... t-2
                                                      t-1
    .(Bi
                            ((3)
                                           : V1
 V1 = -45070866 + 1.10 * B5 + 2.57 * B6 + 4.77 * B7 + 0.91 * B8
 +1.06*B17-1.00*B18-0.89*B19+0.34*B20-57.83*B29
 -23.72*B30-11.65*B31-0.28*B41
                                          : V2
V2 = -13204229 - 1.53 * B5 + 0.61 * B6 - 0.67 * B7 - 2.48 * B8
+28.53*B17+7.24*B18--8.93*B19+2.35*B20+3.15*B29
+0.86*B30+6.37*B31+0.64*B41
                                          : V3
V3 = 3891309 + 2.02 * B5 + 4.40 * B6 + 4.35 * B7 - 1.99 * B8
-10.02*B17+6.10*B18+4.58*B19-1.29*B20-1.40*B29
-5.01*B30-4.02*B31+0.68*B41
                                          : V4
  V4 = 10900000 + 0.79 * B5 - 0.95 * B6 + 0.18 * B7 - 0.10 * B8
  +0.01*B17 - 0.09*B18 + 0.10*B19 - 0.05*B20 - 2.53*B29
  +2.71*B30-0.45*B31-1.58*B41
```

: V5

V5 = 460764.3 + 1.17 * B5 - 0.50 * B6 + 0.56 * B7 - 0.89 * B8-11.89 * B17 + 12.34 * B18 + 1.67 * B19 + 18.86 * B20 + 1308.66 * B29 + 0.11 * B30 + 0.12 * B31 - 0.55 * B41

: V6

V6 = -64370248 + 0.34 * B3 + 0.34 * B4 + 0.19 * B5 - 0.39 * B6+ 0.67 * B7 - 0.07 * B8 + 0.38 * B9 + 0.47 * B15 - 0.09 * B16+ 0.32 * B17 - 0.37 * B18 + 0.28 * B19 - 0.09 * B20 + 0.24 * B21+ 0.10 * B27 - 0.14 * B28 + 0.43 * B29 - 0.36 * B30 + 0.19 * B31- 1.05 * B32

: V7

V7 = -18563947 - 0.54 * B5 + 0.045 * B6 - 0.9 * B7 + 0.1 * B8+ 0.49 * B17 + 0.1 * B18 - 5.22 * B19 + 2.2 * B20 - 4.7 * B29+ 3.67 * B30 + 3.34 * B31 - 1.47 * B41

: V8

V8 = -0.72 + 0.24 * B4 + 0.71 * B5 + 1.12 * B6 + 0.46 * B7 + 0.68 * B8 -0.57 * B9 + 0.20 * B16 + 1.20 * B17 + 0.33 * B18 + 0.31 * B19 -0.01 * B20 + 0.22 * B21 + 1.29 * B28 + 0.45 * B29 - 3.26 * B30+1.20 * B31 - 0.70 * B32 + 10.65 * B33

: V9

V9 = -33611585 + 0.43 * B4 + 0.29 * B5 + 0.43 * B6 + 1.67 * B7+ 1.07 * B8 + 1.34 * B9 + 0.43 * B16 + 0.35 * B17 + 0.22 * B18 + 0.81 * B19 + 0.77 * B20 - 0.23 * B21 - 0.15 * B28 + 0.29 * B29 + 0.29 * B30 - 0.54 * B31 - 0.36 * B32 - 0.33 * B33

: Vt

Vt = -4.68 + 0.20 * B5 + 0.1 * B6 + 0.1 * B7 - 0.7 * B8 + 1.7 * B17 + 1.5 * B18 + 10.7 * B19 - 8.75 * B20 - 0.11 * B29 + 2.19 * B30 - 0.10 * B31 + 0.42 * B41

ORSIM

•

:(1-4)

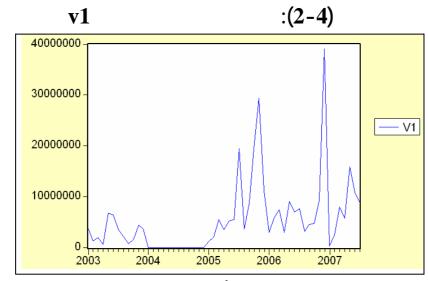
DW	R^2	F	
2.20	0.96	2.66	V1
2.15	0.98	6.81	V2
2.22	0.99	91.24	V3
2.22	0.94	3.56	V4
1.78	0.95	4.81	V5
2.10	0.96	2.87	V6
2.18	0.99	1543.17	V7
2.02	0.91	5.34	V8
2.09	0.92	2.96	V9
1.98	0.98	5.76	Vt
/4\	(2)		

 $(10) \qquad \qquad (1) \qquad \qquad (3)$

Vt V7 V5 V4 V3 V2 V1:

V9 V8

ORSIM "Box-Jenkinz":

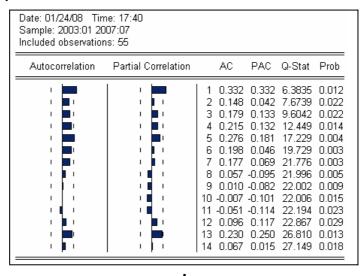

ORSIM Box-Jenkinz"

.Vt V4 V3 V2 V1

V3 V2 V1: "Box-Jenkinz" :

:V1 "Box-Jenkinz" .1 :V1 (

.2007 2003 RONDELLE (2-4)


Eviews3.1 :

(v1) (3-4)

. 14

(Correlogramme)v1

:(3-4)

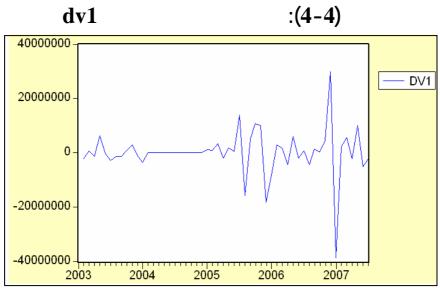
Eviews3.1

(Pics)

' - ' V1

(DF et ADF) ' - ' (Dickey-Fuller)

: (v1)


v1 ADF DF :(2-4)

(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t _{tab} 1%	t_{arphi}	t_{tab} 1%
-2.47	-4.14	-1.65	-3.56	-0.75	-2.61

(4) 3.2.1 :

$$(dv1_t = v1_t - v1_{t-1})$$

. dv1

Eviews3.1 :

(0) dv1

_ _

:

	dv1	ADF DF	· :((3-4)	
(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t_{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t _{tab} 1%

-3.56

-5.02

-2.61

(4) 7 6.5 :

-4.99

dv1

-4.93

. %1

-4.15

(

: dv1

dv1 :(5-4)

Date: 01/25/08 Time: 17:12 Sample: 2003:01 2007:07 Included observations: 54						
Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob				
		1 -0.367 -0.367 7.6818 0.006 2 -0.166 -0.347 9.2772 0.010 3 0.004 -0.270 9.2780 0.026 4 -0.017 -0.275 9.2960 0.054 5 0.109 -0.111 10.030 0.074 6 -0.043 -0.117 10.147 0.119 7 0.041 0.007 10.257 0.174 8 -0.031 0.010 10.319 0.243 9 -0.019 0.020 10.343 0.323 10 0.022 0.032 10.375 0.408 11 -0.143 -0.189 11.815 0.378 12 0.005 -0.300 11.816 0.461 13 0.223 -0.064 15.494 0.278 14 -0.022 0.022 15.530 0.343				

Eviews3.1

$$MA(1)$$
 $12.4.3.2.1$
 $AR(12), AR(4), AR(3), AR(2), AR(1)$:

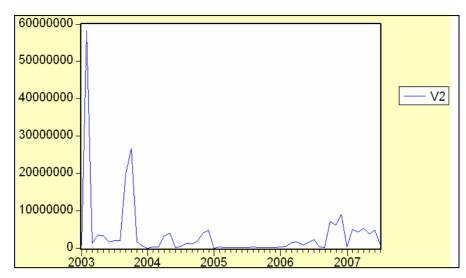
ARIMA (0,1,1):

:

 $dv1 = 194062, 4 - 0.98219\xi_{t-1} + \xi_t$

:

dv1 :(4-4)


		T-student	
С	194062,4	3.31	0.0017
MA(1)	-0.98219	-44.87	0.0000

(4) 8 :

((1 (4-4)(2.7=t)44.87 3.31 t(F=5.06)(2 :(AUTOCORRELATION) (DW) DW= 1.64: 1.53 2.4 0 1.60 2 2.47 4 ($\rho = 0$ $\rho \prec 0$ $\rho \succ 0$ 1.60 < 1.64 < 2 أن : (t+1: $t+h. \dots t+2$ $Dv1_{08/2007} = 194062.4 - 0.98219(-1867040)$ 2027850.618 2007

: V2 "Box-Jenkinz" .2
: V2 (

:V2 (6-4)

Eviews3.1

(v2) (7-4)

.(Pics)

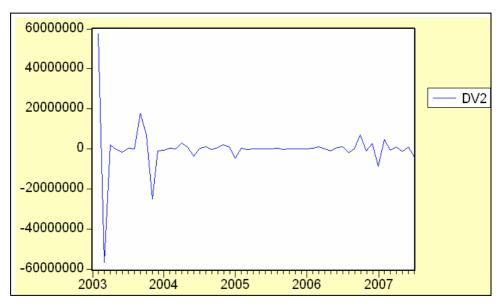
14

6 0.009 0.010 0.3033 0.999 7 0.249 0.249 4.3473 0.739

8 0.318 0.305 11.097 0.196 9 -0.038 -0.073 11.195 0.263 10 -0.026 -0.039 11.244 0.339 11 -0.032 -0.023 11.317 0.417 12 -0.026 -0.016 11.367 0.498 13 -0.013 -0.010 11.379 0.579 14 0.037 -0.022 11.482 0.648

Eviews3.1

v2 ADF DF :(5-4)


(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t_{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t_{tab} 1%
-3.27	-4.14	-3.22	-3.55	-2.45	-2.60

 $(5) \qquad 3\cdot 2\cdot 1$

$$dv2_{t} = v2_{t} - v2_{t-1}$$

. dv2

dv2 :(8-4)

Eviews3.1 :

(0) dv2

_ _

:

dv2	ADF	DF	:(6-4)
			` '

(3)		(2)		(1)	
ADF				ADF	
t_{φ}	t_{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t _{tab} 1%
-5.11	-4.15	-5.23	-3.56	-5.25	-2.61

(5) 7 6.5 :

dv2

. 1 %

: (

: dv2

dv2 :(9-4)

Date: 01/25/08 Tim Sample: 2003:01 20 Included observation	07:07				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		4 -0.012 5 -0.001 6 -0.123 7 0.095 8 0.234 9 -0.195	-0.301 -0.226 -0.194 -0.170 -0.345 -0.326 0.071 -0.005 -0.020 -0.031	11.592 11.670 11.672 11.681 11.681 12.640 13.220 16.815 19.357 19.358 19.361 19.362 19.390	0.001 0.003 0.009 0.020 0.039 0.049 0.067 0.032 0.022 0.036 0.055 0.080 0.111

Eviews3.1

MA(1)

7.6.2.1
.
$$AR(7), AR(6), AR(2), AR(1)$$
: p

ARIMA(7,1,0):

:

 $dv2 = 0.1841 dv2_{t-7} - 0.744 \xi_{t-1}$

:

dv2

:(7-4)

		T-student	
AR(7)	0.1841	2.69	0.0097
MA(1)	-0.744	-7.40	0.0000

(5) 8 :

: (

: (1

(7-4)

(2.07=t) t 7.40 2.69

(F=5.06)

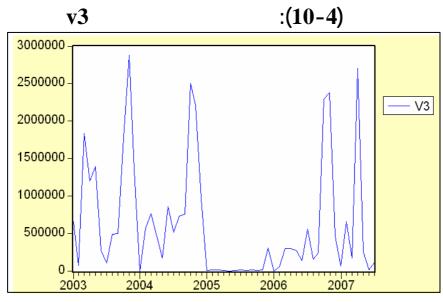
:(AUTOCORRELATION)

DW= 1.70:

(2

1.60 < 1.70 < 2 ان:

: (


:

 $Dv2_{08/2007} = 0.1841(268721) - 0.744(-4171946)$ 3153399.36 2007

: V3 "Box-Jenkinz" .3 :V3 (2003 *VIS A TOLE* (10-4)

.2007

14

Eviews3.1

(v3) (11-4)

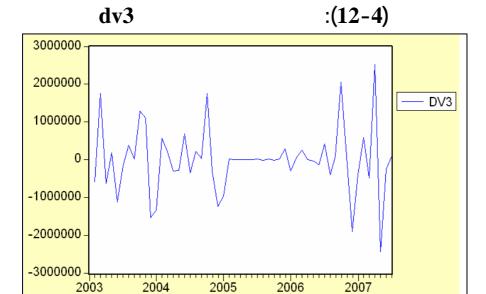
v3 :(11-4)

Date: 01/25/08 Time: 09:47 Sample: 2003:01 2007:07 Included observations: 55 Partial Correlation AC PAC Q-Stat Prob Autocorrelation 1 0.403 0.403 9.4518 0.002 2 0.019 -0.172 9.4732 0.009 3 -0.108 -0.059 10.179 0.017 4 -0.016 0.074 10.195 0.037 5 0.077 0.052 10.564 0.061 6 0.129 0.075 11.622 0.071 0.046 -0.035 11.763 0.109 8 -0.022 -0.007 11.795 9 -0.087 -0.065 12.315 0.196 10 -0.033 0.028 12.390 0.260 11 0.132 0.145 13.625 0.254 12 0.128 -0.016 14.821 0.251 13 0.009 -0.043 14.827 0.318 14 -0.125 -0.086 16.022 0.312

Eviews3.1

v3 (11-4) (10-4)

: (DF et ADF) - -


v3 ADF DF :(8-4)

(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t_{tab} 1%	t_{φ} ADF	t _{tab} 1%	t_{arphi}	t_{tab} 1%
-2.66	-4.15	-2.67	-3.56	-1.73	-2.61

(6) 3.2.1

$$(dv3_{t} = v3_{t} - v3_{t-1})$$

. dv3

Eviews3.1

(0) dv3

: -

	dv3	ADF DF	:((9-4)	
(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t _{tab} 1%
-5.10	-4.15	-5.18	-3.56	-5.23	-2.61

(6) 7 6.5 :

dv3

. %1

: (

: dv3

dv3 :(13-4)

Eviews3.1

3 2 AR(3), AR(2):

ARIMA(2,1,0):

:

$$dv3 = -0.215 dv3_{t-2} + \xi_t$$

:

dv3 :(10-4)

		T-student	
AR(2)	-0.215	-1.65	0.01

(6) 8 :

: (10-4)

.20% 1%

:(AUTOCORRELATION) (2

DW=2.04:

2 <2.04 < 2.4 : أن

: (

dv3_{08/2007}=-0.215(-245910)

52870.65:

" Box-Jenkinz" Vt V4: "Box-Jenkinz." .1 :V4 (14-4).2007 2003 **ECROU** v4:(14-4) 5.E+08 4.E+08 V4 3.E+08 2.E+08 1.E+08 0.E+00 2004 2005 2006 2007 2003 Eviews3.1 (v4)(15-4)14 :(15-4) v4Date: 01/17/08 Time: 07:53 Sample: 2003:01 2007:07 Included observations: 55 Autocorrelation Partial Correlation AC PAC Q-Stat Prob 1 0.577 0.577 19.346 0.000 2 0.408 0.112 29.185 0.000 3 0.327 0.082 35.647 0.000 4 0.205 -0.055 38.227 0.000 5 0.157 0.024 39.772 0.000 6 -0.014 -0.200 39.784 0.000 7 -0.036 0.027 39.870 0.000 8 -0.086 -0.071 40.364 0.000 9 -0.150 -0.058 41.905 0.000 10 -0.166 -0.051 43.834 0.000

Eviews3.1

11 -0.182 -0.012 46.201 0.000 12 -0.124 0.040 47.320 0.000 13 -0.120 -0.020 48.391 0.000 14 -0.143 -0.068 49.958 0.000

v4 (15-4) (14-4)

: (DF et ADF) - -

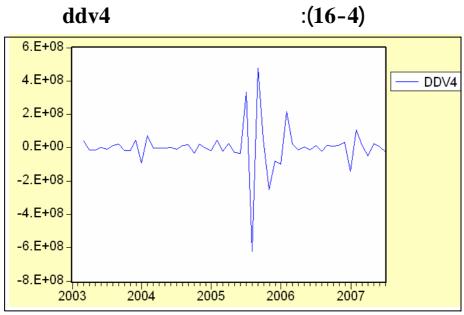
v4 ADF DF :(11-4)

(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t _{tab} 1%
-2.08	-4.15	-2.12	-3.56	-1.56	-2.61

(7) 3.2.1 :

$$1\%$$

$$(dv4_{t} = v4_{t} - v4_{t-1})$$


- -

. (DF et ADF)

dv4 ADF DF :(12-4)

(6)		(5)		(4)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t _{tab} 1%	t_{arphi}	t _{tab} 1%
-3.36	-4.14	-3.39	-3.56	-3.43	-2.61

(7) 7 6.5 :

Eviews3.1 :

. (DF et ADF)

d	dv4	ADF DF	:(13-	-4)	
(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t_{tab} 1%	t_{arphi}	t_{tab} 1%
-5.19	-4.14	-5.26	-3.56	-5.32	-2.61

(7) 11.10.9 :

ddv4

. 1%

: (

: ddv4

ddv4 :(17-4)

Date: 01/17/08 Time: 15:07 Sample: 2003:01 2007:07 Included observations: 53						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		2 0.016 3 0.112 4 -0.141 5 0.213 6 -0.211 7 0.098 8 0.017 9 -0.050 10 0.054	-0.052	18.523 18.537 19.268 20.450 23.196 25.952 26.559 26.578 26.747	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003	
1 1 1		13 -0.005	-0.152 -0.166	27.505 27.836 27.838 27.865	0.004 0.006 0.010 0.015	

Eviews3.1

$$MA(1)$$

 $4.3.2.1$
 $AR(4), AR(3), AR(2), AR(1)$: p

$$ARIMA(1,2,1)$$
:

:

$$ddv4 = -0.30ddv4_{t-1} - 0.96\xi_{t-1}$$

.

ddv4 :(14-4)

		T-student	
AR(1)	-0.30	-2.22	0.03
MA(1)	-0.96	-1866.59	0.00

(7) 12 :

```
(1
                                     (14-4)
                                                     (F=5.06)
                  :(AUTOCORRELATION)
                                                                  (2
                                                      DW = 2.12:
                                              أن: 2 < 2.12 < 2.4
                   t+h..... t+2 t+1:
              ddv4_{08/2007} = -0.30(2578214) - 0.96(2.4(10^7))
                                    22266535.8
                                          : Vt "Box-Jenkinz"
                                                                          .2
                                           :Vt
                                                          (18-4)
 .2007
                 2003
                                              :(18-4)
                  \mathbf{v}\mathbf{t}
             2.5E+11
                                                                VT
             2.0E+11-
             1.5E+11
             1.0E+11 -
             5.0E+10-
             0.0E+00-
                          2004
                  2003
                                   2005
                                            2006
                                                    2007
Eviews3.1
```

(vt) (19-4)
. 14
vt :(19-4)

iciaaea obseivation	07:07 s: 55					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		7 8 9 10 11 12 13	0.299 0.166 0.135 0.030 0.161 -0.003 -0.052 -0.067 -0.067 -0.067 -0.080 -0.081 -0.082	-0.057 -0.056 -0.005 -0.063 -0.019 -0.026 -0.026	5.1783 6.8063 7.9061 7.9602 9.5921 9.5928 9.7706 10.012 10.316 10.631 11.078 11.542 12.036 12.550	0.023 0.033 0.048 0.093 0.088 0.143 0.202 0.264 0.326 0.387 0.437 0.483 0.525 0.562

Eviews3.1

vt (19-4) (18-4)

: (DF et ADF) - -

vt ADF DF :(15-4)

(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t_{tab} 1%	t_{φ} ADF	t _{tab} 1%	t_{arphi}	t_{tab} 1%
-2.15	-4.15	-2.20	-3.56	-2	-2.61


(8) 3.2.1 :

$$\left(dvt_{t} = vt_{t} - vt_{t-1}\right)$$

. dvt

dvt

:(20-4)

Eviews3.1

(0)

dvt

_ _

dvt ADF DF :(16-4)

(3)		(2)		(1)	
ADF				ADF	
t_{arphi}	t _{tab} 1%	t_{φ} ADF	t _{tab} 1%	t_{arphi}	t _{tab} 1%
-4.30	-4.15	-4.33	-3.56	-4.38	-2.61

(8) 7 6.5

dvt

. 1%

:

: dvt

dvt :(21-4)

Date: 01/25/08 Time: 16:29 Sample: 2003:01 2007:07 Included observations: 54					
Autocorrelation Partial Correla	ation	AC	PAC	Q-Stat	Prob
	2 3 4 5 6 7 8	-0.073 0.053 -0.169 0.212 -0.083 -0.029 -0.001 -0.008 -0.008 0.001 0.000	-0.131 -0.289 -0.006 -0.060 -0.060 -0.106 -0.044 -0.085	9.4067 9.7148 9.8829 11.616 14.380 14.811 14.866 14.867 14.872 14.877 14.877 14.877	0.002 0.008 0.020 0.020 0.013 0.022 0.038 0.095 0.137 0.188 0.248 0.315 0.387

Eviews3.1

MA(1)4.2.1 AR(4), AR(2), AR(1): p

ARIMA (0,1,1):

:

 $dvt = \xi_t - 0.76\xi_{t-1}$

:

dvt :(17-4)

		T-student	
MA(1)	-0.76	-8.54	0.0000

(8) 8 :

: (1 (17-4) : (AUTOCORRELATION) (2 (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 2 : (() (1.64 < 1.78 < 1.78 < 2 : (() (1.64 < 1.78 < 1.78 < 2 : (() (1.64 < 1.78 < 1.78 < 1.78 < 1.78 < 1.78 < 1.78 < 1.

ORSIM

ORSIM

v9 v8 v7 v6 v5:

ORSIM

1992

MATLAB

v9 v8 v7 v6 v5:

.1 : v5

f(t)

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{n} \left[a_k \cos \frac{2\pi}{kT} t + b_k \sin \frac{2\pi}{kT} t \right]$$

k

 $a_0 = \frac{\sum f(t)}{T}$

:T

2

1

55

 $f(t_1) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{55} t_1 + b_1 \sin \frac{2\pi}{55} t_1 + a_2 \cos \frac{\pi}{55} t_1 + b_2 \sin \frac{\pi}{55} t_1$ $f(t_2) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{55} t_2 + b_1 \sin \frac{2\pi}{55} t_2 + a_2 \cos \frac{\pi}{55} t_2 + b_2 \sin \frac{\pi}{55} t_2$ $f(t_3) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{55} t_3 + b_1 \sin \frac{2\pi}{55} t_3 + a_2 \cos \frac{\pi}{55} t_3 + b_2 \sin \frac{\pi}{55} t_3$

$$f(t_4) = \frac{a_0}{2} + a_1 \cos \frac{2\pi}{55} t_4 + b_1 \sin \frac{2\pi}{55} t_4 + a_2 \cos \frac{\pi}{55} t_4 + b_2 \sin \frac{\pi}{55} t_4$$

.

$$t_1 = 1 \Rightarrow f(t_1) = f(1)$$

$$t_2 = 19 \Rightarrow f(t_{19}) = f(19)$$

$$t_3 = 37 \Rightarrow f(t_{37}) = f(37)$$

$$t_4 = 55 \Rightarrow f(t_{55}) = f(55)$$

:

$$\begin{bmatrix} 486619.9273 \\ -2129800.073 \\ -906760.073 \\ 4227405.927 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0.9934 & 0.1139 & 0.9983 & 0.0570 \\ -0.5644 & 0.8254 & 0.4666 & 0.8844 \\ -0.4666 & -0.8844 & -0.5163 & 0.8563 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

:

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2.3454 \\ 0.5073 \\ -1.8820 \\ -0.3917 \end{pmatrix}$$

:

$$f(t) = 2129800073 + 2.3454\cos\frac{2\pi}{55}t + 0.5073\sin\frac{2\pi}{55}t - 1.8820\cos\frac{\pi}{55}t - 0.3917\sin\frac{\pi}{55}t$$

t

2129800.56:
$$(t = 56)$$

:v6 .2

:

$$t_1 = 1 \Rightarrow f(t_1) = f(1)$$

$$t_2 = 19 \Rightarrow f(t_{19}) = f(19)$$

$$t_3 = 37 \Rightarrow f(t_{37}) = f(37)$$

$$t_4 = 55 \Rightarrow f(t_{55}) = f(55)$$

:

$$\begin{bmatrix} -34819285.6 \\ -375488946 \\ -375488946 \\ 85864244 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0.9934 & 0.1139 & 0.9983 & 0.0570 \\ -0.5644 & 0.8254 & 0.4666 & 0.8844 \\ -0.4666 & -0.8844 & -0.5163 & 0.8563 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

:

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} -1.2423 \\ 1.2201 \\ -2.1009 \\ -5.0685 \end{pmatrix}$$

:

$$f(t) = 375488946 - 1.2423\cos\frac{2\pi}{55}.t + 1.220\sin\frac{2\pi}{55}.t - 2.1009\cos\frac{\pi}{55}.t - 5.0685\sin\frac{\pi}{55}.t$$

t

$$37548891.12: (t = 56)$$

:v7 .3

:

$$t_1 = 1 \Rightarrow f(t_1) = f(1)$$

$$t_2 = 19 \Rightarrow f(t_{19}) = f(19)$$

$$t_3 = 37 \Rightarrow f(t_{37}) = f(37)$$

$$t_4 = 55 \Rightarrow f(t_{55}) = f(55)$$

:

$$\begin{bmatrix} -5904483081 \\ -5902369771 \\ -5903341175 \\ -5897764564 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0.9934 & 0.1139 & 0.9983 & 0.0570 \\ -0.5644 & 0.8254 & 0.4666 & 0.8844 \\ -0.4666 & -0.8844 & -0.5163 & 0.8563 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

:

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} -0.5612 \\ -0.0318 \\ 0.0285 \\ -1.0109 \end{pmatrix}$$

:

$$f(t) = 59060000000 \cdot 0.5612\cos\frac{2\pi}{55}t - 0.0318\sin\frac{2\pi}{55}t + 0.0285\cos\frac{\pi}{55}t - 1.0109\sin\frac{\pi}{55}t$$

t

5905999999:

:v8 .4

•

$$t_1 = 1 \Rightarrow f(t_1) = f(1)$$

 $t_2 = 19 \Rightarrow f(t_{19}) = f(19)$
 $t_3 = 37 \Rightarrow f(t_{37}) = f(37)$
 $t_4 = 55 \Rightarrow f(t_{55}) = f(55)$

:

$$\begin{bmatrix} -215016225.5 \\ -150154545.5 \\ -275191395.5 \\ -219266137.5 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0.9934 & 0.1139 & 0.9983 & 0.0570 \\ -0.5644 & 0.8254 & 0.4666 & 0.8844 \\ -0.4666 & -0.8844 & -0.5163 & 0.8563 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

:

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} -2.1090 \\ 0.6228 \\ 0.0837 \\ -3.6691 \end{pmatrix}$$

:

$$f(t) = 2971545455 - 2.1090\cos\frac{2\pi}{55}t + 0.6228\sin\frac{2\pi}{55}t - 0.0837\cos\frac{\pi}{55}t - 3.6691\sin\frac{\pi}{55}t$$

t

297154543.1:

ORSIM

:v9 .5

:

$$t_1 = 1 \Rightarrow f(t_1) = f(1)$$

$$t_2 = 19 \Rightarrow f(t_{19}) = f(19)$$

$$t_3 = 37 \Rightarrow f(t_{37}) = f(37)$$

$$t_4 = 55 \Rightarrow f(t_{55}) = f(55)$$

:

$$\begin{bmatrix} -4388804.66 \\ 5243495.34 \\ -7431914.66 \\ -5015342.66 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{bmatrix} \begin{bmatrix} 0.9934 & 0.1139 & 0.9983 & 0.0570 \\ -0.5644 & 0.8254 & 0.4666 & 0.8844 \\ -0.4666 & -0.8844 & -0.5163 & 0.8563 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

•

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} -5.0146 \\ 7.1912 \\ 0.0008 \\ -3.9838 \end{pmatrix}$$

:

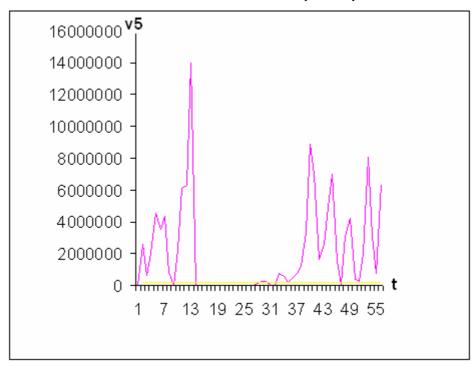
$$f(t) = 789851466 - 5.0146\cos\frac{2\pi}{55}t + 7.1912\sin\frac{2\pi}{55}t + 0.0008\cos\frac{\pi}{55}t - 3.9838\sin\frac{\pi}{55}t$$

t

7898510.726:

v9 v8 v7 v6 v5:

ORSIM


: v5 ORSIM .1

1992 ORSIM

v5 (y=200439.40)1992

.

v5 :(22-4)

Excel :

•

y $A: \int_{1}^{55} f(t)dt$ $B: \int_{1}^{55} [f(t)-y]dt$

 $f = \frac{B}{A}.100 :$

:

$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[2129800.073 + 2.3454 \cos \frac{2\pi}{55} t + 0.5073 \sin \frac{2\pi}{55} t \right] dt$$

$$-1.8820 \cos \frac{\pi}{55} t - 0.3917 \sin \frac{\pi}{55} t$$

A = 115009221.8

$$B = \int_{1}^{55} [f(t) - 200439.40] dt$$

B = 104185494.2

$$f = \frac{B}{A}.100 = 0.9058 (100)$$
 :
%90.58 v5 ORSIM

,

: v6 ORSIM .2
v6 ORSIM (y=24163600)1992

v6 :(23-4)

250000000 150000000 100000000 50000000 1 7 13 19 25 31 37 43 49 55

Excel

:

$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[37548894.6 - 1.2423 \cos \frac{2\pi}{T} t + 1.2201 \sin \frac{2\pi}{T} t \right] dt$$

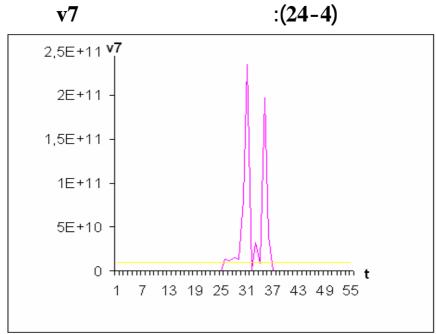
$$-2.1009 \cos \frac{\pi}{T} t - 5.0685 \sin \frac{\pi}{T} t$$

A = 2027640132

$$B = \int_{1}^{55} [f(t) - 24163600] dt$$

$$B = 722805732$$

$$F = \frac{B}{A}.100 = 0.3564(100)$$


%35.64 **v6**

ORSIM

:

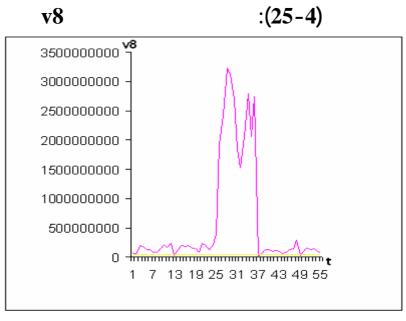
. . . .

: v7 ORSIM .3 y= 1004413160 : v7 1992

Excel :

$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[5906000000 - 0.5613 \cos \frac{2\pi}{T} t - 0.0318 \sin \frac{2\pi}{T} t \right] dt$$

$$+ 0.0285 \cos \frac{\pi}{T} t - 1.0109 \sin \frac{\pi}{T} t$$


$$A = 3.18924(10^{11})$$

$$B = \int_{1}^{55} [f(t) - 1004413160] dt$$

$$B = 2.6468568 (10^{11})$$

$$F = \frac{B}{A}.100 = 0.8299(100)$$
%82.99 v7 ORSIM

: v8 ORSIM .4 (y=58321963.61)1992

Excel :

$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[297154545 .5 - 2.1090 \cos \frac{2\pi}{T} t + 0.6228 \sin \frac{2\pi}{T} t \right] dt$$

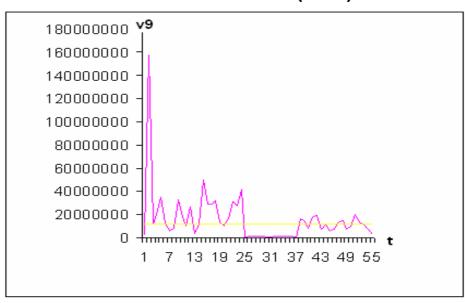
$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[297154545 .5 - 2.1090 \cos \frac{2\pi}{T} t + 0.6228 \sin \frac{2\pi}{T} t \right] dt$$

$$A = 1.6046345 (10^{10})$$

.

$$B = \int_{1}^{55} [f(t) - 58321963.61] dt$$

$$B = 1.2896958(10^{10})$$


$$F = \frac{B}{A}.100 = 0.8037(100)$$
%80.37 v8 ORSIM

.

: v9 ORSIM .5

v9

:(26-4)

Excel :

:

$$f(t) = 789851466 - 5.0146\cos\frac{2\pi}{55}t + 7.1912\sin\frac{2\pi}{55}t + 0.0008\cos\frac{\pi}{55}t - 3.9838\sin\frac{\pi}{55}t$$

$$A = \int_{1}^{55} f(t)dt = \int_{1}^{55} \left[7898514.66 - 5.0146 \cos \frac{2\pi}{T} t + 7.1912 \sin \frac{2\pi}{T} t \right] dt$$

$$+ 0.0008 \cos \frac{\pi}{T} t - 3.9838 \sin \frac{\pi}{T} t$$

A = 426519651.8

$$B = \int_{1}^{55} [f(t) - 3471265.80] dt$$

B = 239071298.6

$$F = \frac{B}{A}.100 = 0.5605(100)$$

%56.05 **v9**

ORSIM

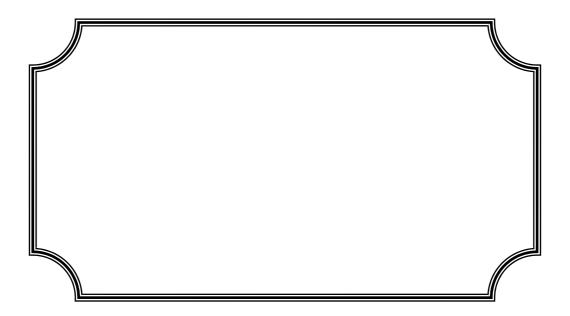
:

.

"ORSIM"

:

Vt,v4,v3,v2,v1


2007 2003

EVIEWS

ARMA

v9 v8 , v7, v6, v5 v8, v7 , v5

. v6 v9

- 132 -

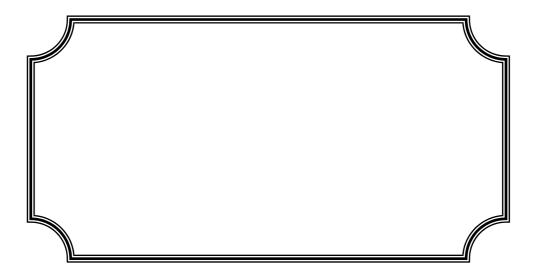
: .1 : .2 ()

· :

•

:

.


- 133 -

شکر و مرهان

II II

u

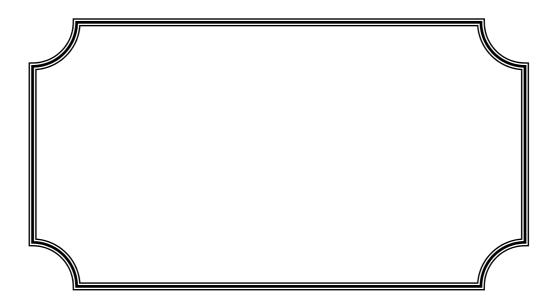
u

			:	-1
	.2007 -			-(
		 	_	-
				.1982
	(_)		- .1999-
-		1005	-	-
_	-(21	.1995-)	-	_
		·	_	.2001
-()		-
	.1997 –			-
-	-			-
	.1986			.2000
			.2000 -	_
_		_	.2000	_
	-			.2006
	-()		-
			.2003	
	<u> </u>	_	_	-

_					
					.200
			-		
				.1990 -	-
			_	1000	
1002				.1988-	-
.1993-	_				
-			.1989 -	_	
-()	_			
`	,			.1	998-
_		_		-	
_					.2004
- SA-A WILEY	ARABOOK-	_	_		.2004
- SA-A WILEY	ARABOOK-	<u> </u>	-		
-	-(-		
5A-A WILEY - .200:	-(-) 	 	
-	-(<u> </u>)	-) 	 	.198
-	-(- <u> </u>	-) 	 	.198
-	-(<u> </u>				.198 - <u>(SPS</u>
-	-(-) 		.198 - <u>(SPS</u>
-	-(<u> </u>		-) -		.2004 .198 - <u>(SPS</u> .199
200	-(- - 4- -)			.198 - <u>(SPS</u>
-	-(- - - -		.198 - <u>(SPS</u>

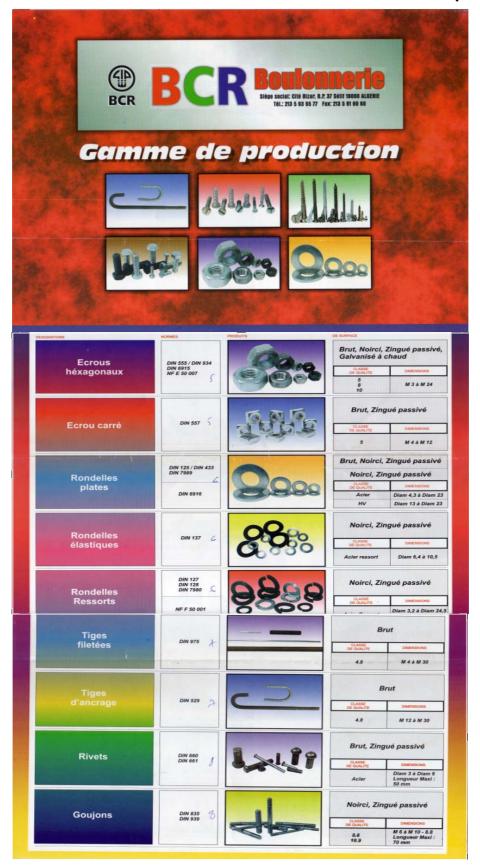
- 176 -

	-			-
_	-()	
			.2006	
_				-
	.2003-	-	- <u></u>	
			:	-2


:

- Amarache.R, Meziani.A-Prevision à court terme-Alger-1997.
- Gourieroux C , A.Monfort-<u>Séries temporelles et modèles dynamiques</u>- Economica-2éme édition-Paris-1995
- Guy Ansion- <u>Les méthodes de prévision en économie</u>- Armand Colin- Paris, France-1990.
- Guy Mélard- <u>Méthodes de prévision à court terme</u>- Edition Ellipses- Bruxelles, Belgique-1990.
- Hocine Hamdani <u>statistique descriptive</u>-1^{er} ed- Alger 1999.
- J.C.Usunier-<u>Pratique de la prévision à court terme</u>-édition Dunod-Paris-1982.
- Jean Meger- Gestion Budgétaire-4 eme edition-Dunod- France- 1970.
- Laurent Delaloye, Emmanuel Franiere, Matin Hoesli- <u>Modélisation des décision-</u> Economica- France-2001.
- M. David , J.C. Michaud <u>La prévision Approche empirique d'une méthode</u> <u>statistique-</u> Ed. Masson, Paris 1989
- M. David , J.C. Michaud <u>La prévision Approche empirique d'une méthode</u> statistique- Ed. Masson, Paris 1989
- Michel Tenenhaus- Méthodes statistiques en gestion- Dunod- Paris, France-1996.
- Michel Vaté- <u>Statistique Chronologique et Prévision</u>- Economica- Paris, France-1993.
- Regis Bourbonnais-<u>Econométrie</u>- 3eme édition, Dunod, Paris, France, 2000.
- Régis Bourbonnais, Jean-Claude <u>Prévision des Ventes(Théorie et pratique)- 4eme</u> édition- Economica- Paris, France- 2007.
- Régis Bourbonnais, Jean-Claude Usunier-prévision des ventes (théorie et pratique)-4eme édition- Economica- France-2007.

:


- C.W.J.Granger , Paul Newbold <u>Forcasting economic times series</u>- 2nd Ed, Acadimic press, INC- California- 1986
- Maddala.G.S- <u>Introduction to econometrics</u>- Mac Millan publishing company-Newyork, USA-1988.
- Steven Nahmias <u>Production and Operations Analysis</u>- 4 Ed McGraw-Hill Irwin-2001

- -4
- http://bbekhti.online.fr/articles/Modele%20de%20prevision.doc
- http://www.cip.dauphine.fr/bourbonnais/ppv.html
- http://www.mhhe.com/business/opsci/nahmias4e
- www.arab-api.org/course4/c4_2_2.htm
- www.dr-al-adakee.com
- www.Kotobarabia.com
- www.moqatel.com
- www.tutorialsandhelp.com/Using%20Excel%20for%20forecasting.html

ORSIM :(1)

:(1-1)

:(2-1)

:(2)

V5 V4 V3 V2 V1

:(1-2)

	V 5	V4 V3 V2			• • •
obs	V1	V2	V3	V4	V5
2003:01	3604310.	798680.0	657300.0	26360580	2616420.
2003:02	1317230.	58190020	74000.00	10580480	648960.0
2003:03	1961410.	1333940.	1833750.	36390040	2004390.
2003:04	580270.0	3443990.	1199970.	48420140	4533970.
2003:05	6711440.	3262780.	1390440.	44477200	3540090.
2003:06	6432820.	1598970.	271100.0	41304240	4349200.
2003:07	3489710.	1882150.	105630.0	26260520	832000.0
2003:08	2125660.	1893190.	488450.0	25510420	0.000000
2003:09	779880.0	19737950	499980.0	45675310	2268350.
2003:10	1573530.	26622920	1779940.	48153820	6110620.
2003:11	4449440.	1580520.	2882410.	33043490	6316370.
2003:12	3637110.	618690.0	1343690.	63885060	14010650
2004:01	0.000000	0.000000	0.000000	2265260.	0.000000
2004:02	0.000000	261440.0	562460.0	11987650	0.000000
2004:03	0.000000	330100.0	766170.0	17547870	0.000000
2004:04	0.000000	3210380.	462850.0	19208360	0.000000
2004:05	0.000000	3975080.	175400.0	18838150	0.000000
2004:06	0.000000	157320.0	854730.0	18311020	0.000000
2004:07	0.000000	434000.0	509980.0	9293590.	0.000000
2004:08	0.000000	1331800.	729120.0	12889610	0.000000
2004:09	0.000000	1094260.	756150.0	31804010	0.000000
2004:10	0.000000	1869930.	2506900.	15996810	0.000000
2004:11	0.000000	3886030.	2208270.	21831170	0.000000
2004:12	0.000000	4738370.	967310.0	25982950	0.000000
2005:01	1121940.	0.000000	560.0000	12198080	0.000000
2005:02	2103890.	241100.0	15360.00	43730470	15360.00
2005:03	5490200.	18150.00	13470.00	54164500	138670.0
2005:04	3457830.	117070.0	6810.000	87608350	272850.0
2005:05	5151500.	44640.00	0.000000	89951300	244930.0
2005:06	5570570.	40170.00	900.0000	60257110	3270.000
2005:07	19445050	16140.00	12050.00	3.64E+08	14030.00
	3617470.	278200.0 45930.00	450.0000 12920.00	43908010	808770.0
2005:09	8784310. 19457530	122460.0	1500.000	2.01E+08 4.10E+08	599830.0 182870.0
2005:10	29412790	54600.00	13430.00	3.67E+08	488620.0
2005:12	11181090	53910.00	302030.0	2.45E+08	777270.0
2006:01	2923858.	189450.0	0.000000	21381699	1223040.
2006:02	5801033.	374280.0	50800.00	12602964	3316466.
2006:03	7392748.	1397997.	295860.0	25173205	8888450.
2006:04	2969292.	1532128.	298620.0	25131561	7005888.
2006:05	9079396.	677840.0	273000.0	32271897	1659296.
2006:06	7015596.	1376669.	140800.0	26306866	2575414.
2006:07	7656676.	2338370.	553770.0	34203099	4894624.
2006:08	3210855.	204680.0	158100.0	20006735	7021470.
2006:09	4552811.	60920.00	236780.0	17051760	1488089.
2006:10	4778282.	7106165.	2295270.	24997893	29040.00
2006:11	9250687.	6099780.	2374170.	44125456	3129536.
2006:12	39006590	8906530.	462800.0	96426116	4196965.
2007:01	309307.0	268721.0	66700.00	5136614.	413778.0
2007:02	2460186.	4934191.	654540.0	19011436	248800.0
2006:03	7392748.	1397997.	295860.0	25173205	8888450.
2006:04	2969292. 9079396.	1532128.	298620.0 273000.0	25131561	7005888. 1659296.
2006:05	7015596.	677840.0 1376669.	273000.0 140800.0	32271897 26306866	2575414.
2006:06	7656676.	2338370.	553770.0	34203099	2575414. 4894624.
2006:07	3210855.	204680.0	158100.0	20006735	7021470.
2006:09	4552811.	60920.00	236780.0	17051760	1488089.
2006:10	4778282.	7106165.	2295270.	24997893	29040.00
2006:11	9250687.	6099780.	2374170.	44125456	3129536.
2006:12	39006590	8906530.	462800.0	96426116	4196965.
2007:01	309307.0	268721.0	66700.00	5136614.	413778.0
2007:02	2460186.	4934191.	654540.0	19011436	248800.0
2007:03	7955204.	4290054.	173000.0	47233428	1989860.
2007:04	5793725.	5275848.	2701980.	26614425	8060007.
	15891338	3779628.	255640.0	31959363	3102615.
2007:05	10001000	0110020.	2000 10.0		
2007:05	10855483	4684898.	9730.000	42188804	760970.0

:(2-2)

Vt V9 V8 V7 V6

obs	V6	V7	V8	V9	VT
2003:01	27296090	1426010.	82138320	3509710.	1.48E+08
2003:02	6564900.	2493070.	58321960	1.57E+08	2.95E+08
2003:03	0.000000	7227340.	1.94E+08	11725250	2.57E+08
2003:04	1706350.	4483020.	1.76E+08	20359470	2.61E+08
2003:05	24163600	3891180.	1.39E+08	34601600	2.61E+08
2003:06	0.000000	2093060.	1.37E+08	12882920	2.06E+08
2003:07	5507880.	1210280.	93767060	6325730.	1.39E+08
2003:08	0.000000	5466180.	85542910	8354190.	1.29E+08
2003:09	2678100.	5864460.	1.52E+08	32939780	2.62E+08
2003:09	14314800			17655140	3.37E+08
		4367090.	2.17E+08	10895660	2.45E+08
2003:11	11997380	3617350.	1.71E+08		
2003:12	31819400	10044130	2.38E+08	26980400	3.90E+08
2004:01	0.000000	0.000000	39083810	4034340.	45383410
2004:02	11332800	4231180.	1.34E+08	11929650	1.74E+09
2004:03	33000000	4776200.	1.95E+08	49919020	3.02E+08
2004:04	0.000000	4960600.	1.86E+08	29152200	2.43E+08
2004:05	0.000000	5521290.	2.01E+08	29311540	2.59E+08
2004:06	29117000	6171990.	1.57E+08	32360300	2.44E+08
2004:07	0.000000	3539320.	1.47E+08	13142010	1.74E+08
2004:08	2489150.	4188250.	87375830	10588570	1.20E+08
2004:09	0.000000	5092070.	2.30E+08	16745680	2.85E+08
2004:10	9204920.	4590100.	2.04E+08	31432700	2.69E+08
2004:11	3366660.	5373380.	1.38E+08	27919100	2.03E+08
2004:12	73670520	10688520	2.11E+08	41671840	3.69E+08
2005:01	2.25E+08	1.72E+08	3.91E+08	188410.0	8.02E+08
2005:02	43654870	1.40E+10	1.93E+09	1600650.	1.60E+10
2005:03	204100.0	1.18E+10	2.43E+09	1471110.	1.42E+10
2005:04	1.31E+08	1.50E+10	3.24E+09	1623590.	1.85E+10
2005:05	1.29E+08	1.29E+10	3.12E+09	1836600.	1.63E+10
2005:06	43148160	8.11E+10	2.70E+09	1141940.	8.39E+10
2005:07	92603170	2.35E+11	1.85E+09	996470.0	2.37E+11
2005:08	43148160	1.46E+09	1.53E+09	1276670.	3.09E+09
2005:09	44161570	3.24E+10	2.06E+09	1714170.	3.48E+10
2005:10	44239780	8.62E+09	2.79E+09	1934200.	1.19E+10
2005:11	48163930	1.97E+11	2.06E+09	1970130.	2.00E+08
2005:12	45260870	3.98E+10	2.75E+09	1346690.	4.28E+10
2006:01	0.000000	2567916.	21963150	466600.0	50715713
2006:02	72124435	2245930.	80802731	16354513	1.94E+08
2006:03	36408955	2762991.	1.38E+08	14350814	2.35E+08
2006:04	98166394	4894093.	1.29E+08	8109779.	2.77E+08
2006:05	31541703	2984416.	1.12E+08	17608014	2.09E+08
2006:06	19668128	2309891.	1.15E+08	19274578	1.94E+08
2006:07	52385881	3644435.	1.03E+08	7611086.	2.16E+08
2006:08	46328592	61246234	59468498	11301127	2.09E+08
2006:09	75350555	5616095.	90119386	5762449.	2.00E+08
2006:10	24423069	13314294	1.32E+08	7816333.	2.17E+08
2006:11	46299714	20785984	1.48E+08	13858087	2.94E+08
2006:12	55489379	44288429	2.98E+08	15155878	5.62E+08
2007:01	40218178	5004679.	27820812	7852423.	87091212
2007:02	43025000	5346810.	1.11E+08	9745930.	1.96E+08
2007:03	15033059	52285826	1.50E+08	20284205	2.99E+08
2007:04	74650682	8794436.	1.23E+08	13349293	2.68E+08
2007:05	36770000	13576979	1.46E+08	11189540	2.62E+08
2007:06	70540000	00700554	4.000,00	7225262	1 0 000 100
	73540000	26703554	1.00E+08	7325362.	2.66E+08

V1

:(3) :(1-3)

Dependent Variable: V1 Dependent variable: V1
Method: Least Squares
Date: 04/04/08 Time: 07:18
Sample(adjusted): 2006:06 2007:07
Included observations: 55
V1=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8)
*B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-45070866	20173395	-2.789541	0.2679
C(2)	1.101422	0.361254	3.048890	0.2018
C(3)	2.570349	0.722320	3.558465	0.1744
C(4)	4.773942	1.417053	3.368922	0.1837
C(5)	0.916389	1.197053	2.765482	0.5843
C(6)	1.062021	0.385020	2.581549	0.2214
C(7)	-1.003416	0.391152	2.791245	0.2366
C(8)	-0.892432	0.424131	-2.931425	0.2824
C(9)	0.348234	0.494158	2.881321	0.6092
C(10)	-7.83396	20.44882	-2.828230	0.2164
C(11)	-23.72823	7.329313	-3.237443	0.1907
C(12)	-11.65523	8.478200	-2.771597	0.4004
C(13)	-0.284886	1.159814	-2.978123	0.8467
R-squared	0.960629	Mean dependent var		9103723.
Adjusted R-squared	0.488172	S.D. dependent var		9437438.
S.E. of regression	6751744.	Akaike info criterion		33.50659
Sum squared resid	4.56E+13	Schwarz criterion		34.10000
Log likelihood	-221.5461	F-statistic		2.661234
Durbin-Watson stat	2.209423	Prob(F-statistic)		0.789456

:(2-3) V2

Dependent Variable: V2 Method: Least Squares Date: 04/04/08 Time: 07:39 Sample(adjusted): 2006:06 2007:07

Included observations: 14 after adjusting endpoints $\begin{tabular}{ll} $$ \end{tabular} $$ \end{tabular} $$ $$ \end{tabular} $$$ $$ \end{tabular} $$$ \end{tabular} $$$ $$ \end{tabular} $$$ $$ \end{tabular} $$$ \end{tabular} $$$ $$ \end{tabular} $$$ \end{tabular} $$$ $$ \end{tabular} $$$ $$ \end{tabular} $$$ \end{tabular} $$$$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)	-13204229	4744970.	-2.782785	0.2196
	-1.531258	0.385400	-3.973165	0.1570
	0.616982	0.240866	2.574687	0.2369
	-0.679271	0.248613	-2.732238	0.2234
	-2.483863	0.793894	-3.128710	0.1969
	28.53741	13.69233	2.897564	0.2848
	7.246817	2.233259	3.244951	0.1903
	-8.933364	2.511574	-3.556879	0.1745
	2.355237	0.850371	2.769658	0.2206
	3.159093	0.849791	3.7717495	0.1673
	0.860255	0.384295	2.915871	0.2675
	6.371939	1.442480	4.417350	0.1417
	0.648421	0.163079	3.976107	0.1569
R-squared	0.987928	Mean dependent var		3576415.
Adjusted R-squared	0.843063	S.D. dependent var		2812247.
S.E. of regression	1114079.	Akaike info criterion		29.90304
Sum squared	1.24E+12	Schwarz criterion		30.49645
Log likelihood	-196.3213	F-statistic		6.819656
Durbin-Watson stat	2.159878	Prob(F-statistic)		0.291531

:(3-3) **V3**

Dependent Variable: V3 Dependent variable: v3
Method: Least Squares
Date: 04/04/08 Time: 07:44
Sample(adjusted): 2006:06 2007:07
Included observations: 55
V3=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8)
*B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)	3891309. 2.020339 4.408478 4.354898 -1.990015 6.102082 4.581879 -1.299466 -1.404488 -5.014291 -4.024925 0.680144	206843.5 0.249320 0.212052 0.224563 0.113576 0.840993 0.748188 0.495735 0.176655 0.184849 0.263830 0.212219 0.107819	18.81282 8.103412 20.78963 19.39278 -17.52143 8.155816 9.242596 -7.355944 -7.598037 -19.00576 -18.96594 6.308197	0.0338 0.0782 0.0306 0.0328 0.0363 0.0533 0.0777 0.0686 0.0860 0.0833 0.0335 0.0335
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.999088 0.988138 104368.8 1.09E+10 -163.1713 2.225488	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		728562.9 958282.2 25.16734 25.76075 91.24538 0.081647

:(4-3) V4

Dependent Variable: V4
Method: Least Squares
Date: 04/04/08 Time: 07:44
Sample(adjusted): 2006:06 2007:07
Included observations: 55
V4=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8)
*B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

Coefficient	Std. Error	t-Statistic	Prob.
10900000	1.07E+08	2.875545	0.4942
0.797427	0.456249	2.987544	0.3308
-0.951351	3.308768	-3.154852	0.8218
0.182565	0.862752	3.568848	0.8672
-0.106731	0.164282	-2.689712	0.6332
0.017340	0.259049	3.574854	0.9574
-0.097397	0.198202	-4.254847	0.7092
0.107492	0.341156	5.636685	0.8057
-0.058331	0.300597	-2.879555	0.8780
-2.536996	3.895215	-3.458790	0.6325
2.713911	9.247302	7.588543	0.8183
-0.452547	2.327009	-2.937512	0.8777
-1.589855	2.232317	-2.789522	0.6060
0.940954 0.232408	Mean dependent var		33007287 21517389
			35.56021
3.55E+14			36.15362
-235.9215			3.568974
2.229458	Prob(F-stati:	stic)	0.597454
	10900000 0.797427 -0.951351 0.182565 -0.106731 0.017340 -0.097397 0.107492 -0.058331 -2.536996 2.713911 -0.452547 -1.589855 0.940954 0.232408 18851891 3.55E+14 -235.9215	10900000 1.07E+08 0.797427 0.456249 -0.951351 3.308768 0.182565 0.862752 -0.106731 0.164282 0.017340 0.259049 -0.097397 0.198202 0.107492 0.341156 -0.058331 0.300597 -2.536996 3.895215 2.713911 9.247302 -0.452547 2.327009 -1.589855 2.232317 0.940954 Mean depend 18851891 Akaike info d.8561891 3.55E+14 Schwarz crit -235.9215 F-statistic	10900000 1.07E+08 2.875545 0.797427 0.456249 2.987544 -0.951351 3.308768 -3.154852 0.182565 0.862752 3.568848 -0.106731 0.164282 -2.689712 0.017340 0.259049 3.574854 -0.097397 0.198202 -4.254847 0.107492 0.341156 5.636685 -0.058331 0.300597 -2.879565 -2.536996 3.895215 -3.458790 2.713911 9.247302 7.588543 -0.452547 2.327009 -2.937512 -1.589855 2.232317 -2.789522 0.940954 Mean dependent var 0.232408 S.D. dependent var 18851891 Akaike info criterion 3.55E+14 Schwarz criterion 3.55E+14 Schwarz criterion

:(5-3) **V**5

Dependent Variable: V5 Method: Least Squares Date: 04/04/08 Time: 07:45

Sample(adjusted): 2006:06 2007:07 Included observations: 55 V5=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8) *B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	460764.3	12496133	2.987545	0.9765
C(2)	1.172740	1.261260	3.598720	0.5231
C(3)	-0.500038	0.505910	-3.698477	0.5037
C(4)	0.560950	0.806658	4.568700	0.6132
C(5)	-0.893890	0.732596	-3.810035	0.4371
C(6)	-11.89721	6.018433	-2.968013	0.2981
C(7)	12.34189	9.938030	3.241356	0.4316
C(8)	1.672218	5.414595	2.769855	0.8093
C(9)	18.86115	11.00627	2.776855	0.3363
C(10)	1308.666	777.7858	3.621458	0.3414
C(11)	0.116556	0.547402	2.936855	0.8664
C(12)	0.121095	0.574478	2.985822	0.8677
C(13)	-0.550188	0.364545	-3.562584	0.3725
R-squared	0.956079	Mean depen	dent var	3162027.
Adjusted R-squared	0.429022	S.D. dependent var		2621110.
S.E. of regression	1980591.	Akaike info criterion		31.05377
Sum squared resid	3.92E+12	Schwarz criterion 31.6		31.64718
Log likelihood	-204.3764			4.812588
Durbin-Watson stat	1.781255	Prob(F-statis	itic)	0.527916

:(6-3) **V6**

Dependent Variable: V6 Method: Least Squares
Date: 04/04/08 Time: 08:16
Sample(adjusted): 2005:09 2007:07

Included observations: 55
V6=C(1)+C(2)*B3+C(3)*B4+C(4)*B5+C(5)*B6+C(6)*B7+C(7)*B8+C(8)
*B9+C(9)*B15+C(10)*B16+C(11)*B17+C(12)*B18+C(13)*B19
+C(14)*B20+C(15)*B21+C(16)*B27+C(17)*B28+C(18)*B29+C(19) *B30+C(20)*B31+C(21)*B32

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-64370248	72537432	-2.685455	0.4685
C(2)	0.343107	0.547453	2.891235	0.5948
C(3)	0.346164	0.239246	4.030568	0.2849
C(4)	0.192713	0.197341	6.788922	0.4318
C(5)	-0.394121	0.168812	-2.968021	0.1447
C(6)	0.674365	0.320007	2.870120	0.1696
C(7)	-0.072196	0.120388	-3.136870	0.6096
C(8)	0.382145	0.169050	2.849685	0.1522
C(9)	0.470349	0.249060	2.712398	0.1996
C(10)	-0.091716	0.141477	-3.589123	0.5833
C(11)	0.322334	0.221678	2.789801	0.2831
C(12)	-0.373084	0.353675	-6.589510	0.4021
C(13)	0.289938	0.158597	3.126845	0.2090
C(14)	-0.095765	0.152083	-5.254858	0.5932
C(15) C(16)	0.245821 0.104251	0.117751 0.134403	2.791232 2.712356	0.1721 0.5191
C(17)	-0.144953	0.127177	-3.080490	0.3725
C(18)	0.439832	0.350459	7.298241	0.3362
C(19)	-0.368654	0.530882	-4.123587	0.5592
C(20)	0.190369	0.893773	5.897240	0.8511
C(21)	-1.050615	0.806522	-8.105068	0.3225
R-squared	0.962149	Mean dependent var		46495008
Adjusted R-squared	0.583642	S.D. dependent var		21995959
S.E. of regression	14193072	Akaike info criterion		35.15815
Sum squared resid	4.03E+14	Schwarz crit	terion	36.19490
Log likelihood	-383.3187	F-statistic		2.870261
Durbin-Watson stat	2.105354	Prob(F-stati	stic)	0.320132

:(7-3) V7

Dependent Variable: V7 Method: Least Squares Date: 04/04/08 Time: 07:46 Sample(adjusted): 2006:06 2007:07

Included observations: 14 after adjusting endpoints V7=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8) *B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(10) C(11) C(11) C(12) C(13)	-18563947 -0.544546 0.045610 -0.901425 0.154855 0.491285 0.102555 -5.221658 2.201558 -4.712569 3.679057 3.344919 -1.477789	8288377. 0.043092 0.004591 0.000921 0.000146 2.54E-06 7.82E-06 2.69E-06 4.59E-06 0.002338 0.185984 1.522190 0.372673	-2.239757 -12.63691 9.936099 -10.21443 12.75871 19.63875 17.92630 -19.44488 43.94156 -20.45540 2.197439 -3.965372	0.2673 0.0503 0.0639 0.0621 0.0498 0.0324 0.0355 0.0327 0.0145 0.0311 0.0322 0.2719 0.1573
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.999946 0.999298 517127.3 2.67E+11 -185.5764 2.184595	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		19361584 19518022 28.36805 28.96146 1543.175 0.019890

V8

:(8-3)

Dependent Variable: V8 Method: Least Squares Date: 04/04/08 Time: 08:02

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.724586	1.78E+10	-0.400653	0.7155
C(2)	0.246590	0.572483	0.430737	0.6957
C(3)	0.710973	1.796248	0.395810	0.7187
C(4)	1.121287	0.830696	1.349816	0.2699
C(5)	0.466647	1.369658	0.340704	0.7558
C(6)	0.688373	1.929914	0.356686	0.7449
C(7)	-0.570206	1.686054	-0.338190	0.7575
C(8)	0.202130	0.445878	0.453331	0.6811
C(9)	1.205715	2.620796	0.460057	0.6768
C(10)	0.339315	0.843092	0.402465	0.7143
C(11)	0.318347	1.918867	0.165904	0.8788
C(12)	-0.014450	2.827671	-0.005110	0.9962
C(13)	0.224788	1.012977	0.221908	0.8386
C(14)	1.290649	3.801278	0.339530	0.7566
C(15)	0.450960	4.401424	0.102458	0.9249
C(16)	-3.269370	18.70239	-0.174810	0.8724
C(17)	1.202303	29.73570	0.040433	0.9703
C(18)	0.703092	9.814973	0.071635	0.9474
C(19)	10.65860	7.923814	1.345135	0.2712
R-squared	0.916377	Mean depen	dent var	4.44E+08
Adjusted R-squared	0.414640	S.D. depend	ent var	8.61E+08
S.E. of regression	6.59E+08	Akaike info criterion		43.18486
Sum squared resid	1.30E+18	Schwarz crit	erion	44.12712
Log likelihood	-456.0334	F-statistic		5.342555
Durbin-Watson stat	2.023547	Prob(F-statis	stic)	0.343838

:(9-3) **V9**

Dependent Variable: V9 Method: Least Squares Date: 04/04/08 Time: 08:03 Sample(adjusted): 2005:10 2007:07

Included observations: 22 after adjusting endpoints V9=C(1)+C(2)*B4+C(3)*B5+C(4)*B6+C(5)*B7+C(6)*B8+C(7)*B9+C(8) *B16+C(9)*B17+C(10)*B18+C(11)*B19+C(12)*B20+C(13)*B21 +C(14)*B32+C(15)*B29+C(16)*B30+C(17)*B31+C(18)*B32+C(19)
*B33

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18)	-33611585	22988675	-1.462093	0.2399
	0.435555	0.294192	1.480513	0.2353
	0.299479	0.556066	0.538567	0.6276
	0.432535	0.556050	0.777870	0.4934
	1.670665	0.667200	2.503993	0.0874
	1.070189	0.668746	1.600293	0.2078
	1.342592	0.559607	2.399169	0.0959
	0.435823	0.243116	1.792654	0.1709
	0.350679	0.218236	1.606880	0.2064
	0.225529	0.226700	0.994835	0.3931
	0.818326	0.414049	1.976398	0.1426
	0.776719	0.383887	2.023302	0.1362
	-0.232497	0.115976	-2.004709	0.1387
	-0.151964	0.133778	-1.135941	0.3385
	0.291186	0.172065	1.692299	0.1892
	0.291906	0.211675	1.379029	0.2617
	-0.545688	0.228472	-2.388422	0.0969
	-0.367282	0.132983	-2.761864	0.0700
C(19)	-0.334638 0.925384	0.120188 Mean deper		0.0687 9797737.
Adjusted R-squared	0.477688	S.D. dependent var		5990682.
S.E. of regression	4329535.	Akaike info criterion		33.13466
Sum squared resid	5.62E+13	Schwarz criterion		34.07692
Log likelihood	-345.4813	F-statistic		2.968545
Durbin-Watson stat	2.049154	Prob(F-statistic)		0.302296

:(10-3) Vt

Dependent Variable: VT Method: Least Squares Date: 04/04/08 Time: 08:08 Sample(adjusted): 2006:06 2007:07

Included observations: 14 after adjusting endpoints

VT=C(1)+C(2)*B5+C(3)*B6+C(4)*B7+C(5)*B8+C(6)*B17+C(7)*B18+C(8)

*B19+C(9)*B20+C(10)*B29+C(11)*B30+C(12)*B31+C(13)*B41

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)	-4.680142	4.95E+08	-2.879123	0.5176
	0.207773	0.245675	3.458685	0.5531
	0.153468	0.010893	3.441978	0.3863
	0.143555	0.010890	3.390125	0.3965
	-0.716895	0.050327	-4.525684	0.3695
	1.702934	0.000310	5.647576	0.1116
	1.503786	0.000542	4.278952	0.8274
	10.72536	0.001010	3.065841	0.4814
	-8.751265	0.000484	-2.987582	0.8861
	-0.118008	0.104221	-4.126895	0.4606
	2.191071	1.446818	9.458978	0.3715
	-0.106853	0.068234	-6.358282	0.3618
	0.426403	0.606192	6.702585	0.6097
R-squared	0.985762	Mean dependent var		2.46E+08
Adjusted R-squared	0.814906	S.D. dependent var		1.06E+08
S.E. of regression	45678042	Akaike info criterion		37.33022
Sum squared resid	2.09E+15	Schwarz criterion		37.92363
Log likelihood	-248.3115	F-statistic		5.769547
Durbin-Watson stat	1.981547	Prob(F-statistic)		0.315476

v1:(1-4) ((1)) v1 **ADF** DF ADF Test Statistic -2.6090 -1.9473 -0.752708 1% 5% Critical Value Critical Value 10% Critical Value -1.6192 *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(V1) Method: Least Squares Date: 01/25/08 Time: 16:56 Sample(adjusted): 2003:06 2007:07 Included observations: 50 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. V1(-1) D(V1(-1)) D(V1(-2)) D(V1(-3)) -0.110691 0.147057 -0.752708 0.4555 -0.567733 0.187734 -3.024144 0.0041 -0.538969 -2.861005 0.188385 0.0064 -0.379018 0.174681 -2.169765 0.0353 D(V1(-4)) -0.247363 0.148369 -1.667215 0.1024 R-squared Adjusted R-squared 0.356489 0.299288 40078.92 Mean dependent var S.D. dependent var 8815092. S.É. of regression 7378985. 2.45E+15 Akaike info criterion Schwarz criterion 34.56081 34.75201 Sum squared resid Log likelihood -859.0202 6.232216 Prob(F-statistic) 0.000444 Durbin-Watson stat 2.046992 ((2):(2-4)) v1 DF **ADF** ADF Test Statistic -1.651019 Critical Value* -3.5653 1% Critical Value -2.9202 10% Critical Value -2.5977*MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(V1) Method: Least Squares Date: 01/25/08 Time: 16:58 Sample(adjusted): 2003:06 2007:07 Included observations: 50 after adjusting endpoints Coefficient Prob. Variable Std. Error t-Statistic V1(-1) D(V1(-1)) D(V1(-2)) D(V1(-3)) -0.370127 0.224181 -1.651019 0.1059 -1.637291 -0.3703790.226214 0.1087-0.390365 0.209962 -1.859216 0.0697 -0.284022 0.183237 -1.550023 0.1283 0.1959 0.1364 D(V1(-4)) -0.196996 0.149988 -1.313406 2420896. 1595621. 1.517212 C. R-squared 0.388482 Mean dependent var 40078.92 Adjusted R-squared S.E. of regression 0.318991 S.D. dependent var Akaike info criterion 8815092 7274503. 34.54982 Sum squared resid 2.33E+15 34.77926 Schwarz criterion Log likelihood -857.7454 F-statistic 5.590407 Prob(F-statistic) Durhin-Watson stat 2.020028 0.000452

((3)) v1 :(3-4) ADF DF

-4.1498 -3.5005 -3.1793 ADF Test Statistic 1% Critical Value* 5% Critical Value 10% Critical Value

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(V1)
Method: Least Squares
Date: 01/25/08 Time: 17:00
Sample(adjusted): 2003:06 2007:07
Included observations: 50 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V1(-1) D(V1(-1)) D(V1(-2)) D(V1(-3)) D(V1(-4)) C @TREND(2003:01)	-0.721687	0.291946	-2.471985	0.0175
	-0.096145	0.267269	-0.359731	0.7208
	-0.184779	0.233901	-0.789988	0.4339
	-0.145355	0.194264	-0.748236	0.4584
	-0.124152	0.151619	-0.818839	0.4174
	-642647.8	2294555.	-0.280075	0.7808
	168695.3	92885.62	1.816162	0.0763
R-squared	0.432048	Mean dependent var		40078.92
Adjusted R-squared	0.352799	S.D. dependent var		8815092.
S.E. of regression	7091637.	Akaike info criterion		34.51591
Sum squared resid	2.16E+15	Schwarz criterion		34.78359
Log likelihood	-855.8977	F-statistic		5.451770
Durbin-Watson stat	2.011650	Prob(F-statistic)		0.000289

dv1:(4-4)

	DV1					
2003:01	NA	2004:08	0.000000	2006:03	1591715.	
2003:02	-2287080.	2004:09	0.000000	2006:04	-4423456.	
2003:03	644180.0	2004:10	0.000000	2006:05	6110104.	
2003:04	-1381140.	2004:11	0.000000	2006:06	-2063800.	
2003:05	6131170.	2004:12	0.000000			
2003:06	-278620.0	2005:01	1121940.	2006:07	641079.7	
2003:07	-2943110.	2005:02	981950.0	2006:08	-4445821.	
2003:08	-1364050.	2005:03	3386310.	2006:09	1341956.	
2003:09	-1345780.	2005:04	-2032370.	2006:10	225471.4	
2003:10	793650.0	2005:05	1693670.	2006:11	4472405.	
2003:11	2875910.	2005:06	419070.0	2006:12	29755903	
2003:12	-812330.0	2005:07	13874480	2007:01	-38697282	
2004:01	-3637110.	2005:08	-15827580	2007:02	2150879.	
2004:02	0.000000	2005:09	5166840.	2007:03	5495018.	
2004:03	0.000000	2005:10	10673220			
2004:04	0.000000	2005:11	9955260.	2007:04	-2161479.	
2004:05	0.000000	2005:12	-18231700	2007:05	10097613	
2004:06	0.000000	2006:01	-8257232.	2007:06	-5035855.	
2004:07	0.000000	2006:02	2877176.	2007:07	-2140097.	

((1)) dv1	ADF DF	:(5-4)
\\ - /) u • I	ADI DI	.(2 4)

-2.6100 ADF Test Statistic -5.026163 1% Critical Value* 5% Critical Value 10% Critical Value -1.9474 -1.6193

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV1) Method: Least Squares Date: 01/25/08 Time: 17:06 Sample(adjusted): 2003:07 2007:07

Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV1(-1)	-3.299877	0.656540	-5.026163	0.0000
D(DV1(-1))	1.606229	0.565047	2.842648	0.0068
D(DV1(-2))	0.946679	0.439945	2.151815	0.0369
D(DV1(-3))	0.450517	0.291783	1.544017	0.1297
D(DV1(-4))	0.106366	0.152750	0.696341	0.4899
R-squared	0.764914	Mean dependent var		-37989.32
Adjusted R-squared	0.743542	S.D. dependent var		14727206
S.E. of regression	7458101.	Akaike info criterion		34.58395
Sum squared resid	2.45E+15	Schwarz criterion		34.77699
Log likelihood	-842.3068	F-statistic		35.79134
Durbin-Watson stat	2.022066	Prob(F-statistic)		0.000000

((2)) dv1 :(6-4) ADF DF

1% Critical Value* 5% Critical Value 10% Critical Value -3.5682 -2.9215 -2.5983 ADF Test Statistic -4.990046

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV1) Method: Least Squares
Date: 01/25/08 Time: 17:08
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV1(-1)	-3.318854	0.665095	-4.990046	0.0000
D(DV1(-1))	1.622134	0.572320	2.834312	0.0070
D(DV1(-2))	0.957543	0.445314	2.150264	0.0372
D(DV1(-3))	0.456734	0.295178	1.547319	0.1291
D(DV1(-4))	0.108558	0.154389	0.703147	0.4858
C	396972.1	1079739.	0.367656	0.7149
R-squared	0.765650	Mean depen	dent var	-37989.32
Adjusted R-squared	0.738401	S.D. depend	lent var	14727206
S.E. of regression	7532494.	Akaike info	criterion	34.62163
Sum squared resid	2.44E+15	Schwarz criterion		34.85328
Log likelihood	-842.2299	F-statistic		28.09732
Durbin-Watson stat	2.022704	Prob(F-statis	stic)	0.000000

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

((3)) dv1 :(7-4) ADF DF

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DV1)
Method: Least Squares
Date: 01/25/08 Time: 17:09
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV1(-1) D(DV1(-1)) D(DV1(-2)) D(DV1(-3)) D(DV1(-4)) C @TREND(2003:01)	-3.320510	0.672322	-4.938870	0.0000
	1.622466	0.578519	2.804515	0.0076
	0.956637	0.450148	2.125162	0.0395
	0.455798	0.298392	1.527513	0.1341
	0.107847	0.156080	0.690972	0.4934
	-270309.0	2553100.	-0.105875	0.9162
	22258.95	76991.21	0.289110	0.7739
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.766116	Mean dependent var		-37989.32
	0.732704	S.D. dependent var		14727206
	7614067.	Akaike info criterion		34.66046
	2.43E+15	Schwarz criterion		34.93072
	-842.1812	F-statistic		22.92936
	2.023877	Prob(F-statistic)		0.000000

:(8-4) dv1

Dependent Variable: DV1
Method: Least Squares
Date: 01/25/08 Time: 17:22
Sample(adjusted): 2003:02 2007:07
Included observations: 54 after adjusting endpoints
Convergence achieved after 15 iterations
Backcast: 2003:01

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	194062.4	58614.49	3.310826	0.0017
MA(1)	-0.982190	0.021900	-44.84955	0.0000
R-squared	0.381135	Mean dependent var		94649.58
Adjusted R-squared	0.369234	S.D. dependent var		8525575
S.E. of regression	6771078.	Akaike info criterion		34.33055
Sum squared resid	2.38E+15	Schwarz criterion		34.40422
Log likelihood	-924.9249	F-statistic		32.02481
Durbin-Watson stat	1.642429	Prob(F-statistic)		0.000001
Inverted MA Roots	.98			

:(1-4)

obs	Actual	Fitted	Residual	Residual Plot
2003:02	-2287080	-3779205	1492125	1 ę 1
2003:03	644180.	-1271489	1915669	}
2003:04	-1381140	-1687488	306348.	
2003:05	6131170	-106830.	6238000	 `#
2003:06	-278620.	-5932840	5654220	
2003:07	-2943110	-5359457	2416347	1 4 1
2003:08	-1364050	-2179250	815200.	
2003:09	-1345780	-606619.	-739161.	1 4 1
2003:10	793650.	920059.	-126409.	1 1
2003:11	2875910	318220.	2557690	
2003:12	-812330.	-2318075	1505745	ı 🖟 ı
2004:01	-3637110	-1284866	-2352244	
2004:02	0.00000	2504413	-2504413	
2004:03	0.00000	2653873	-2653873	
2004:04	0.00000	2800670	-2800670	1 ∳ 1
2004:05	0.00000	2944853	-2944853	1 🛊
2004:06	0.00000	3086468	-3086468	1 🛊
2004:07	0.00000	3225561	-3225561	14 1
2004:08	0.00000	3362176	-3362176	14[1
2004:09	0.00000	3496359	-3496359	
2004:10	0.00000	3628152	-3628152	
2004:11	0.00000	3757597	-3757597	
2004:12	0.00000	3884737	-3884737	
2005:01	1121940	4009613	-2887673	1 4 1
2005:02	981950.	3030307	-2048357	-
2005:03	3386310	2205938	1180372	
2005:04	-2032370	-965287.	-1067083] (4) (
2005:05	1693670	1242141	451529.	
2005:06	419070.	-249425.	668495.	l
2005:07	1.4E+07	-462527.	1.4E+07	>
2005:08	-1.6E+07	-1.4E+07	-1939975	1
2005:09	5166840	2099487	3067353	l 1 No. 1
2005:10	1.1E+07	-2818662	1.3E+07	
2005:11	9955260	-1.3E+07	2.3E+07	l ılı >•
2005:12	-1.8E+07	-2.2E+07	4177175	1
2006:01	-8257232	-3908718	-4348515	l 1•/ 1
2006:02	2877176	4465131	-1587955	
2006:03	1591715	1753737	-162021.	
2006:04	-4423456	353198.	-4776654	l •
2006:05	6110104	4885645	1224459	
2006:06	-2063800	-1008589	-1055211	
2006:07	641080.	1230480	-589400.	
2006:08	-4445821	772965.	-5218787	w/ i
2006:09	1341956	5319903	-3977948	1 141
2006:10	225471.	4101163	-3875692	i.l i
2006:11	4472405	4000729	471676.	
2006:12	3.0E+07	-269213.	3.0E+07	
2007:01	-3.9E+07	-2.9E+07	-9400972	•
2007:02	2150879	9427604	-7276725	[
2007:03	5495018	7341190	-1846173	
2007:04	-2161479	2007355	-4168834	l iZLi
2007:05	1.0E+07	4288650	5808963	
2007:06	-5035855	-5511444	475589.	; /-;
2007:07	-2140097	-273057.	-1867040	ia/i
2001.01	-2 140037	-27 JUJ7 .	-1007040	' 1 '

		v2		:(5)
((1)) v2	ADF	DF	:(1-5)
ADF Test Statistic	-2.459342	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6090 -1.9473 -1.6192	
*MacKinnon critical v	alues for rejecti	on of hypothesis of a unit	root.	
Augmented Dickey-F Dependent Variable: I Method: Least Squar Date: 01/24/08 Time Sample(adjusted): 20 Included observations	D(V2) es e: 20:42 03:06 2007:07			
Variable	Coefficient	Std. Error t-Statistic	Prob.	
V2(-1) D(V2(-1)) D(V2(-2)) D(V2(-3)) D(V2(-4))	-0.378148 0.057386 -0.199328 -0.053835 -0.040631	0.153760 -2.459342 0.162843 0.352399 0.155219 -1.284172 0.090882 -0.592363 0.067394 -0.602890	0.0178 0.7262 0.2057 0.5566 0.5496	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.257125 0.191091 4510309. 9.15E+14 -834.4067 2.020458	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	-50388.34 5014833. 33.57627 33.76747 3.893858 0.008456	
((2)) v2	ADF	DF	:(2-5)

ADF Test Statistic	-3.228357	5%	Critical Value* Critical Value Critical Value	-3.5653 -2.9202 -2.5977
*MacKinnon critical value of the control of the con	Fuller Test Equ D(V2) res e: 20:47 003:06 2007:01	ation		nit root.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V2(-1) D(V2(-1)) D(V2(-2)) D(V2(-3)) D(V2(-4)) C	-0.647101 0.228856 -0.054062 0.013427 -0.002800 1682481.	0.200443 0.179381 0.166845 0.094171 0.067921 839740.0	-3.228357 1.275812 -0.324024 0.142586 -0.041224 2.003574	0.0024 0.2087 0.7475 0.8873 0.9673 0.0513
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.319234 0.241874 4366437. 8.39E+14 -832.2240 1.991623	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion erion	-50388.34 5014833. 33.52896 33.75840 4.126611 0.003689

((3):(3-5)) v2 ADF DF ADF Test Statistic -4.1498 -3.5005 -3.1793 1% Critical Value* 5% Critical Value 10% Critical Value -3.278701 *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(V2) Method: Least Squares Date: 01/24/08 Time: 20:49 Sample(adjusted): 2003:06 2007:07 Included observations: 50 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. V2(-1) -0.694098 0.211699 -3.278701 0.0021 V2(-1) D(v2(-1)) D(v2(-2)) D(v2(-3)) D(v2(-4)) C @TREND(2003:01) 0.267222 -0.022874 0.187957 0.173178 1.421717 -0.132084 0.1623 0.8955 0.404317 0.157655 1.572392 0.041321 0.011188 0.102199 0.070963 0.6880 0.8755 2840364. 1806398. 0.1232 47069.65 -34128.44 -0.725062 0.4723 R-squared Adjusted R-squared S.E. of regression 0.327456 0.233613 Mean dependent var S.D. dependent var Akaike info criterion -50388.34 5014833. 4390162. 33.55681 Sum squared resid Log likelihood 8.29E+14 -831.9202 Schwarz criterion F-statistic 33.82449 3.489394 Durbin-Watson stat 1.998979 Prob(F-statistic) 0.006717

dv2

:(4-5)

		D	V2		
2003:01	NA	2004:08	897800.0	2006:03	1023717.
2003:02	57391340	2004:09	-237540.0		
2003:03	-56856080	2004:10	775670.0	2006:04	134130.8
2003:04	2110050.	2004:11	2016100.	2006:05	-854287.8
2003:05	-181210.0	2004:12	852340.0	2006:06	698828.8
2003:06	-1663810.	2005:01	-4738370.	2006:07	961701.2
2003:07	283180.0	2005:02	241100.0	2006:08	-2133690.
2003:08	11040.00	2005:03	-222950.0	2006:09	-143760.0
2003:09	17844760	2005:04	98920.00	2006:10	7045245.
2003:10	6884970.	2005:05	-72430.00	2006:11	-1006385.
2003:11	-25042400	2005:06	-4470.000	2006:12	2806750.
2003:12	-961830.0	2005:07	-24030.00	2007:01	-8637809.
2004:01	-618690.0	2005:08	262060.0	2007:02	4665470.
2004:02	261440.0	2005:09	-232270.0		
2004:03	68660.00	2005:10	76530.00	2007:03	-644137.0
2004:04	2880280.	2005:11	-67860.00	2007:04	985793.7
2004:05	764700.0	2005:12	-690.0000	2007:05	-1496220.
2004:06	-3817760.	2006:01	135540.0	2007:06	905270.3
2004:07	276680.0	2006:02	184830.0	2007:07	-3941535.

((1))dv2 :(5-5) ADF DF

-2.6100 -1.9474 -1.6193 ADF Test Statistic -5.293933 1% Critical Value* 5% Critical Value 10% Critical Value

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV2) Method: Least Squares
Date: 01/25/08 Time: 07:03
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV2(-1) D(DV2(-1)) D(DV2(-2)) D(DV2(-3)) D(DV2(-4))	-2.082301 0.849221 0.427479 0.164560 0.062297	0.393337 0.315903 0.242684 0.149634 0.070432	-5.293933 2.688232 1.761464 1.099750 0.884495	0.0000 0.0101 0.0851 0.2774 0.3812
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.629052 0.595330 4751954. 9.94E+14 -820.2203 2.175810	Mean depen S.D. depend Akaike info o Schwarz crit F-statistic Prob(F-statis	ent var criterion erion	-46484.18 7470019. 33.68246 33.87550 18.65378 0.000000

:(6-5) ((2))dv2 ADF DF

ADF Test Statistic 1% Critical Value* 5% Critical Value 10% Critical Value -3.5682 -2.9215 -2.5983 -5.230845

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DV2)
Method: Least Squares
Date: D1/25/08 Time: 07:06
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV2(-1)	-2.086294	0.398845	-5.230845	0.0000
D(DV2(-1))	0.853014	0.320661	2.660171	0.0109
D(DV2(-2))	0.430572	0.246454	1.747070	0.0878
D(DV2(-3))	0.167276	0.152602	1.096162	0.2791
D(DV2(-4))	0.063120	0.071479	0.883054	0.3821
C	-95860.20	693718.3	-0.138183	0.8907
R-squared	0.629217	Mean depen	dent var	-46484.18
Adjusted R-squared	0.586103	S.D. depend	lent var	7470019.
S.E. of regression	4805825.	Akaike info	criterion	33.72283
Sum squared resid	9.93E+14	Schwarz crit	terion	33.95448
Log likelihood	-820.2094	F-statistic		14.59416
Durbin-Watson stat	2.177916	Prob(F-stati	stic)	0.000000

((3))dv2 :(7-5) ADF DF

-4.1540 -3.5025 -3.1804 ADF Test Statistic 1% Critical Value* 5% Critical Value 10% Critical Value -5.113322

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DV2)
Method: Least Squares
Date: 01/25/08 Time: 07:10
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV2(-1) D(DV2(-1)) D(DV2(-2)) D(DV2(-3)) D(DV2(-3)) C @TREND(2003:01)	-2.107566 0.871434 0.445248 0.178058 0.066568 -487217.7 12800.08	0.412172 0.332508 0.256027 0.160225 0.073580 1717577. 51278.88	-5.113322 2.620791 1.739062 1.111299 0.904705 -0.283666 0.249617	0.0000 0.0122 0.0893 0.2728 0.3708 0.7781 0.8041
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.629766 0.576876 4859098. 9.92E+14 -820.1731 2.182932	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	-46484.18 7470019. 33.76217 34.03243 11.90698 0.000000

:(8-5) dv2

Dependent Variable: DV2 Dependent Variable: DV2
Method: Least Squares
Date: 01/25/08 Time: 07:32
Sample(adjusted): 2003:09 2007:07
Included observations: 47 after adjusting endpoints
Convergence achieved after 12 iterations
Backcast: 2003:08

Coefficient	Std. Error	t-Statistic	Prob.
0.184104 -0.744068	0.068201 0.100427	2.699434 -7.409014	0.0097 0.0000
0.290661 0.274898 4402406. 8.72E+14 -784.6583 1.706594	S.D. depend Akaike info Schwarz cri F-statistic	dent var criterion terion	-24464.40 5170000. 33.47482 33.55355 18.43936 0.000092
.79 17+.77i .74	.49+.61i 7134i	.4961i 71+.34i	1777i
	0.184104 -0.744068 0.290661 0.274898 4402406. 8.72E+14 -784.6583 1.706594 .79 17+.77i	0.184104	0.184104 0.068201 2.699434 -0.744068 0.100427 -7.409014 0.290661 Mean dependent var 0.274898 S.D. dependent var 4402406. Akaike info criterion 8.72E+14 Schwarz criterion -784.6563 F-statistic 1.706594 Prob(F-statistic) .79 .49+.61i .4961i17+.77i .7134i .71+.34i

:(1-5)

2003:09 1.8E+07 1.4E+07 4211707 2003:10 6884970 -1.3E+07 2.0E+07 2003:12 -961830 .7464728 -8426558 2004:01 -618690 5837799 -6456489 2004:02 261440 .4727247 -4466807 2004:03 68660.0 3203398 -3134738 2004:05 -64700 3005996 -2241296 2004:05 -3817760 -2938483 -879277 2004:08 -87800 -148407 1045207 2004:09 -237540 -836933 598393 2004:10 -75670 -538693 -314363 2004:11 2016:100 -564914 -2581014 2005:01 -4738370 -2819114 -1919256 2005:02 -241100 1364123 -113023 2005:04 -98920.0 671139 -57219 2005:05 -72430.0 -565606 -527936 2005:07 -24030.0 -566690 -53660	obs	Actual	Fitted	Residual	Residual Plot
2003:11 -2.5E+07 -1.5E+07 -1.0E+07 -1.0E+07	2003:09	1.8E+07	1.4E+07	4211707	1 0
2003:11 -2.5E+07 -1.5E+07 -1.0E+07 -1.0E+07	2003:10	6884970	-1.3E+07	2.0E+07	
2004:01		-2.5E+07	-1.5E+07	-1.0E+07	•
2004:01	2003:12	-961830.	7464728	-8426558	🗽
2004:02 261440. 4727247 -4465807 2004:03 68660.0 3203398 -3134738 2004:05 764700. 3005996 -2241296 2004:06 -3817760 -2938483 -879277. 2004:07 276680. 371389. -94709.2 2004:09 -237540. -835933. 598393. 2004:10 275670. -538693. 1314363 2004:11 2016100. -564914. 2581014 2005:01 -4738370. -2819114. -1919256 2005:02 241100. 1364123. -1123023 2005:03 -222950. 885541. -1108491. 2005:04 -98920.0 671139. -572219. 2005:05 -72430.0 -556506. -527936. 2005:07 -24030.0 -526630. -550660. 2005:09 -232270. -665690. 433420. 2005:01 -67860.0 -48765. -54968. 2006:01 -67760. -4831192. -566732.<		-618690.	5837799	-6456489	🗽
2004:03 68660.0 3203398 -3134738 2004:04 2880280 5415769 -2535489 2004:06 -3817760 -2938483 -879277. 2004:07 276680. 371389 -94709.2 2004:09 -237540. -835933. 598393. 2004:10 -75670. -538693. 1314363 2004:11 2016100 -564914. 2581014 2005:01 -4738370. -2819114. -1919256 2005:02 241100. 1364123. -1123023 2005:03 -222950. 885541. -1108491 2005:04 98920.0 671139. -572219. 2005:05 -72430.0 455606. -527936. 2005:06 -4470.00 645177. -649647. 2005:07 -232270. -686756. 545285. 2005:01 -57860.0 -493914. 426054. 2006:02 184830. -531858. 716688. 2006:03 10223717. -591658. 1615375.		261440.			14 1
2004:05 764700. 3005996 -2241296 2004:06 -3817760 -2938483 -879277. 2004:08 897800. -148407. 1046207 2004:09 -237540. -836933. 598393. 2004:10 776670. -538693. 1314363. 2004:11 2016100. -564914. 2581014. 2005:01 -4738370. -2819114. -1919256. 2005:02 241100. 1364123. -1123023. 2005:04 -98820.0 671139. -572219. 2005:05 -72430.0 455506. -527936. 2005:06 -4470.00 645177. -649647. 2005:09 -232270. -666890. 433420. 2005:09 -232270. -666890. 433420. 2005:01 -67680.0 -493914. -426054. 2006:02 184830. -531868. 1615375. 2006:04 134131. -1346221. 1480352. 2006:05 961701. 999061. 18607	2004:03	68660.0		-3134738	14 1
2004:05 764700. 3005996 -2241296 2004:06 -3817760 -2938483 -879277. 2004:08 897800. -148407. 1046207 2004:09 -237540. -836933. 598393. 2004:10 776670. -538693. 1314363. 2004:11 2016100. -564914. 2581014. 2005:01 -4738370. -2819114. -1919256. 2005:02 241100. 1364123. -1123023. 2005:04 -98820.0 671139. -572219. 2005:05 -72430.0 455506. -527936. 2005:06 -4470.00 645177. -649647. 2005:09 -232270. -666890. 433420. 2005:09 -232270. -666890. 433420. 2005:01 -67680.0 -493914. -426054. 2006:02 184830. -531868. 1615375. 2006:04 134131. -1346221. 1480352. 2006:05 961701. 999061. 18607	2004:04	2880280	5415769	-2535489	ı• ı
2004:07 276680. 371389. -94709.2 1 1 1 2004:09 297540. -835933. 598393. 1 1 1 2004:10 -237540. -835933. 598393. 1 1 1 2004:11 2016100. -564914. 2581014. 1 1 1 2005:01 2005:01. -882340. -1882916. 2735256. 1 1 1 1 1 1 1 2005:01. 2819114. -1919256. 1 1 1 1 2005:02. 241100. 1364123. -1123023. 1 1 1 1 1 1 1 2005:03. -22950. 885541. -1108491. 1 1 1 1 1 1 2005:04. -72430.0 455506. -527936. 1 1 1 1 1 1 1 1 1 1 2005:07. 24030.0 526630. -550660. 1 1 1 1 2005:07. 2205:00.	2004:05	764700.	3005996	-2241296	
2004:08 897800. -148407. 1046207 2004:09 -237540. -835933. 598393. 1 2004:11 2016:100 -664914. 2581014 1 2004:12 852340. -1882916. 2735256 1 2005:01 -4738370. -2819114. -1919256. 1 2005:03 -22950. 885541. -1108491. 1 2005:04 98920.0 671139. -572219. 1 2005:05 -72430.0 455506. -527936. 1 2005:06 -4470.00 645177. -549647. 1 2005:07 -24030.0 526630. -550660. 2005:08 262060. -549467. 811627. 2005:09 -232270. -665690. 433420. 2005:10 76530.0 -488755. 545285. 2006:01 135540. -431192. 566732. 2006:02 184830. -531858. 716688. 2006:03 19414. 1940652.<	2004:06	-3817760	-2938483	-879277.	
2004:08 897800. -148407. 1046207 2004:09 -237540. -835933. 598393. 1 2004:11 2016:100 -664914. 2581014 1 2004:12 852340. -1882916. 2735256 1 2005:01 -4738370. -2819114. -1919256. 1 2005:03 -22950. 885541. -1108491. 1 2005:04 98920.0 671139. -572219. 1 2005:05 -72430.0 455506. -527936. 1 2005:06 -4470.00 645177. -549647. 1 2005:07 -24030.0 526630. -550660. 2005:08 262060. -549467. 811627. 2005:09 -232270. -665690. 433420. 2005:10 76530.0 -488755. 545285. 2006:01 135540. -431192. 566732. 2006:02 184830. -531858. 716688. 2006:03 19414. 1940652.<	2004:07	276680.	371389.	-94709.2	4
2004:10 775670. -538693. 1314363 2004:11 2016100. -564914. 2581014 2005:02 248737. -2819114. -1919256 2005:02 241100. 1364123. -1123023 2005:03 -222950. 885541. -1108491. 2005:05 -72430.0 456506. -527936. 2005:06 -4470.00 645177. -649647. 2005:09 -24430.0 526630. -550660. 2005:09 -232270. -656500. 433420. 2005:10 -65630. -549467. 811527. 2005:09 -232270. -66660. 433420. 2005:10 -76530.0 -468755. 545285. 2005:11 -67860.0 -493914. 426054. 2006:02 184830. -531858. 716688. 2006:03 1023717. -591658. 1616375. 2006:05 -864288. -1190787. 336500. 2006:05 -864288. -1190787. 336500. </th <th>2004:08</th> <th>897800.</th> <th>-148407.</th> <th>1046207</th> <th> </th>	2004:08	897800.	-148407.	1046207	
2004:11 2016100 -564914 2581014 2005:01 -4738370 -2819114 -1919256 2005:02 241100 -1364123 -1123023 2005:03 -222950 885541 -1108491 2005:04 98920.0 671139 -572219 2005:06 -4470.00 645177 -649647 2005:07 -24030.0 526630 -550660 2005:08 262060 -549467 811527 2005:01 -665690 433420 1 2005:10 -76530.0 -488755 545285 2005:11 -67860.0 -493914 426054 2006:02 184830 -531858 716688 2006:03 1023717 -591658 1615375 2006:05 -854288 1190787 336500 2006:05 -864288 -1190787 336500 2006:07 -91701 -899061 1860762 2006:09 -143760 423182 -566942 2007:01 <th>2004:09</th> <th>-237540.</th> <th>-835933.</th> <th>598393.</th> <th> </th>	2004:09	-237540.	-835933.	598393.	
2004:11 2016100 -564914 2581014 2005:01 -4738370 -2819114 -1919256 2005:02 241100 -1364123 -1123023 2005:03 -222950 885541 -1108491 2005:04 98920.0 671139 -572219 2005:06 -4470.00 645177 -649647 2005:07 -24030.0 526630 -550660 2005:08 262060 -549467 811527 2005:01 -665690 433420 1 2005:10 -76530.0 -488755 545285 2005:11 -67860.0 -493914 426054 2006:02 184830 -531858 716688 2006:03 1023717 -591658 1615375 2006:05 -854288 1190787 336500 2006:05 -864288 -1190787 336500 2006:07 -91701 -899061 1860762 2006:09 -143760 423182 -566942 2007:01 <th>2004:10</th> <th>775670.</th> <th>-538693.</th> <th>1314363</th> <th> - - </th>	2004:10	775670.	-538693.	1314363	- -
2005:01 -4738370 -2819114 -1919256 1 1 1 1 1 1 1 1 1 1 1 2005:02 241100. 1364123 -1123023 1 1 1 2005:05 -222950. 886541. -1108491 1 1 2005:05 -222950. 886541. -1108491 1 1 1 2005:05 -24300. 656506. -527936. 1 1 1 -24030. 526630. -550660. 1 1 -24030. -526630. -550660. 1 1 -240506. -24930. -526630. -550660. 1 1 -240506. -24930. -566690. -434320. -232270. -665690. 433420. -232270. -666690. -489314. -426054. -1 -1 -78630. -489314. -426054. -1 -1 -1 -206511. -67860. -493914. -426054. -1 -1 -1 -1 -2066501. -2066:02 184830. -531		2016100	-564914.	2581014	4
2005:01 -4738370 -2819114 -1919256 1 1 1 1 1 1 1 1 1 1 1 2005:02 241100. 1364123 -1123023 1 1 1 2005:05 -222950. 886541. -1108491 1 1 2005:05 -222950. 886541. -1108491 1 1 1 2005:05 -24300. 656506. -527936. 1 1 1 -24030. 526630. -550660. 1 1 -24030. -526630. -550660. 1 1 -240506. -24930. -526630. -550660. 1 1 -240506. -24930. -566690. -434320. -232270. -665690. 433420. -232270. -666690. -489314. -426054. -1 -1 -78630. -489314. -426054. -1 -1 -1 -206511. -67860. -493914. -426054. -1 -1 -1 -1 -2066501. -2066:02 184830. -531	2004:12	852340.	-1882916	2735256	-
2005:03 -222950. 885541. -1108491 1 1 1 1 2005:04 98920.0 671139. -572219. 1 1 1 1 1 1 1 1 1 1 2005:05.05 -72430.0 455506. -527936. 1 1 1 1 1 1 2005:07 24030.0 526630. -550660. 1 1 1 1 1 1 2005:07 24030.0 526630. -550660. 1 1 1 1 2005:09 2005:09 433420. 1 1 2005:01 265630. 488755. 545285. 1 1 2005:01 266690. 493914. 426054. 1 1 2005:01 26690.00 493914. 426054. 1 1 1 2006:04 243600. 433192. 566732. 1 1 1 1 1 1 2006:03 2006:04 34313. 1346221 1480352 1 1 1	2005:01	-4738370	-2819114	-1919256	
2005:04 98920.0 671139. -572219. 1 1 1 2005:05 -72430.0 456506. -527936. 1 1 1 1 1 205:05 -4470.00 645177. -649647. 1 1 1 205:09 -22030.0 -526630. -550660. 1 1 1 1 205:09 -232270. -666690. 433420. 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 1 1 2005:01 7 266690. 433420. 7 1 1 1 1 1 2005:01 7 266600. 493914. 426054. 1 1 1 1 1 1 1 1 2005:01 1 1 2006:4 1 1 1 1 1 1 1 1 1 1 1 2006:04 134131. -1346221 1480352 1	2005:02	241100.	1364123	-1123023	I +
2005:05 -72430.0 455506. -527936. 1 1 1 2005:06 -4470.00 645177. -649647. 1 1 -24030.0 526630. -550660. 1 1 -24030.0 526630. -550660. 1 1 -232270. -666690. 433420. 1 1 1 -78630.0 -486755. 545285. 1 1 -78630.0 -483914. 426054. 1 1 -78630.0 -493914. 426054. 1 1 1 1 1 2006:01 135540. -431192. 566732. 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2<	2005:03	-222950.	885541.	-1108491	
2005:06 -4470.00 645177. -649647. 1 1 1 2005:07 -24030.0 526630. -550660. 1 1 1 205:08 -242030.0 -526630. -550660. 1 1 1 205:09 -232270. -665680. 433420. 1 1 1 1 205:10 -67860.0 -493914. 426054. 1 1 1 205:10 -690.000. -436301. 435611. 1 1 1 206:02 1 184830. -531858. 716688. 1 1 1 1 206:02 1 123717. -591658. 1615375. 1 1 1 1 1 206:02 134131. -1346221. 1480352. 1	2005:04	98920.0	671139.	-572219.	↓
2005:07 -24030.0 526630. -550660. 2005:08 262060. -549467. 811527. 1 2005:09 -232270. -665690. 433420. 1 2005:10 76530.0 -488755. 545285. 1 1 2005:11 -690.000 -493914. 426054. 1 1 2006:01 135540. -431192. 566732. 1 1 2006:02 184830. -531858. 716688. 1 1 2006:03 1023717. -591658. 1615375. 1 1 2006:05 -854288. -1190787. 336500. 1 1 2006:06 698829. -369124. 1067952. 1 1 2006:07 961701. -899061. 1860762. 1 1 2006:09 -143760. 423182. -566942. 1 1 2006:10 206:10 206750. 3172791. 5979541. 1 1 2007:03 <th>2005:05</th> <th>-72430.0</th> <th>455506.</th> <th>-527936.</th> <th> </th>	2005:05	-72430.0	455506.	-527936.	
2005:08 262060. -549467. 811527. 1 1 1 2005:09 -232270. -666690. 433420. 1 1 76530.0 -488755. 545285. 1 1 1 2005:11. -67860.0 -493914. 426054. 1 1 1 1 1 2006:11. 1 1 1 2006:04. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2006:04. 1 1 1 1 1 1 2006:04. 1 2 1 1 1 1 1 2 1 1 2 1 1 2 2 2 2 2 1 1 2 2 2 2 <t< th=""><th>2005:06</th><th>-4470.00</th><th>645177.</th><th>-649647.</th><th> </th></t<>	2005:06	-4470.00	645177.	-649647.	
2005:19	2005:07	-24030.0	526630.	-550660.	- -
2005:19	2005:08	262060.	-549467.	811527.	
2005:11 -67860.0 -493914. 426054. 1 1 2005:12 -890.000 -493914. 436611. 1 1 2006:02 135540. -343192. 566732. 1 1 2006:03 1023717 -591658. 1615375 1 1 2006:04 134131. -1346221. 1480352. 1 1 2006:05 -684288. -1190787. 336500. 1 1 2006:06 698829. -369124. 1067952. 1 1 2006:07 961701. -899061. 1860762. 1 1 2006:08 -143760. 423182. -566942. 1 1 2006:09 -143760. 423182. -566942. 1 1 2006:10 7045245. 496085. 6549160. 1 2006:11 2806750. 3172791. 5979541. 1 2007:02 4665470. 3195380. 1470090. 1 1	2005:09	-232270.	-665690.	433420.	#
2005:12 -690.000 -436301. 435611. 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1<					1 + 1
2006:01 135540. -431192. 566732. 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 1 </th <th></th> <th></th> <th></th> <th></th> <th> </th>					
2006:02 184830. -531858. 716688. 1 2 2 1 1 1 1 1 1 1 2 2 2 3 3 6 0 1 1 1 1 2 2 3 6 0 1 1 1 1 2 3 6 0 1 1 1 1 2 2 3 6 0 1 1 1 2 3 1 1 1 2 3 1 1 1 2 2 1 1 2 2 1 1 2 3 1 1 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
2006:03 1023717 -591658. 1615375 2006:04 134131. -1346221 1480352 2006:05 -684288. -1190787 336500. 2006:07 961701. -899061. 1860762 2006:08 -2133690. -1462076. -671614. 2006:09 -143760. 423182. -566942. 2006:10 7045245. 496085. 6549160. 2006:11 -1006385. -4936296. 3929911. 2007:01 -8637809. -4412940. -4224869. 2007:02 -4665470. 3195380. 1470090. 2007:03 -644137. -1579608. 935471. 2007:05 -8265794. -826557. 1812351. 2007:05 -68202. -186881. -1309339. 905270. -682062. 223209.					I II I
2006:04 1341311346221 1480352 2006:05 -8542881190787 336500. 2006:06 698829369124. 1067952 2006:07 961701899061. 1860762 2006:08 -2133690 -1462076 -671614. 2006:09 -143760. 423182566942. 2006:10 7045245 -496085. 6549160 -1006385 -4936296 3929911 -936296 3929911 2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:03 -6441371579608 935471. 2007:05 -4985794. 826557. 1812351 2007:06 905270. 682062. 223209.					1 B 1
2006:05 -854288. -1190787 336500. 2006:06 688829. -369124. 1067952. 2006:07 961701. -899061. 1860762. 2006:08 -2133690. -1462076. -671614. 2006:09 -143760. 423182. -566942. 2006:10 -7045245. 496085. 6549160. 2006:11 -1006385. -4936296. 3929911. 2007:01 -8637809. -4412940. -4224869. 2007:02 4665470. 3195380. 1470090. 2007:03 -644137. -1579608. 935471. 2007:05 -496220. -186881. -1309339. 2007:06 905270. 682062. 223209.					
2006:06 698829. -369124. 1067952 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 </th <th></th> <th></th> <th></th> <th></th> <th>17 17</th>					17 17
2006:07 961701. -899061. 1860762 2006:08 -2133690. -1462076. -671614. 2006:09 -143760. 423182. -566942. 2006:10 -1006385. -4936296. 3929911 2006:12 -2806750. -3172791. 5979541. 2007:01 -8637809. -4412940. -4224869. 2007:02 -4665470. 3195380. 1470090. 2007:03 -644137. -1579608. 935471. 2007:05 -1496220. -186881. -1309339. 2007:06 905270. 682062. 223209.					l n l
2006:08 -2133690 -1462076 -671614. 2006:09 -143760. 423182566942. 2006:10 7045245 496085. 6549160 1 -1006385 -4936296 3929911 2006:12 2806750 -3172791 5979541 2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:03 -6441371579608 935471. 2007:04 985794. 826557. 1812351 1 2007:05 -1496220 -1868811309339 2007:06 905270. 682062. 223209.					1 14 1
2006:09 -143760. 423182. -566942. 2006:10 7045245. 496085. 6549160. 2006:11 -1006385. -4936296. 3929911. 2007:01 -8637809. -4412940. -4224869. 2007:02 4665470. 3195380. 1470090. 2007:03 -644137. -1579608. 935471. 2007:05 -4985794. -86557. 1812351. 2007:06 -1496220. -186881. -1309339. 2007:06 -682062. 223209.					I 1/ I
2006:10 7045245 496085. 6549160 2006:11 -1006385 -4936296 3929911 2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:03 -644137. -1579608 935471. 2007:05 -985794. -826567. 1812351 2007:06 -1496220 -186881. -1309339 2007:06 -905270. 682062. 223209.					
2006:11 -1006385 -4936296 3929911 2006:12 2806750 -3172791 5979541 2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:04 985794 -826567 1812351 2007:05 -1496220 -186881 -1309339 2007:06 905270 682062 223209					
2006:12 2806750 -3172791 5979541 2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:03 -644137 -179608 935471 2007:04 985794 -826557 1812351 2007:05 -1496220 -186881 -1309339 2007:06 905270 682062 223209					1 / 1
2007:01 -8637809 -4412940 -4224869 2007:02 4665470 3195380 1470090 2007:03 -644137 -1579608 935471 2007:05 -8265794 -826557 1812351 2007:06 905270 682062 223209					1 1 1
2007:02 4665470 3195380 1470090 2007:03 -644137. -1579608 935471. 2007:05 985794. -1812351 2007:06 1496220 -186881. -1309339 905270. 682062. 223209.					
2007:03 -644137. -1579608 935471. 2007:04 985794. -826557. 1812351 2007:05 -1496220 -186881. -1309339 2007:06 905270. 682062. 223209.					I 1
2007:04 985794. -826557. 1812351 2007:05 -1496220. -186881. -1309339. 2007:06 905270. 682062. 223209.					l If
2007:05 -1496220 -1868811309339 1 1 1 1 2007:06 905270. 682062. 223209.					1 11 1
2007:06 905270. 682062. 223209.					
					'¶'
Z007:07 [-3941535					
	2007:07	-3941535	230411.	-41/1946	* '

:(6) :(1-6) v3((1)) v3 ADF DF ADF Test Statistic 1% Critical Value* 5% Critical Value 10% Critical Value -2.6090 -1.9473 -1.731438 -1.6192

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(V3)
Method: Least Squares
Date: 01/25/08 Time: 09:52
Sample(adjusted): 2003:08 2007:07
Included observations: 50 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V3(-1) D(V3(-1)) D(V3(-2)) D(V3(-3)) D(V3(-4))	-0.245207 -0.154273 -0.285714 -0.249760 -0.196477	0.141621 0.172846 0.159640 0.156685 0.161855	-1.731438 -0.892545 -1.789734 -1.594019 -1.213909	0.0902 0.3768 0.0802 0.1179 0.2311
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.271715 0.206978 772625.9 2.69E+13 -746.1904 2.005585	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	lent var criterion terion	-25476.80 867614.3 30.04762 30.23882 4.197241 0.005674

((2)) v3	ADF DF	:(2-6)

1% Critical Value* 5% Critical Value 10% Critical Value ADF Test Statistic -2.677078 -3.5653 -2.9202 -2.5977

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(V3)
Method: Least Squares
Date: 01/25/08 Time: 09:57
Sample(adjusted): 2003:06 2007:07
Included observations: 50 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V3(-1) D(v3(-1)) D(v3(-2)) D(v3(-3)) D(v3(-4)) C	-0.631199 0.133399 -0.054477 -0.094400 -0.079775 366992.4	0.235779 0.220058 0.192557 0.170164 0.167032 182409.7	-2.677078 0.606202 -0.282912 -0.554759 -0.477600 2.011913	0.0104 0.5475 0.7786 0.5819 0.6353 0.0504
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.333069 0.257282 747719.7 2.46E+13 -743.9903 1.965548	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	lent var criterion terion	-25476.80 867614.3 29.99961 30.22905 4.394771 0.002482

$((3)) v3 \qquad ADF DF$:(3-6)
---------------------------	--------

ADF Test Statistic	-2.667727		Value* Value Value	-4.1498 -3.5005 -3.1793
*MacKinnon critical val	lues for rejecti	on of hypothe	sis of a unit	root.
Augmented Dickey-Fu Dependent Variable: D Method: Least Square: Date: 01/25/08 Time: Sample(adjusted): 200 Included observations:	(√3) s 10:00 3:06 2007:07		3	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
V3(-1) D(V3(-1)) D(V3(-2)) D(V3(-2)) D(V3(-3)) D(V3(-4)) C @TREND(2003:01)	-0.663394 0.158574 -0.032693 -0.076096 -0.070179 489102.3 -3456.327		-2.667727 0.691992 -0.163151 -0.430955 -0.412954 1.481983 -0.445791	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.336137 0.243505 754622.4 2.45E+13 -743.8750 1.959475	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	lent var criterion terion	-25476.80 867614.3 30.03500 30.30268 3.628737 0.005316

dv3 :(4-6)

	DI/O					
			DV3			
2003:01	NA	2004:08	219140.0	2006:03	245060.0	
2003:02	-583300.0	2004:09	27030.00	2006:04	2760.000	
2003:03	1759750.	2004:10	1750750.	2006:05	-25620.00	
2003:04	-633780.0	2004:11	-298630.0	2006:06	-132200.0	
2003:05	190470.0	2004:12	-1240960.	2006:07	412970.0	
2003:06	-1119340.	2005:01	-966750.0			
2003:07	-165470.0	2005:02	14800.00	2006:08	-395670.0	
2003:08	382820.0	2005:03	-1890.000	2006:09	78680.00	
2003:09	11530.00	2005:04	-6660.000	2006:10	2058490.	
2003:10	1279960.	2005:05	-6810.000	2006:11	78900.00	
2003:11	1102470.	2005:06	900.0000	2006:12	-1911370.	
2003:12	-1538720.	2005:07	11150.00	2007:01	-396100.0	
2004:01	-1343690.	2005:08	-11600.00	2007:02	587840.0	
2004:02	562460.0	2005:09	12470.00	2007:03	-481540.0	
2004:03	203710.0	2005:10	-11420.00	2007:04	2528980.	
2004:04	-303320.0	2005:11	11930.00			
2004:05	-287450.0	2005:12	288600.0	2007:05	-2446340.	
2004:06	679330.0	2006:01	-302030.0	2007:06	-245910.0	
2004:07	-344750.0	2006:02	50800.00	2007:07	106870.0	

ADF Test Statistic	-5.238461	1% Critical Value*	-2.610
ADI Test Otalistic	-3.230401	5% Critical Value	-1.947
		10% Critical Value	-1.619
MacKinnon critical va	alues for rejecti	ion of hypothesis of a unit	root.
Augmented Dickey-Fi Dependent Variable: I Method: Least Squard Date: 01/25/08 Time Gample(adjusted): 20 ncluded observations	D(DV3) es :: 10:08 03:07 2007:07		
Variable	Coefficient	Std. Error t-Statistic	Prob.
DV3(-1) D(DV3(-1)) D(DV3(-2)) D(DV3(-3)) D(DV3(-4))	-2.779198 1.417997 0.921722 0.522576 0.208426	0.530537 -5.238461 0.447750 3.166940 0.354218 2.602133 0.252158 2.072410 0.166982 1.248196	0.0126 0.0441
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.672897 0.643160 781985.5 2.69E+13 -731.8010 2.030731	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	25024.69 1309067. 30.07351 30.26655 22.62852 0.000000
urbin-Watson stat	dv3	ADF	DF
ADF Test Statistic	-5.181390	1% Critical Value* 5% Critical Value 10% Critical Value	-3.5682 -2.9215 -2.5983

*MacKinnon critical values for rejection of hypothesis of a unit root.						
Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 01/25/08 Time: Sample(adjusted): 200 Included observations:	0(DV3) s 10:11 03:07 2007:07		8			
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
DV3(-1) D(DV3(-1)) D(DV3(-2)) D(DV3(-3)) D(DV3(-4)) C	-2.780782 1.418901 0.922067 0.522991 0.208573 -15230.34	0.536686 0.452881 0.358247 0.255039 0.168880 113093.8		0.0000 0.0031 0.0136 0.0464 0.2235 0.8935		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.673035 0.635015 790859.3 2.69E+13 -731.7907 2.030207	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	dent var criterion terion	25024.69 1309067. 30.11391 30.34556 17.70247 0.000000		

((3)) dv3 ADF DF :(7-6)

ADF Test Statistic -5.104426 -4.1540 Critical Value* 1% Critical Value -3.5025 -3.1804 10% Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV3) Method: Least Squares Date: 01/25/08 Time: 10:14 Sample(adjusted): 2003:07 2007:07 Included observations: 49 after adjusting endpoints Variable Coefficient Std. Error DV3(-1) -2.787221 0.546040 -5.104426 0.0000 D(DV3(-1)) D(DV3(-2)) D(DV3(-3)) 1.424279 0.926476 3.091416 2.541093 0.460721 0.0035 0.364597 0.258243 0.171293 271464.6 0.0148 0.524186 2.029818 0.0487 0.209935 -42593.01 1.225594 -0.156901 0.2272 0.8761 D(DV3(-4)) @TREND(2003:01) 912.3542 8208.222 0.111151 0.9120 0.673131 R-squared Mean dependent var 25024.69 Adjusted R-squared S.E. of regression Sum squared resid 0.626435 800101.3 1309067. 30.15443 S.D. dependent var Akaike info criterion 2.69E+13 Schwarz criterion 30.42469 14.41529 F-statistic Prob(F-statistic) Log likelihood -731.7835 Durbin-Watson stat 2.028838 0.000000

dv3 :(8-6)

Dependent Variable: DV3 Method: Least Squares Date: 01/25/08 Time: 10:29 Sample(adjusted): 2003:04 2007:07

Included observations: 52 after adjusting endpoints

Convergence achieved after 2 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(2)	-0.215625	0.130675	-1.650091	0.1051
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.049239 0.049239 833868.0 3.55E+13 -782.2391	Mean depen S.D. depend Akaike info Schwarz crit Durbin-Wats	lent var criterion erion	-33022.12 855188.1 30.12458 30.16211 2.041458

:(1-6)

obs	Actual	Fitted	Residual	Residual Plot
2003:04	-633780.	125774.	-759554.	No. 1
2003:05	190470.	-379446.	569916.	🌬
2003:06	-1119340	136659.	-1255999	•
2003:07	-165470.	-41070.1	-124400.	
2003:08	382820.	241358.	141462.	
2003:09	11530.0	35679.4	-24149.4	
2003:10	1279960	-82545.5	1362506	
2003:11	1102470	-2486.15	1104956	ا کمدا ا
2003:12	-1538720	-275991.	-1262729	•
2004:01	-1343690	-237720.	-1105970	
2004:02	562460.	331786.	230674.	
2004:02	203710.	289733.	-86023.0	1 1
2004:04	-303320.	-121280.	-182040.	1 7 1
2004:05	-303320. -287450.	-43924.9	-102040. -243525.	
				' 1
2004:06	679330.	65403.3	613927.	
2004:07	-344750.	61981.4	-406731.	'₹.!
2004:08	219140.	-146480.	365620.	l
2004:09	27030.0	74336.7	-47306.7	
2004:10	1750750	-47252.0	1798002	
2004:11	-298630.	-5828.34	-292802.	ا اسلوا ا
2004:12	-1240960	-377505.	-863455.	* '
2005:01	-966750.	64392.0	-1031142	•
2005:02	14800.0	267582.	-252782.	' '
2005:03	-1890.00	208455.	-210345.	' 🐧 '
2005:04	-6660.00	-3191.25	-3468.75	' 🛉 '
2005:05	-6810.00	407.531	-7217.53	, , , ,
2005:06	900.000	1436.06	-536.062	' 🕈 '
2005:07	11150.0	1468.41	9681.59	' † '
2005:08	-11600.0	-194.062	-11405.9	' 🕇 '
2005:09	12470.0	-2404.22	14874.2	' 🕇 '
2005:10	-11420.0	2501.25	-13921.2	' t '
2005:11	11930.0	-2688.84	14618.8	' 🕇 '
2005:12	288600.	2462.44	286138.	' > '
2006:01	-302030.	-2572.40	-299458.	' •{ '
2006:02	50800.0	-62229.3	113029.	'
2006:03	245060.	65125.2	179935.	- - - - - - - - -
2006:04	2760.00	-10953.7	13713.7	' ' '
2006:05	-25620.0	-52841.0	27221.0	
2006:06	-132200.	-595.125	-131605.	•
2006:07	412970.	5524.31	407446.	>
2006:08	-395670.	28505.6	-424176.	'≪ '
2006:09	78680.0	-89046.6	167727.	1
2006:10	2058490	85316.3	1973174	>
2006:11	78900.0	-16965.4	95865.4	
2006:12	-1911370	-443862.	-1467508	•
2007:01	-396100.	-17012.8	-379087.	
2007:02	587840.	412139.	175701.	
2007:03	-481540.	85409.0	-566949.	1•41
2007:04	2528980	-126753.	2655733	
2007:05	-2446340	103832.	-2550172	•
2007:06	-245910.	-545311.	299401.	1
2007:07	106870.	527492.	-420622.	
			,	

:(7) v4:(1-7) ADF DF

1% Critical Value* 5% Critical Value 10% Critical Value ADF Test Statistic -1.569405 -2.6090 -1.9473 -1.6192

*MacKinnon critical values for rejection of hypothesis of a unit root.

) v4

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(V4)
Method: Least Squares
Date: 01/17/08 Time: 13:18
Sample(adjusted): 2003:06 2007:07
Included observations: 50 after adjusting endpoints

((1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V4(-1)	-0.194816	0.124133	-1.569405	0.1236
D(V4(-1))	-0.250888	0.168239	-1.491261	0.1429
D(V4(-2))	-0.155792	0.169200	-0.920757	0.3621
D(V4(-3))	-0.024517	0.162581	-0.150799	0.8808
D(V4(-4))	-0.069895	0.148620	-0.470295	0.6404
R-squared	0.194547	Mean dependent var		-352743.4
Adjusted R-squared	0.122951	S.D. dependent var		84844764
S.E. of regression	79457895	Akaike info criterion		39.31399
Sum squared resid	2.84E+17	Schwarz criterion		39.50519
Log likelihood	-977.8498	F-statistic		2.717287
Durbin-Watson stat	1.979931	Prob(F-statistic)		0.041350

((2):(2-7)) v4 ADF DF

1% Critical Value* 5% Critical Value 10% Critical Value ADF Test Statistic -2.123905 -3.5653 -2.9202 -2.5977

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(V4) Method: Least Squares
Date: 01/17/08 Time: 13:29
Sample(adjusted): 2003:06 2007:07
Included observations: 50 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
V4(-1) D(V4(-1)) D(V4(-2)) D(V4(-3)) D(V4(-4)) C	-0.353639 -0.139314 -0.065495 0.042440 -0.023848 21286774	0.166504 0.184213 0.179159 0.167657 0.150577 15073037	-2.123905 -0.756266 -0.365569 0.253137 -0.158377 1.412242	0.0393 0.4535 0.7164 0.8013 0.8749 0.1649
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.229473 0.141913 78594238 2.72E+17 -976.7415 1.989201	Mean depen S.D. depend Akaike info o Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	-352743.4 84844764 39.30966 39.53910 2.620753 0.036939

dv4 :(4-7)

:(3-7)

	DV4					
2003:01	NA	2004:08	3596020.	2006:03	12570241	
2003:02	-15780100	2004:09	18914400	2006:04	-41643.80	
2003:03	25809560	2004:10	-15807200	2006:05	7140336.	
2003:04	12030100	2004:11	5834360.			
2003:05	-3942940.	2004:12	4151780.	2006:06	-5965031.	
2003:06	-3172960.	2005:01	-13784870	2006:07	7896233.	
2003:07	-15043720	2005:02	31532390	2006:08	-14196364	
2003:08	-750100.0	2005:03	10434030	2006:09	-2954975.	
2003:09	20164890	2005:04	33443850	2006:10	7946133.	
2003:10	2478510.	2005:05	2342950.	2006:11	19127563	
2003:11	-15110330	2005:06	-29694190	2006:12	52300660	
2003:12	30841570	2005:07	3.03E+08	2007:01	-91289502	
2004:01	-61619800	2005:08	-3.20E+08	2007:02	13874822	
2004:02	9722390.	2005:09	1.57E+08	2007:02	28221992	
2004:03	5560220.	2005:10	2.09E+08			
2004:04	1660490.	2005:11	-42924040	2007:04	-20619004	
2004:05	-370210.0	2005:12	-1.22E+08	2007:05	5344938.	
2004:06	-527130.0	2006:01	-2.23E+08	2007:06	10229441	
2004:07	-9017430.	2006:02	-8778735.	2007:07	-15348773	

((1)) dv4 ADF DF :(5-7)

5% Critical Value -1.9474 10% Critical Value -1.6193

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DV4)
Method: Least Squares
Date: 01/17/08 Time: 13:49
Sample(adjusted): 2003:07 2007:07
Included observations: 49 after adjusting endpoints

-3.434622

ADF Test Statistic

Variable Coefficient Std. Error t-Statistic Prob. DV4(-1) D(DV4(-1)) -1.727162 0.350801 0.502868 -3.434622 0.0013 0.4254 0.7934 0.436031 0.804532 D(DV4(-2)) 0.093439 0.354589 0.263514 D(DV4(-3)) D(DV4(-4)) 0.008108 0.255786 0.031697 -0.579068 0.9749 0.5655 0.150186 -0.086968 R-squared Adjusted R-squared S.E. of regression Mean dependent var S.D. dependent var 0.676122 0.646678 -248486.0 1.38E+08 82212812 Akaike info criterion 39.38397 39.57701 22.96337 Sum squared resid 2.97E+17 Schwarz criterion Log likelihood -959.9073 F-statistic Durbin-Watson stat 1.972848 Prob(F-statistic) 0.000000

((2)) dv4 ADF DF :(6-7)

ADF Test Statistic -3.395391 1% Critical Value* -3.5682 5% Critical Value -2.9215 10% Critical Value -2.5983

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV4) Method: Least Squares Date: 01/17/08 Time: 13:52 Sample(adjusted): 2003:07 2007:07

Included observations: 49 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DV4(-1) D(DV4(-1)) D(DV4(-2)) D(DV4(-3)) D(DV4(-4)) C	-1.727158 0.350788 0.093409 0.008073 -0.086970 -332114.4	0.508677 0.441069 0.358686 0.258744 0.151921 11880914	-3.395391 0.795315 0.260421 0.031201 -0.572470 -0.027954	0.0015 0.4308 0.7958 0.9753 0.5700 0.9778
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.676128 0.638468 83162525 2.97E+17 -959.9069 1.972864	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	-248486.0 1.38E+08 39.42477 39.65642 17.95368 0.0000000

((3) :(7-7)) dv4 ADF DF

ADF Test Statistic	-3.367158		Value*	-4.1540	
		5% Critical		-3.5025	
		10% Critical	Value	-3.1804	
*MacKinnon critical values for rejection of hypothesis of a unit root.					
Augmented Dickey-Fuller Test Equation Dependent Variable: D(DV4) Method: Least Squares Date: 01/17/08 Time: 13:53 Sample(adjusted): 2003:07 2007:07 Included observations: 49 after adjusting endpoints					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
DV4(-1)	-1.738268	0.516242	-3.367158	0.0016	
D(DV4(-1))	0.360389	0.447616	0.805128	0.4253	
D(DV4(-2))	0.100941	0.363918	0.277374	0.7829	
D(DV4(-3))	0.012906	0.262329	0.049197	0.9610	
D(DV4(-4))	-0.084731	0.153867	-0.550677	0.5848	
С	6048261.	28261338	0.214012	0.8316	
@TREND(2003:01)	-212669.2	852667.9	-0.249416	0.8043	
R-squared	0.676607	Mean depen	dent var	-248486.0	
Adjusted R-squared	0.630407	S.D. depend		1.38E+08	
S.É. of regression	84084483	Akaike info		39.46411	
Sum squared resid	2.97E+17	Schwarz crit	erion	39.73437	
Log likelihood	-959.8706	F-statistic		14.64546	
Durbin-Watson stat	1.973464	Prob(F-statis	tic)	0.000000	

ddv4 :(8-7)

	DDV4						
2003:01	NA	2004:08	12613450	2006:03	21348976		
2003:02	NA	2004:09	15318380	2006:04	-12611885		
2003:03	41589660	2004:10	-34721600	2006:05	7181980.		
2003:04	-13779460	2004:11	21641560				
2003:05	-15973040	2004:12	-1682580.	2006:06	-13105367		
2003:06	769980.0	2005:01	-17936650	2006:07	13861264		
2003:07	-11870760	2005:02	45317260	2006:08	-22092597		
2003:08	14293620	2005:03	-21098360	2006:09	11241389		
2003:09	20914990	2005:04	23009820	2006:10	10901108		
2003:10	-17686380	2005:05	-31100900	2006:11	11181430		
2003:11	-17588840	2005:06	-32037140	2006:12	33173098		
2003:12	45951900	2005:07	3.33E+08	2007:01	-1.44E+08		
2004:01	-92461370	2005:08	-6.23E+08	2007:02	1.05E+08		
2004:02	71342190	2005:09	4.77E+08	2007:03	14347170		
2004:03	-4162170.	2005:10	51796140				
2004:04	-3899730.	2005:11	-2.52E+08	2007:04	-48840996		
2004:05	-2030700.	2005:12	-79148150	2007:05	25963942		
2004:06	-156920.0	2006:01	-1.01E+08	2007:06	4884503.		
2004:07	-8490300.	2006:02	2.14E+08	2007:07	-25578214		

((1)) ddv4 :(9-7) ADF DF

ADF Test Statistic -5.326006 1% Critical Value* -2.6110 5% Critical Value -1.9476 10% Critical Value -1.6194

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DDV4) Method: Least Squares
Date: 01/17/08 Time: 14:54
Sample(adjusted): 2003:08 2007:07
Included observations: 48 after adjusting endpoints

Variable	Coefficient	Std. Error t-Statistic		Prob.
DDV4(-1)	-4.463078	0.837978 -5.326006 0.732540 3.198155 0.558287 2.340692 0.346510 1.640470 0.151906 0.603529		0.0000
D(DDV4(-1))	2.342776			0.0026
D(DDV4(-2))	1.306778			0.0240
D(DDV4(-3))	0.568440			0.1082
D(DDV4(-4))	0.091679			0.5493
R-squared	0.870874	Mean dependent var		-285572.0
Adjusted R-squared	0.858863	S.D. dependent var		2.48E+08
S.E. of regression	93207418	Akaike info criterion		39.63689
Sum squared resid	3.74E+17	Schwarz criterion		39.83180
Log likelihood	-946.2852	F-statistic		72.50220
Durbin-Watson stat	2.035693	Prob(F-statistic)		0.000000

((2):(10-7)) ddv4 ADF DF

ADF Test Statistic -5.263709 Critical Value* -3.5713 -2.9228 -2.5990 5% Critical Value 10% Critical Value

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DDV4) Method: Least Squares
Date: 01/17/08 Time: 14:56
Sample(adjusted): 2003:08 2007:07
Included observations: 48 after adjusting endpoints

Variable	Coefficient	Std. Error t-Statistic		Prob.
DDV4(-1)	-4.463075	0.847895	-5.263709	0.0000
D(DDV4(-1))	2.342772	0.741209	3.160743	0.0029
D(DDV4(-2))	1.306776	0.564894	2.313311	0.0257
D(DDV4(-3))	0.568442	0.350611	1.621288	0.1124
D(DDV4(-4))	0.091682	0.153704	0.596485	0.5541
C	85311.28	13612907	0.006267	0.9950
R-squared	0.870874	Mean dependent var		-285572.0
Adjusted R-squared	0.855502	S.D. dependent var		2.48E+08
S.E. of regression	94310459	Akaike info criterion		39.67855
Sum squared resid	3.74E+17	Schwarz criterion		39.91245
Log likelihood	-946.2852	F-statistic		56.65294

((3)) ddv4 :(11-7) ADF DF

ADF Test Statistic	-5.198950	1% Critical 5% Critical 10% Critical		-4.1584 -3.5045 -3.1816			
*MacKinnon critical values for rejection of hypothesis of a unit root.							
Augmented Dickey-Fuller Test Equation Dependent Variable: D(DDV4) Method: Least Squares Date: 01/17/08 Time: 14:58 Sample(adjusted): 2003:08 2007:07 Included observations: 48 after adjusting endpoints							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
DDV4(-1) D(DDV4(-1)) D(DDV4(-2)) D(DDV4(-3)) D(DDV4(-3)) C @TREND(2003:01)	-4.463029 2.342731 1.306743 0.568421 0.091675 149511.0 -2104.903	0.858448 0.750446 0.571946 0.354991 0.155603 33326727 994927.1	-5.198950 3.121783 2.284730 1.601227 0.589161 0.004486 -0.002116	0.0000 0.0033 0.0276 0.1170 0.5590 0.9964 0.9983			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.870874 0.851978 95453653 3.74E+17 -946.2852 2.035701	S.D. dependent var 2.48E+4 Akaike info criterion 39.720/ Schwarz criterion 39.993 F-statistic 46.0867					

ddv4

:(12-7)

Dependent Variable: DDV4 Method: Least Squares Date: 02/03/08 Time: 12:11 Sample(adjusted): 2003:04 2007:07 Included observations: 52 after adjusting endpoints Convergence achieved after 18 iterations Backcast: 2003:03					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
AR(1) MA(1)	-0.300744 -0.989949		-2.226816 -1866.594	0.0305 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.645584 0.638496 80694626 3.26E+17 -1019.487 2.120962		ent var criterion erion	-791506.4 1.34E+08 39.28794 39.36299 91.07733 0.000000	
Inverted AR Roots Inverted MA Roots	30 .99				

:(1-7)

obs	Actual	Fitted		Residual Plot
2003:03	4.2E+07	1771155	4.0E+07	' <i> </i> ?'
2003:04	-1.4E+07	1703347		'¶'
2003:05	-1.6E+07	1635538		' 🕈 '
2003:06	769980.	1567730	-797750.	' 🛊 '
2003:07	-1.2E+07	1499922	-1.3E+07	' •
2003:08	1.4E+07		1.3E+07	'†'
2003:09	2.1E+07	1364305	2.0E+07	'
2003:10	-1.8E+07	1296497	-1.9E+07	'¶'
2003:11	-1.8E+07	1228688	-1.9E+07	'4 '
2003:12	4.6E+07	1160880	4.5E+07	']> '
2004:01	-9.2E+07	1093072	-9.4E+07	1≪
2004:02	7.1E+07	1025263	7.0E+07	' <u> </u>
2004:03	-4162170	957455.	-5119625	'
2004:04	-3899730	889647.	-4789377	
2004:05	-2030700	821838.	-2852538	
2004:06	-156920.	754030.	-910950.	
2004:07	-8490300	686222.		4
2004:08	1.3E+07	618413.	1.2E+07	
2004:09	1.5E+07	550605.	1.5E+07	' ∳ '
2004:10	-3.5E+07	482797.	-3.5E+07	'∢'
2004:11	2.2E+07	414988.	2.1E+07	
2004:12	-1682580	347180.	-2029760	↓
2005:01	-1.8E+07		-1.8E+07	4
2005:02	4.5E+07		4.5E+07	
2005:03		143755.		
2005:04	2.3E+07		2.3E+07	
2005:05		8138.24		أ نوآن آ
2005:06	-3.2E+07		-3.2E+07	
2005:07	3.3E+08		3.3E+08	
2005:08	-6.2E+08	-195287.	-6.2E+08	*
2005:09	4.8E+08	-263095.	4.8E+08	
2005:10	5.2E+07	-330903.		استسهارا
2005:11	-2.5E+08	-398712.	-2.5E+08	
2005:12	-7.9E+07	-466520.	-7.9E+07	🗽
2006:01	-1.0E+08	-534328.	-1.0E+08	
2006:02	2.1E+08	-602137.	2.2E+08	
2006:03	2.1E+07	-669945.		
2006:04	-1.3E+07	-737753.		
2006:05	7181980	-805562.	7987541	
2006:06	-1.3E+07	-873370.	-1.2E+07	
2006:07	1.4E+07	-941179.	1.5E+07	
2006:08	-2.2E+07	-1008987	-2.1E+07	
2006:09	1.1E+07	-1076795	1.2E+07	
2006:10	1.1E+07	-1144604	1.2E+07	
2006:11	1.1E+07	-1212412	1.2E+07	
2006:12	3.3E+07	-1280220	3.4E+07	
2007:01	-1.4E+08	-1348029	-1.4E+08	•<
2007:02	1.1E+08	-1415837	1.1E+08	
2007:03	1.4E+07	-1483645	1.6E+07	i vi
2007:04	-4.9E+07	-1551454	-4.7E+07	₁∢[₁
2007:05	2.6E+07	-1619262	2.8E+07	
2007:06	4884503	-1687070	6571573	
2007:07	-2.6E+07	-1754879	-2.4E+07	
		10.0		

		vt			:(8)
((1)) vt		ADF	DF	:(1-8)
ADF Test Statistic	-2.004616	1% Critical 5% Critical 10% Critical		-2.6090 -1.9473 -1.6192	
*MacKinnon critical va	alues for rejection	on of hypothe	sis of a ur	nit root.	
Augmented Dickey-F Dependent Variable: I Method: Least Square Date: 01/25/08 Time Sample(adjusted): 20 Included observations	D(VT) es :: 16:13 03:06 2007:07		8		
Variable	Coefficient	Std. Error	t-Statist	tic Prob.	
VT(-1) D(VT(-1)) D(VT(-2)) D(VT(-3)) D(VT(-4))	-0.431689 -0.270563 -0.201629 -0.113735 -0.183622	0.215347 0.212458 0.200385 0.179289 0.146537	-2.00461 -1.27348 -1.00620 -0.63438 -1.25307	38 0.2094 07 0.3197 66 0.5291	

((2)) vt	ADF DF	:(2-8)
------	------	--------	--------

Mean dependent var

S.D. dependent var Akaike info criterion

Schwarz criterion

Prob(F-statistic)

F-statistic

-1670994.

4.25E+10

51.50874

51.69994

6.477980

0.000332

ADF Test Statistic	-2.208478	1% Critical Value* 5% Critical Value	-3.5653 -2.9202
		10% Critical Value	-2.5977

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

0.365410

0.309002

3.53E+10

5.62E+22

-1282.718

1.969471

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(VT)
Method: Least Squares
Date: 01/25/08 Time: 16:14
Sample(adjusted): 2003:06 2007:07
Included observations: 50 after adjusting endpoints

R-squared

Adjusted R-squared S.E. of regression

Sum squared resid

Durbin-Watson stat

Log likelihood

Variable	Coefficient	Std. Error	t-Statistic	Prob.
VT(-1) D(\text{VT}(-1)) D(\text{VT}(-2)) D(\text{VT}(-3)) D(\text{VT}(-4)) C	-0.525487	0.237941	-2.208478	0.0325
	-0.199732	0.225903	-0.884148	0.3814
	-0.146633	0.209153	-0.701081	0.4869
	-0.074940	0.184300	-0.406622	0.6863
	-0.160666	0.148796	-1.079773	0.2861
	5.15E+09	5.52E+09	0.932982	0.3559
R-squared	0.377721			-1670994.
Adjusted R-squared	0.307007			4.25E+10
S.E. of regression	3.54E+10			51.52915
Sum squared resid	5.51E+22			51.75859
Log likelihood	-1282.229			5.341557
Durbin-Watson stat	1.966390			0.000638

((3)) vt	A	DF D	F	:(3-8)
ADF Test Statistic	-2.158685	1% Critical \ 5% Critical \ 10% Critical \	√alue	-4.1498 -3.5005 -3.1793	
*MacKinnon critical va	lues for rejecti	on of hypothes	is of a unit	root.	
Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 01/25/08 Time: Sample(adjusted): 200 Included observations:)(VT) s 16:16 03:06 2007:07				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
VT(-1) D(VT(-1)) D(VT(-2)) D(VT(-3)) D(VT(-4)) C @TREND(2003:01)	-0.522663 -0.202412 -0.149072 -0.076891 -0.161907 6.23E+09 -37579642	0.242121 0.229872 0.212783 0.187307 0.150948 1.16E+10 3.53E+08	-2.158685 -0.880546 -0.700582 -0.410510 -1.072597 0.537309 -0.106327	0.3835 0.4873 0.6835 0.2894	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.377884 0.291077 3.58E+10 5.51E+22 -1282.222 1.966937	Mean depend S.D. depende Akaike info cr Schwarz crite F-statistic Prob(F-statist	nt var iterion rion	-1670994, 4.25E+10 51.56888 51.83657 4.353159 0.001616	
			dvt		:(4-8)

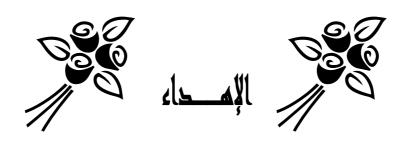
				dvt	 : (4	
DVT						
2003:01	NA NA	2004:08	-54393836	† 		
2003:02	1.47E+08	2004:00	1.66E+08	2006:03	41456105	
2003:03	-38518650	2004:09	-15959417	2006:04	42114954	
2003:04	4323010.	2004:10	-66549949	2006:05	-68670725	
2003:05	155280.0	2004:11	1.66E+08	2006:06	-14480834	
2003:06	-55247290	2005:01	4.33E+08	2006:07	21792748	
2003:07	-66745440	2005:02	1.52E+10	2006:08	-6939110.	
2003:08	-9999980.	2005:03	-1.76E+09	2006:09	-8707447.	
2003:09	1.33E+08	2005:04	4.25E+09	2006:10	16653041	
2003:10	74983150	2005:05	-2.21E+09	2006:11	76725171	
2003:11	-91657970	2005:06	6.76E+10	2006:11	2.69E+08	
2003:12	1.45E+08	2005:07	1.53E+11	2007:01	-4.75E+08	
2004:01	-3.45E+08	2005:08	-2.34E+11		== ==	
2004:02	1.70E+09	2005:09	3.17E+10	2007:02	1.09E+08	
2004:03	-1.44E+09	2005:10	-2.29E+10	2007:03	1.03E+08	
2004:04	-58614293	2005:11	-1.17E+10	2007:04	-30706832	
2004:05	16226956	2005:12	4.26E+10	2007:05	-5819524.	
2004:06	-15706842	2006:01	-4.28E+10	2007:06	4080736.	
2004:07	-69601973	2006:02	1.43E+08	2007:07	-88540140	

((1)) dvt	ADF D	F	:(5-8)
ADF Test Statistic	-4.388382	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6100 -1.9474 -1.6193	
*MacKinnon critical va Augmented Dickey-Fi Dependent Variable: I Method: Least Square Date: 01/25/08 Time				
Sample(adjusted): 2003:07 2007:07 Included observations: 49 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob.				
DVT(-1) D(DVT(-1)) D(DVT(-2)) D(DVT(-3)) D(DVT(-4))	-2.647835 1.049642 0.593233 0.298359 0.005662	0.603374 -4.38838 0.516829 2.03092 0.408285 1.45298 0.280631 1.06317 0.150753 0.03756	8 0.0483 9 0.1533 1 0.2935	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.754190 0.731843 3.73E+10 6.12E+22 -1259.654 2.000677	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		

((2)) dvt	AD	F DF	:(6-8)	
ADF Test Statistic	-4.338227	1% Critical Valu 5% Critical Valu 10% Critical Valu	e -2.9	215	
*MacKinnon critical v	alues for rejecti	on of hypothesis of	a unit root.		
Dependent Variable: I Method: Least Squan Date: 01/25/08 Time Sample(adjusted): 20	Augmented Dickey-Fuller Test Equation Dependent Variable: D(DVT) Method: Least Squares Date: 01/25/08 Time: 16:25 Sample(adjusted): 2003:07 2007:07 Included observations: 49 after adjusting endpoints				
Variable	Coefficient	Std. Error t-S	tatistic Pro	ıb.	
DVT(-1) D(DVT(-1)) D(DVT(-2)) D(DVT(-3)) D(DVT(-4)) C	-2.647835 1.049642 0.593233 0.298359 0.005662 -413508.6	0.522804 2.0 0.413005 1.4 0.283876 1.0 0.152496 0.0	36383 0.1 51020 0.2	510 581 991 706	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.754190 0.725607 3.77E+10 6.12E+22 -1259.654 2.000677	Mean dependent S.D. dependent v Akaike info criteri Schwarz criterion F-statistic Prob(F-statistic)	ar 7.20E on 51.65	+10 934 9099 8632	

((3)) dvt :(7-8) ADF DF

ADF Test Statistic	-4.306438	1% Critical 5% Critical 10% Critical		-4.1540 -3.5025 -3.1804
*MacKinnon critical va	lues for reject	ion of hypothe	sis of a unit	root.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(DVT) Method: Least Squares Date: 01/25/08 Time: 16:26 Sample(adjusted): 2003:07 2007:07 Included observations: 49 after adjusting endpoints				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
DVT(-1) D(DVT(-1)) D(DVT(-2)) D(DVT(-3)) D(DVT(-4)) C @TREND(2003:01)	-2.664083 1.063220 0.603321 0.304524 0.008338 3.90E+09 -1.30E+08	0.618628 0.529817 0.418405 0.287433 0.154298 1.28E+10 3.86E+08	-4.306438 2.006768 1.441956 1.059461 0.054038 0.304586 -0.336581	0.0001 0.0512 0.1567 0.2954 0.9572 0.7622 0.7381
R-squared Adjusted R-squared	0.754851 0.719830	Mean dependent var S.D. dependent var		-679445.9 7.20E+10
S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	3.81E+10 6.10E+22 -1259.588 2.001067	Akaike info o Schwarz crit F-statistic Prob(F-statis	erion	51.69746 51.96772 21.55405 0.000000

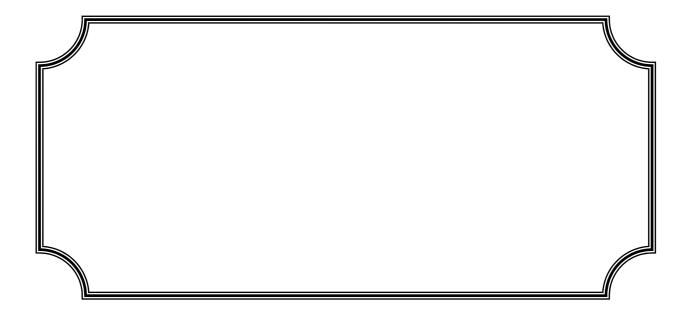

:(8-8) dvt

Dependent Variable: DVT
Method: Least Squares
Date: 01/25/08 Time: 16:35
Sample(adjusted): 2003:02 2007:07
Included observations: 54 after adjusting endpoints
Convergence achieved after 11 iterations
Backcast: 2003:01

cient Std. Error t-Statistic Prob.
1570 0.089085 -8.548846 0.0000
2769 Mean dependent var 544751.5 2769 S.D. dependent var 4.09E+10 E+10 Akaike info criterion 51.37718 E+22 Schwarz criterion 51.41402 6.184 Durbin-Watson stat 1.781996
=+:

:(1-8)

obs	Actual	Fitted	Residual	Residual Plot
2003:02	1.5E+08	9.6E+07	5.1E+07	
2003:03	-3.9E+07	-3.9E+07	70701.5	
2003:04	4323010	-53844.2	4376854	
2003:05	155280.	-3333282	3488562	
2003:06	-5.5E+07	-2656785	-5.3E+07	
2003:07	-6.7E+07	4.0E+07	-1.1E+08	
2003:08	-9999980	8.1E+07	-9.1E+07	
2003:09	1.3E+08	7.0E+07	6.3E+07	
2003:10	7.5E+07	-4.8E+07	1.2E+08	
2003:11	-9.2E+07	-9.4E+07	2090438	
2003:12	1.4E+08	-1592015	1.5E+08	
2004:01	-3.4E+08	-1.1E+08	-2.3E+08	
2004:02	1.7E+09	1.8E+08	1.5E+09	
2004:03	-1.4E+09	-1.2E+09	-2.8E+08	
2004:04	-5.9E+07	2.2E+08	-2.7E+08	
2004:05	1.6E+07	2.1E+08	-1.9E+08	
2004:06	-1.6E+07	1.5E+08	-1.6E+08	
2004:07	-7.0E+07	1.2E+08	-1.9E+08	
2004:08	-5.4E+07	1.5E+08	-2.0E+08	
2004:09	1.7E+08	1.5E+08	1.2E+07	
2004:10	-1.6E+07	-9176692	-6782725	
2004:11	-6.7E+07	5165522	-7.2E+07	1 4 1
2004:12	1.7E+08	5.5E+07	1.1E+08	
2005:01	4.3E+08	-8.5E+07	5.2E+08	
2005:02	1.5E+10	-3.9E+08	1.6E+10	ı 🌬 📗
2005:03	-1.8E+09	-1.2E+10	1.0E+10	ı ↓ ı
2005:04	4.3E+09	-7.7E+09	1.2E+10	' '
2005:05	-2.2E+09	-9.1E+09	6.9E+09	'Kı
2005:06	6.8E+10	-5.2E+09	7.3E+10	
2005:07	1.5E+11	-5.5E+10	2.1E+11	
2005:08	-2.3E+11	-1.6E+11	-7.5E+10	
2005:09	3.2E+10	5.7E+10	-2.6E+10	" -
2005:10	-2.3E+10	1.9E+10	-4.2E+10	• '
2005:11	-1.2E+10	3.2E+10	-4.4E+10	•
2005:12	4.3E+10	3.3E+10	9.2E+09	' ≯ '
2006:01	-4.3E+10	-7.0E+09	-3.6E+10	
2006:02	1.4E+08	2.7E+10	-2.7E+10	
2006:03	4.1E+07	2.1E+10	-2.1E+10	'* '
2006:04	4.2E+07	1.6E+10	-1.6E+10	'5 '
2006:05	-6.9E+07	1.2E+10	-1.2E+10	'\$ '
2006:06	-1.4E+07	9.1E+09	-9.1E+09	'1 '
2006:07	2.2E+07	7.0E+09	-6.9E+09	'1 '
2006:08	-6939110	5.3E+09	-5.3E+09	
2006:09	-8707447	4.0E+09	-4.0E+09	
2006:10	1.7E+07	3.1E+09	-3.1E+09	
2006:11	7.7E+07	2.3E+09	-2.3E+09	
2006:12	2.7E+08	1.7E+09	-1.4E+09	
2007:01	-4.8E+08	1.1E+09	-1.6E+09	
2007:02	1.1E+08	1.2E+09	-1.1E+09	
2007:03	1.0E+08	8.3E+08	-7.3E+08	
2007:04	-3.1E+07	5.6E+08	-5.9E+08	
2007:05	-5819524	4.5E+08	-4.5E+08	
2007:06	4080736	3.4E+08	-3.4E+08	
2007:07	-8.9E+07	2.6E+08	-3.5E+08	1 🔻 1

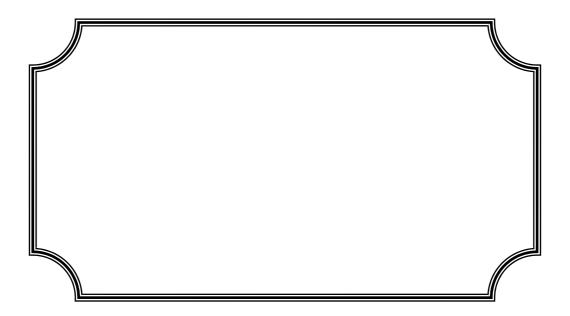

u u

:

; :

		•••••
1	•••••	:
2		:
2		:
7		:
10		:
10		:
25		:
32	(Fourier)	:
32	(Fourier) ¹	:
34	(Fourier) '	:
37		:
38		:
38		:
43		:
46		:
46		:
50	(Holt-Winters)' '(Holt)'	:
52	(Box-Jenkinz)	:
52	(Box-Jenkinz)	:
57	(Box-Jenkinz)	:
64		:
65		:

65					:	
70					:	
72					:	
72					:	
75					:	
78					:	
78		,			:	
81					:	
82					:	
85	•••••	"ORSIM"			:	
86		•••••			:	
86					:	
93					:	
97		(Box-Jenkinz)	1	ı	:	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	ORSIM
97	V3 V2 V1:	(Box-Jenkinz)		1	:	
110	Vt V4:	(Box-Jenkinz)		1	:	
119	• ORSIM	(F	ourier)'	1	:	
119	v9 v8 v7 v6 v5:	(Fourier)	1		:	
125	v9 v8 v7 v6 v5:		ORSIM		:	
132		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••
135	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • •		
139	•••••		•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•
175	•••••	• • • • • • • • • • • • • •		• • • • • • • •	• • • • • • • • • • • •	••


1-4 96 98 2-4 v1ADF DF 99 3-4 ADF DF dv1100 4-4 dv1 103 5-4 v2ADF DF 104 6-4 ADF DF dv2 105 7-4 dv2 107 8-4 v3ADF DF 9-4 108 dv3 ADF DF 109 10-4 dv3 11-4 111 ADF DF v4 111 12-4 dv4 ADF DF 112 13-4 ADF DF ddv4 113 14-4 ddv4 115 15-4 vt ADF DF 116 16-4 ADF DF dvt117 17-4 dvt

4		1-1
18		2-1
24	1 11 1	3-1
34	(Fourier) '	4-1
40		1-2
41		2-2
42		3-2
42		4-2
44		5-2
44		6-2
57	Box-Jenkinz	7-2
67		1-3
91	ORSIM	1-4
97	v1	2-4
98	v1	3-4

99	dv1	4-4
100	dv1	5-4
102	v2	6-4
102	v2	7-4
103	dv2	8-4
103	dv2	9-4
106	v3	10-4
106	v3	11-4
107	dv3	12-4
108	dv3	13-4
110	v4	14-4
110	v4	15-4
112	ddv4	16-4
113	ddv4	17-4
114	vt	18-4
115	vt	19-4
116	dvt	20-4
117	dvt	21-4

125	v5	22-4
126	v6	23-4
127	v7	24-4
128	v8	25-4
129	v9	26-4

)

•

)

.

.

:

:

.

:

:

:

.

•

(ORSIM) BCR 2007 31 2003 1 .((2001 1970) " 2006 2002

-ج-

()

•

.

(BuysBallot)

.

: :

.

.

ORSIM

.