Dépôt DSpace/Manakin

Approches de Deep Learning pour la segmentation d’image en temps réel dans la conduite autonome

Afficher la notice abrégée

dc.contributor.author BOUFADES, Hind
dc.contributor.author SLIMANE, Djihane
dc.date.accessioned 2026-01-18T09:43:59Z
dc.date.available 2026-01-18T09:43:59Z
dc.date.issued 2025
dc.identifier.uri http://dspace.univ-chlef.dz/handle/123456789/2238
dc.description Spécialité : ELECTRONIQUE DES SYSTEMES EMBARQUES en_US
dc.description.abstract Real-time semantic segmentation is a key task in computer vision, especially for autonomous driving systems where quick and accurate perception is essential. This thesis explores deep learning techniques for this task using the U-Net architecture, applied to the Cityscapes dataset of urban driving scenes. To enhance performance, we replaced the original U-Net encoder with EfficientNet-B0, aiming to achieve both high segmentation accuracy and real-time inference speed. The proposed model reached over 61.8% mean IoU and 128 FPS, making it highly suitable for real-time applications. The work was developed using Google Colab and benefited from an internship at CRTI, which provided technical support and valuable resources. Despite certain challenges such as limited annotation in the test set, the final results demonstrate the model’s efficiency and robustness. en_US
dc.publisher BAHI AZZOUOUM Ahmed / BENYAHIA Ahmed en_US
dc.subject Deep learning en_US
dc.subject semantic segmentation en_US
dc.subject U-Net en_US
dc.title Approches de Deep Learning pour la segmentation d’image en temps réel dans la conduite autonome en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte